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Abstract

This moments of the asymptotic distribution of the least-squares estimator of the local-to-unity

autoregressive model are computed using computationally simple integration. These calculations

show that conventional simulation estimation of moments can be substantially inaccurate unless
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coefficient estimation, and numerically show that a simple Stein shrinkage estimator has minimax

risk which is uniformly better than least squares, even though the estimation dimension is just one.
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1 Introduction

In a series of seminal contributions, Phillips (1987ab) and Phillips and Perron (1988) developed

an asymptotic theory of inference for unit roots in autoregressive models. A core component of this

theory is the near unit root model which is parameterized by a localizing parameter c. This model

has been the foundation for nearly all subsequent work in non-stationary time series econometric

theory.

A key feature of this theory is that it yields simple expression for asymptotic distributions as

functions of continuous-time Brownian motions and diffusion processes indexed by c. An inconve-

nience is that analytic expressions for the distributions are not available. The standard view is that

this is not a problem, as the distributions can always be simulated. And indeed numerical calcula-

tion of non-stationary asymptotic distributions by simulation is the standard approach. Important

examples include MacKinnon (1994)’s calculation of asymptotic critical values and Stock (1991)’s

calculation of quantiles for confidence interval construction. A recent example is Phillips (2012b)

who examines confidence interval construction.

Following Nabeya (1999), we show that moments of the asymptotic distribution can be cal-

culated by direct integration. This is computationally much simpler (a matter of minutes versus

days) and more accurate. As a by-product of our calculations, we find that simulation estimation

of near-unit-root distributions for large values of c requires very large sample sizes, much larger

than those used in conventional practice.

We also explore the issue of efficient estimation in the near unit root model. Ploberger and

Phillips (2012) have recently argued that while the OLS estimator is non-standard, it is minimax

efficient in a certain sense. We argue that their argument is incomplete, that it ignores the un-

bounded nature of estimation variance in the local-to-unit model. We show numerically that a

standard Stein shrinkage estimator uniformly dominates the OLS estimator, and can be viewed as

dominating OLS in a minimax sense. This result suggests that efficiency is an open question ready

to be explored.

The paper is organized as follows. Section 2 introduces the local-to-unit model, its asymptotic

moments, and the main theoretical contribution of the paper, which is an expression for the mo-

ments in terms of a simple integral. Section 3 presents numerical computation of the moments by

both integration and simulation. Section 4 presents a discussion of minimax efficiency. Section

5 introduces the Stein-type shrinkage estimator and contrast its asymptotic risk versus OLS by

numerical simulation. Section 6 is a conclusion, and Section 7 contains the proof of Theorem 1.

A Gauss program which creates the numerical work reported in the paper is available on the

author’s webpage http://www.ssc.wisc.edu/~bhansen/
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2 Moments of the Asymptotic Distribution

Take the classic AR(1) with a near unit root

yt = αnyt−1 + et (1)

αn = 1 + c/n (2)

with et zero mean white noise. Let bαn denote the OLS estimator of α. As shown by Chan and Wei
(1987) and Phillips (1987),

n (bαn − αn)→d
Uc

Vc
, (3)

as n → ∞, where Uc =
R 1
0 WcdW and Vc =

R 1
0 W

2
c . In this expression, W (r) denotes a standard

Brownian motion, and dWc(r) = cWc(r) + dW (r) is a standard diffusion process.

Define the rth moment of the asymptotic distribution (3):

μr(c) = E

µ
Uc

Vc

¶r

. (4)

The main theoretical contribution of the paper is a convenient expression for μr(c) as a simple

integral.

Theorem 1 For any integer r ≥ 1 and c ≤ 0,

μr(c) =
rX

j=0

µ
r

j

¶
(−c)r−j

Z 1

0
gj (x, c) dx (5)

where

gj (x, c) =
23/2−2jλ(x, c)

¡
λ(x, c)2 − c2

¢j−1
(j − 1)! (1− x)2 ex/(2−2x)

¡
1 + e−2λ(x,c)

¢1/2 jX
c=0

µ
j

c

¶
(−1)j−c (2c− 1)!!ψ (λ(x, c))c

(1− cψ (λ(x, c)))
1
2
+c

with λ(x, c) = x/(1 − x) − c and ψ(u) = tanh(u)
u with ψ(0) = 1. The notation a!! is the the double

factorial defined as a!! = 1 · 3 · · · a with the convention a!! = 1 for a < 0.

Theorem 1 restricts the near-unity parameter c to be non-positive, and thus does not cover

the locally explosive case. The technical reason for this restriction is due to one of the change-of-

variables used in obtaining (5); it could be avoided by alternative manipulations. The representation

(5) is particularly convenient, however, as the functions gj(x, c) (with c ≤ 0) are free of poles on
[0, 1] and thus numerical integration is well behaved.

Theorem 1 gives an integral representation for the exact moments of the local-to-unity asymp-

totic distribution. This extends Nabeya (1999) who provided an integral representation for the

exact moments in the case c = 0.
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There is a long history of papers investigating asymptotic expansions for asymptotic bias and

variance of bαn, including White (1961), Shenton and Johnson (1965), and Shenton and Vinod
(1995). Most recently, Phillips (2012a, Theorem 3) provides an integral representation of the finite

sample bias of bαn, and Phillips (2012a, Theorem 4) provides asymptotic expansions for the bias.

Theorem 1 above is complementary to these results, as it provides an exact integral representation

for the asymptotic local-to-unity model.

3 Calculation of Asymptotic Moments

We calculated the integrals in (5) by numerical integration1. We divided the inteval [0, 1] into

100 intervals of length 1/100, and over each interval numerically integrated using Gauss-Legendre

quadrature with 40 gridpoints in each interval. We calculated the first four moments, and then

transformed into conventional cummulants, including the mean μ1(c), variance

σ2(c) = μ2(c)− μ1(c)
2,

skewness

skew(c) =
μ3(c)− 3μ2(c)μ1(c) + 2μ1(c)3

σ3/2(c)

and kurtosis

kurtosis(c) =
μ4(c)− 4μ3(c)μ1(c) + 6μ2(c)μ1(c)2 − 3μ1(c)4

σ4(c)
.

These four cummulants are reported in Table 1 (for c = 0 to c = −20 in steps of 1) and in Table
2 (for c = −40 to c = −400 in steps of 20). The values for c = 0 are identical to those reported in
Nabeya (1999).

Table 1
1The computation was done in Gauss using the intquad1 command.
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Mean Variance Skewness Kurtosis

c = 0 −1.781 10.11 −2.270 11.37

c = −1 −1.882 11.76 −2.068 9.971

c = −2 −1.930 13.54 −1.901 8.887

c = −3 −1.954 15.41 −1.759 8.043

c = −4 −1.968 17.33 −1.640 7.385

c = −5 −1.976 19.27 −1.539 6.886

c = −6 −1.981 21.23 −1.453 6.451

c = −7 −1.985 23.20 −1.379 6.112

c = −8 −1.988 25.18 −1.315 5.831

c = −9 −1.990 27.16 −1.258 5.596

c = −10 −1.991 29.15 −1.208 5.395

c = −11 −1.992 31.13 −1.163 5.223

c = −12 −1.993 33.12 −1.123 5.073

c = −13 −1.994 35.11 −1.086 4.942

c = −14 −1.995 37.11 −1.053 4.826

c = −15 −1.995 39.10 −1.023 4.723

c = −16 −1.996 41.09 −0.9947 4.631

c = −17 −1.996 43.09 −0.9689 4.548

c = −18 −1.997 45.08 −0.9449 4.473

c = −19 −1.997 47.08 −0.9226 4.405

c = −20 −1.997 48.07 −0.9018 4.343
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Table 2
Mean Variance Skewness Kurtosis

c = −40 −1.997 89 −0.6546 3.711

c = −60 −1.999 129 −0.5390 3.483

c = −80 −2.000 169 −0.4687 3.365

c = −100 −2.000 209 −0.4203 3.294

c = −120 −2.000 249 −0.3843 3.246

c = −140 −2.000 289 −0.3562 3.211

c = −160 −2.000 329 −0.3335 3.185

c = −180 −2.000 369 −0.3146 3.165

c = −200 −2.000 409 −0.2986 3.148

c = −220 −2.000 449 −0.2848 3.135

c = −240 −2.000 489 −0.2728 3.124

c = −260 −2.000 529 −0.2622 3.114

c = −280 −2.000 569 −0.2527 3.106

c = −300 −2.000 609 −0.2442 3.099

c = −320 −2.000 649 −0.2365 3.093

c = −340 −2.000 689 −0.2295 3.088

c = −360 −2.000 729 −0.2230 3.083

c = −380 −2.000 769 −0.2171 3.079

c = −400 −2.000 809 −0.2116 3.075

The exact moments can be compared to estimated moments from simulations. The rth finite

sample moment is

μr(c, n) = E (n (bαn − αn))
r .

which approaches μr(c, n) as n→∞. Unit root distributions are typically calculated by simulation

with large values of n, including n = 500 in early papers and n = 1000 in later papers. We calculated

the same moments (and cummulants) by simulation using 1,000,000 simulation replications and

n = 500, n = 1000, n = 10, 000, and n = 100, 000. The results are presents graphically in Figure 1

(for c ranging from −20 to 0) and in Figure 2 (for c ranging from −400 to 0).
Examining the figures, we can see that the simulation moment estimates can be quite poor

unless n is very large. The discrepancy is worst for the low order moments. In particular, the

simulation estimate of the mean with n = 500 and n = 1000 is far from accurate even for small

values of c. The simulation estimates of the variance are reasonably accurate for small c, but

are quite inaccurate for large c, unless n is very large. The simulation estimates of skewness and

kurtosis, however, are excellent even for small n.

The errors displayed in the figures show that for reasonable accuracy (except for very small c),

the simulation estimate requires setting n = 100, 000. This is surprisingly large, and much larger

than the values used in existing studies. For example, Stock (1992) used n = 500 to calculate
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the distributions for c as large as c = −38 to 6. Phillips (2012b) used n = 10, 000 to calculate

distributions for c as large as c = −450. Our calculations suggest that these values of n are much
too small.

To contrast the computation costs, numerical integration is quite quick, with all of the results

reported in this paper computed in just a few minutes on an office PC. In contrast, the simulation

results took 6 days to compute.

4 Minimax Efficiency

Is the OLS estimator bαn efficient for αn? Ploberger and Phillips (2012) argue that it is in a
certain sense. We re-investigate this question.

We start by reviewing the classic theory of estimation efficiency developed by Hájek (1970,

1972), Le Cam (1982), and van der Vaart (1998) in the locally asymptotic normality (LAN) case.

For concreteness and simplicity let’s consider a LAN model f(x, θ) with θ ∈ Θ ⊂ Rk. If bθn denotes
the MLE from a sample of size n, then

√
n
³bθn − θ

´
→d Z ∼ N (0, J(θ))

where J(θ) is the inverse of the Fisher information matrix. For any bowl-shaped loss function c(u),

the asymptotic risk of this estimator is

ρ
³bθ, θ´ = lim

n→∞
Eθc

³√
n
³bθn − θ

´´
= Eθc (Z) .

where Eθ means expectation with respect to the model f(x, θ). For example, with quadratic risk

c(u) = u0u, then ρ
³bθ, θ´ = trJ(θ).

In this setting, we might ask if there is an alternative estimator eθn with smaller risk. This is
a treacherous question. Consider the estimator eθn = θ. Then ρ

³eθ, θ´ = ρ (θ, θ) is minimized andeθn has smaller risk than the MLE. This seems disingenuous, as we have constructed an estimator
which uses knowledge of the true value of the parameter. But it points to the need to be more

careful about what we mean by “smaller risk”.

A classic solution to this problem is the minimax criterion: we say an estimator is minimax

efficient if it minimizes the maximum risk over (a region of) the parameter space. For Γ ⊂ Θ, we
define the maximum asymptotic risk of an estimator eθn as

sup
θ∈Γ

ρ
³eθ, θ´ = sup

θ∈Γ
lim
n→∞

Eθc
³√

n
³eθn − θ

´´
.

This definition escapes the superefficiency paradox. So long as Γ is not a singleton (contains more

than one value of θ) then we cannot artifically set the maximum risk to zero. Essentially, the

minimax criterion requires efficient estimators to have uniformly low risk.

There is another difficulty, however. This maximum risk can easily be infinite. For example,
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Figure 1: Numerical Integration versus Numerical Simulation, −20 ≤ c ≤ 0

(a) Mean (b) Variance

(c) Skewness (d) Kurtosis
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Figure 2: Numerical Integration versus Numerical Simulation, −400 ≤ c ≤ 0

(a) Mean (b) Variance

(c) Skewness (d) Kurtosis
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suppose X ∼ N
¡
μ, σ2

¢
so that θ = (μ, σ2) and Θ = R × R+, and consider quadratic loss on μ,

c(eθ−θ) = (μ̃− μ)2 . Then ρ
³bθ, θ´ = σ2 and supθ∈Θ ρ

³bθ, θ´ = supσ2>0 σ2 =∞. The problem is that

the “worst-case” risk is dominated by the extreme parameter values, and cannot be compensated

by good estimation methods.

The solution to this difficulty is to define the maximal risk over a local neighborhood of a

parameter value θ. An elegant formulation (see van der Vaart (1998), Chapter 8) reparameterizes

using a local parameter space. Define the parameter sequence

θn = θ + n−1/2h

where θ ∈ Θ and h ∈ Rk. We then consider the sequence of probability models indexed by θn. In

this local reparameterization, for any h ∈ Rk the MLE satisfies

√
n
³bθn − θn

´
→d Z ∼ N (0, J(θ))

and the asymptotic risk equals

ρ
³bθ, θ´ = lim

n→∞
Eθnc

³√
n
³bθn − θn

´´
= Eθc (Z) .

Since the limit is independent of h, the maximal (local) risk of the MLE is thus

sup
h∈Rk

lim
n→∞

Eθnc
³√

n
³bθn − θn

´´
= Eθc (Z) .

Furthermore, the famous minimax theorem due to Hájek (see van der Vaart (1998), Theorem

8.11) shows that Eθc (Z) is a lower bound on the maximal risk for any estimator sequence, showing

that the MLE is minimax efficient.

Now let’s apply this theory to the local-to-unity model (1)-(2) which is parameterized in terms

of the local-to-unity parameter c ≤ 0 and is local to α = 1. The asymptotic risk of the OLS

estimator is

ρ (bα,α) = lim
n→∞

Eαnc (n (bαn − αn))

= Ecc

µ
Uc

Vc

¶
= μ2(c)

the final equality in the case of quadratic risk, and μ2(c) is the second moment defined in (4). It

follows that the maximal risk of the OLS estimator is

sup
c≤0

lim
n→∞

Eαnc (n (bαn − αn)) = sup
c≤0

μ2(c).

But this is infinite! The second moment μ2(c) is larger than the variance of Uc/Vc, which as shown
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in panel (b) of Figures 1 and 2, diverges to infinity as c→ −∞. Since the maximal risk is unbounded

it is not possible to define efficiency in terms of minimizing the maximal risk.

The solution pursued by Phillips and Ploberger (2012) is to restrict the loss function c(u) to

be bounded, in which case the maximal risk is necessarily finite. However, the fact that the risk

is increasing as c → −∞ means that the maximal risk will be determined by the extreme values

of c. In other words, efficiency improvements for small c will not be captured by a theory which

computes maximal risk over unbounded c.

A solution to this dilemma was proposed by Hansen (2013) in the context of LAN models.

Instead of defining the maximal risk over all values of c, it can be defined over bounded sets,

creating a maximal risk function. Specifically, define the maximal risk function of a sequence of

estimators eαn as
ρ (C, eα,α) = sup

C≤c≤0
lim
n→∞

Eαnc (n (eαn − αn)) .

The maximal risk function of the OLS estimator is

ρ (C, bα,α) = sup
C≤c≤0

μ2(c) = μ2(C),

the second equality since μ2(c) is monotonic in c. [As shown in Figures 1 and 2, both the squared

mean and variance are monotonically increasing as c decreases.]

The maximal risk function ρ (C, eα,α) can be used to rank the efficiency of estimators. If we
have two estimators eα1 and eα2 and we can show that ρ (C, eα1, α) < ρ (C, eα2, α), this means that
the maximum risk of eα1 is less than that of eα2 for −C ≤ c ≤ 0. If this holds for all C then clearlyeα1 is more efficient than eα2.

Furthermore, we can define an estimator eαn of αn as minimax efficient if its maximal risk
function ρ (C, eα,α) is the smallest possible for all values of C. Unfortunately this lower bound is
unknown, and it is unknown if such an estimator exists.

5 Stein-Type Shrinkage Estimator

In LAN models, Stein-type estimators can achieve efficiency improvements relative to MLE

when the estimation dimension is three or greater (Stein (1956, 1981), James and Stein (1961)).

The local-to-unity model (1)-(2) only has one parameter and is not LAN, so we should not expect

such improvements to hold, but it is intruiging to see what happens.
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A Stein-type estimator which shrinks the MLE towards unity is

bα∗n = 1 + (bαn − 1)
Ã
1− s (bαn)2

(bαn − 1)2
!
+

=

⎧⎪⎪⎨⎪⎪⎩
1 if

¯̄̄
αn−1
s(αn)

¯̄̄
≤ 1

bαn − s(αn)
2

(αn−1) if
¯̄̄
αn−1
s(αn)

¯̄̄
> 1

where

s (bαn) = Ã 1
n

Pn
t=1 (yt − bαnyt−1)2Pn

t=1 y
2
t−1

!1/2
is the conventional standard error for bαn. The notation (a)+ = 1(a ≥ 0) is the positive part

operator, so that the estimator α̂∗n takes the “positive-part” form introduced by Baranchik (1964).

The asymptotic distribution of bα∗n in the local-to-unity model (1)-(2) is simple to calculate from
(3). The maximal risk function is then a function of the asymptotic distribution.

Proposition 1

n (bα∗n − αn)→d

µ
Uc

Vc
+ c

¶µ
1− Vc

(Uc + cVc)
2

¶
+

− c

ρ (C, bα∗, α) = sup
C≤c≤0

E

Ãµ
Uc

Vc
+ c

¶µ
1− Vc

(Uc + cVc)
2

¶
+

− c

!2
The asymptotic risk is not a simple function of the moments of (Uc, Vc), so it cannot be calculated

by the exact methods of Theorem 1. Instead, we calculate it by simulation. The results of Section

3 suggest that to obtain accurate results we need to use samples of size n = 100, 000, and as before,

we used 1,000,000 simulation replications.

As we are interested in the relative performance of the Stein estimator relative to OLS, we

define the relative maximal risk

ρ∗ (C, bα∗, α) = ρ (C, bα∗, α)
ρ (C, bα,α) .

Values less than one indicate improved risk relative to OLS, values over one indicate higher risk

than OLS.

The results are presents graphically in Figure 3. The panel on left is shown for C ranging from

−20 to 0) and the right panel for C ranging from −400 to 0. As can be seen, the Stein estimator
has uniformly decreased risk relative to OLS. The risk reduction is greatest at C = 0. (At c = 0,

the risk of the Stein estimator is 51% of that of the OLS estimator). The risk reduction remains

quite substantial for small C (20% at C = −4 and 10% at C = −10), but asymptotes to zero. The
fact that the relative risk function lies strictly below one for all C below −400 means that there is
no value of c for which the Stein estimator does not have lower risk than OLS. Uniformly in the
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Figure 3: Relative Asymptotic Risk of Stein Estimator

(a) −20 ≤ C ≤ 0 (b) −400 ≤ C ≤ 0

local-to-unity model, the Stein estimator dominates OLS.

This finding is quite surprising given that this is a one-dimensional problem and classic Stein

theory only applies when the dimension is three or higher. It may not be that surprising, however,

given that Ploberger (2008) shows that OLS-based unit root tests are not admissible.

It should be emphasized that our finding is numerical; we do not have a formal proof. Given

the large number of simulation replications (1 million) and the large range of the local-to-unity

parameter explored, the finding appears quite robust. However, based on the numerical evidence

alone we cannot exclude the possibility that the relationship will invert for values of C below −400.
Such a numerical exercise does not appear to be fruitful. First, the sample size n would likely

need to be increased. We set n = 100, 000 based on our earlier calculations which showed that this

value was needed to obtain good approximations for the mean and variance of the OLS estimator

for local-to-unity parameters up to −400. For values beyond this point this numerical comparison
would need to be repeated.

The results of this section are meant to be suggestive, and not guidance for empirical work. We

have shown intruiging evidence that a simple shrinkage adjustment can provide major reductions

in estimation risk when the local-to-unity parameter is small. This suggests that further research

into optimal shrinakge methods could prove fruitful.

6 Conclusion

Many papers have been written about the AR(1) model, and many have used the local-to-unity

framework of Chan and Wei (1987) and Phillips (1987). Implementation of the theory typically

requires numerical evaluation, and most of the latter uses simulation methods. We have extended

earlier work on the exact moments of the unit root model to the local-to-unity framework, and

have shown that the moments of the distribution can be easily calculated by numerical integration.

Comparing these exact moments with moments from simulated distributions, we have shown that

12



conventional sample sizes are far too small to provide good approximations. For large local-to-unity

parameters, we suggest n = 100, 000.

We have also explored the theory of efficient estimation in the context of the local-to-unity

model. We suggest that the minimax risk should be evaluated locally, as a function of the localizing

parameter, and have introduced a simple Stein shrinkage estimator which has lower (numerical)

minimax risk than the OLS estimator. This suggests that improvements over OLS are potentially

important and feasible.

7 Proof of Theorem 1

The method of proof is a straightforward generalization of the method introduced by Nabeya

(1999). It will be useful to start by defining the random variables (U, V ) = (
R 1
0 WdW,

R 1
0 W

2), and

let f(u, v) denote their joint density function. White (1958) showed that their moment generating

function equals

φ (s, t) = E exp (sU + tV ) =

Z
exp (su+ tv) f(u, v)dudv = e−s/2

Ã
cos
√
2t− s

sin
√
2t√
2t

!−1/2
.

Making the substitutions √
2t = i

√
−2t,

cos
√
2t = cos

¡
i
√
−2t

¢
= cosh

√
−2t,

and
tan
√
2t√

2t
=
tan

¡
i
√
−2t

¢
i
√
−2t

=
−i tan

¡
i
√
−2t

¢
√
−2t

=
tanh

¡√
−2t

¢
√
−2t

= ψ
¡√
−2t

¢
,

we find the alternative expression

φ (s, t) = e−s/2
¡
cosh

√
−2t

¢−1/2 ¡
1− sψ

¡√
−2t

¢¢−1/2
. (6)

Define U∗c =
R 1
0 WcdWc = Uc + cVc. Crump (2008) showed the joint density of (U∗c , Vc) equals

fc(u, v) = exp

µ
cu− c2v

2

¶
f(u, v). It follows that their moment generating function equals

φc (s, t) =

Z
exp (su+ tv) fc(u, v)dudv

=

Z
exp

µ
(s+ c)u+

µ
t− c2

2

¶
v

¶
f(u, v)dudv

= φ

µ
s+ c, t− c2

2

¶
. (7)

Equation (7) can alternatively be derived from the moment generating function for (Uc, Vc) derived

by Phillips (1987). See also Proposition A.1 of Phillips, Magdalinos and Giraitis (2010). It turns
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out that the form of expression (7) is convenient for our calculations.

By the binomial expansion,

E

µ
Uc

Vc

¶r

= E

µ
U∗c
Vc
− c

¶r

=
rX

j=0

µ
r

j

¶
(−c)r−j E

µ
U∗c
Vc

¶j

. (8)

Following Nabeya (1999) and Sawa (1972), the moments in (8) can be expressed as

E

µ
U∗c
Vc

¶j

=
1

(j − 1)!

Z ∞

0
tj−1

∂j

∂sj
φc (s,−t)

¯̄̄̄
s=0

dt. (9)

Using (7) and then making the change-of-variables t =
¡
(z − c)2 − c2

¢
/2 we find that (9) equals

1

(j − 1)!

Z ∞

0
tj−1

∂j

∂sj
φ

µ
s+ c,−t− c2

2

¶¯̄̄̄
s=0

dt

=
1

(j − 1)!2j−1
Z ∞

0
(z − c)

¡
(z − c)2 − c2

¢j−1 ∂j

∂sj
φ

Ã
s+ c,−(z − c)2

2

!¯̄̄̄
¯
s=0

dz. (10)

Note that this change-of-variables is appropriate when c ≤ 0 for the transformation is invertible for
t ≥ 0, but it would not be invertible for c > 0.

Using (6) and

(cosh (z − c))−1/2 =
√
2e(c−z)/2

³
1 + e−2(z−c)

´−1/2
,

we can see that

φ

Ã
s+ c,−(z − c)2

2

!
= e−(s+c)/2 (cosh (z − c))−1/2 (1− (s+ c)ψ (z − c))−1/2

=

√
2

ez/2
¡
1 + e−2(z−c)

¢1/2 e−s/2 (1− (s+ c)ψ (z − c))−1/2 .

Therefore

∂j

∂sj
φ

Ã
s+ c,−(z − c)2

2

!¯̄̄̄
¯
s=0

=

√
2

ez/2
¡
1 + e−2(z−c)

¢1/2 ∂j

∂sj

n
e−s/2 (1− (s+ c)ψ (z − c))−1/2

o¯̄̄̄
s=0

=
21/2−j

ez/2
¡
1 + e−2(z−c)

¢1/2 jX
c=0

µ
j

c

¶
(−1)j−c (2c− 1)!!ψ (z − c)c

(1− cψ (z − c))
1
2
+c

.

14



Substituted into (10), and then making the change of variables z = x/(1− x), we obtain

E

µ
U∗c
Vc

¶j

=
23/2−2j

(j − 1)!

Z ∞

0

(z − c)
¡
(z − c)2 − c2

¢j−1
ez/2

¡
1 + e−2(z−c)

¢1/2 jX
c=0

µ
j

c

¶
(−1)j−c (2c− 1)!!ψ (z − c)c

(1− cψ (z − c))
1
2
+c

dz

=
23/2−2j

(j − 1)!

Z 1

0

λ(x, c)
¡
λ(x, c)2 − c2

¢j−1
(1− x)2 ex/(2−2x)

¡
1 + e−2λ(x,c)

¢1/2 jX
c=0

µ
j

c

¶
(−1)j−c (2c− 1)!!ψ (λ(x, c))c

(1− cψ (λ(x, c)))
1
2
+c

dx

=

Z 1

0
gj (x, c) dx.

Substituted into (8) we obtain (5). ¥
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