

 Int. J. Agent-Oriented Software Engineering, Vol. 1, No. 2, 2007 123

Defining syntax and providing tool support for
Agent UML using a textual notation

Michael Winikoff
School of Computer Science and Information Technology
RMIT University, Melbourne, Australia
E-mail: michael.winikoff@rmit.edu.au

Abstract: An important role in software engineering is played by design
notations. The Agent UML (AUML) notation for sequence diagrams has been
widely used to capture the design of interactions between agents. However,
AUML is not precisely defined, and there is very little in the way of tool
support available. We argue that using a textual notation allows the notation to
be precisely defined, and facilitates the development of tool support. We
present a textual notation that we have developed, and describe a number of
tools that support this notation. One of these tools is a ‘renderer’ which takes a
textual AUML protocol and generates the standard graphical view. The layout
of graphical elements in the generated graphical view is done automatically,
using a layout algorithm which we present.

Keywords: agent-oriented software engineering; Agent UML; AUML;
interaction design; design notations.

Reference to this paper should be made as follows: Winikoff, M. (2007)
‘Defining syntax and providing tool support for Agent UML using a textual
notation’, Int. J. Agent-Oriented Software Engineering, Vol. 1, No. 2,
pp.123–144.

Biographical notes: Michael Winikoff is an Associate Professor at RMIT
University. His research interests concern notations for specifying and
constructing software. In particular, he is interested in agent-oriented software
engineering methodologies and is coauthor of the book Developing Intelligent
Agent Systems: A Practical Guide, published by John Wiley and Sons in 2004.

1 Introduction

A crucial role in the design of software is played by various notations which are used
to capture aspects of the design. The de facto standard notation for object-oriented design
is the Unified Modelling Language (UML).1 However, in the design of agent systems
there are not yet widely accepted standard notations for design: methodologies such as
Prometheus (Padgham and Winikoff, 2004), Tropos (Bresciani et al., 2004), Gaia
(Jennings et al., 2004), MaSE (DeLoach et al., 2001), Roadmap (Juan et al., 2002), and
many others (Bergenti et al., 2004; Henderson-Sellers and Giorgini, 2005) each have
their own notations. One proposed notation that has found a reasonable level of
community acceptance is Agent UML (AUML).2 Although AUML includes a number of
notations (sequence diagrams, interaction overview diagrams, communication diagrams

 Copyright © 2007 Inderscience Enterprises Ltd.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24067752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 124 M. Winikoff

and timing diagrams (Huget and Odell, 2004)), its sequence diagram notation has been
the most influential, having been adopted by a number of methodologies (e.g.,
Prometheus, Gaia and Tropos) for describing agent interactions, and by FIPA3 for
describing standardised protocols.

Like most software design notations AUML is graphical. There are many reasons for
this including readability and intuitiveness, however, there are also some drawbacks to
graphical notations. Firstly, it is harder to precisely define the syntax of graphical
notations, resulting in such notations often being defined by examples and thus lacking a
precise and complete formal syntax. Secondly, it requires considerably more work to
provide tool support. AUML suffers from both these problems: it is not precisely defined,
and there is currently a lack of adequate tool support.

This paper argues that these problems can be addressed by using a textual notation for
AUML. This is possible (and, in fact, quite natural) because the newer version of AUML
(Huget and Odell, 2004) is much more structured than the previous version. By using a
textual notation we are able to provide a precise, formal and simple definition of the
syntax of AUML sequence diagrams.

Textual notations are also easier to support with tools. This is demonstrated by the
current tools: there are a few tools that support AUML, and these are still in early stages,
and are limited in terms of the features of AUML that they support. On the other hand,
we are able to describe four tools which provide (different) support using the textual
notation. The original AUML rendering tool takes the textual notation and produces a
graphical rendition. A newer tool, which was developed by an undergraduate student over
the summer vacation, extends UMLet4 with support for (a variant of) the textual notation.
Support for AUML, using the textual notation described here, has also been added to the
Prometheus Design Tool (PDT)5 (Padgham et al., 2005a). Finally, the textual notation
can also serve as an interchange format between tools: it is easy to both generate and to
read. Indeed, the tool of Casella and Mascardi for converting AUML to WS-BPEL
(Casella and Mascardi, 2006) is able to generate output in the textual format that we
defined.

We have argued that by using textual notations we can address the lack of precise
syntax, and can simplify the provision of tool support. However, we have also found that
the textual notation can be used in its own right to notate interaction protocols. It is
widely believed that design notations ought to be graphical, but we have found that the
textual notation is quite usable. This was not only the experience of the author, but the
AUML tool described has been made available to undergraduate students in a course
covering agent oriented programming and design. The students were able to use the
notation and tool effectively with very limited training (indeed, significantly more time
was spent explaining the meaning of AUML constructs than was spent on explaining the
textual notation or the tool).

Textual notations also have a number of other advantages: text editors provide a
range of editing functionalities (find and replace, copy and paste, etc.) that are not
generally provided by current graphical tools, and it is easy to leverage various existing
tools such as version control. Furthermore, textual notations encourage the use of
light-weight tools and encourage the developer to focus on the logic, not the appearance,
of the design (Spinellis, 2003). Finally, using the textual notation it is very easy to
automate various tasks such as finding all agents that communicate with a given agent,
finding all protocols in a design that use a particular message type or sub-protocol, etc.

 Defining syntax and providing tool support for Agent UML 125

More generally it has been argued that textual notations provide insurance against

obsolescence, leverage of existing tools (from version control to editors to compilers),
and easier testing (Hunt and Thomas, 2000, Chap. 3); and that textual formats
are preferable because of interoperability, transparency, and extensibility (Raymond,
2004, Chap. 5).

Despite these advantages, we do not argue that AUML ought to be written using the
textual notation. Although we have found this easy and practical, we believe that people
will continue to want to use the graphical notation. We thus view the textual notation as
an alternative to the graphical presentation.

Compared with the earlier paper (Winikoff, 2005), this paper includes additional
features in the textual notation, describes additional tool support, and includes a
description of the layout algorithm used to render the textual notation into the standard
graphical depiction of AUML.

This paper is structured as follows. We begin with a brief description of the AUML
notation (Section 2). We then present a precise definition of a (subset of) AUML using a
textual notation (Section 3), followed by a description of tools that utilise this notation
(Section 4). We then discuss related work (Section 5) and conclude (Section 6).

2 The AUML notation for protocols

The AUML notation for protocols is similar to version 2.0 of the UML (OMG, 2003). An
interaction protocol (‘sequence diagram’) consists of a number of lifelines, each labelled
with an agent class name6 in a box at the top of the lifeline. Messages are depicted by
labelled arrows between lifelines, and time increases down the page. For example, in
Figure 1 there are two agent types, called ‘Alice’ and ‘Bob’, and the first message that is
sent is ‘Speak English?’ from Alice to Bob. Whether a message is synchronous or
asynchronous is depicted using a different arrowhead: a synchronous message has a filled
arrowhead, whereas an asynchronous message has an empty arrowhead. In Figure 1 all
messages are synchronous.

Figure 1 A simple AUML protocol

Alice Bob

Speak English?

Yes

No

alternative

sd Simple Example

 126 M. Winikoff

Agent UML allows for alternatives, parallelism and so on to be specified using boxes. A
box surrounds a part of the sequence diagram and has a type such as ‘Alternative’,
‘Option’, or ‘Parallel’ (given in the top-left corner of the box). Boxes can contain AUML
elements such as messages and other boxes, i.e., they can be nested. Boxes can also be
divided into a number of regions, separated from each other by heavy horizontal dashed
lines. Each region can contain a guard, depicted as text in square brackets, specifying a
condition on that region being selected. For example, in Figure 1 there is an alternative
box with two regions. The first region contains a message (labelled ‘Yes’) and the second
region contains a message (labelled ‘No’). An example of nested boxes can be seen in
Figure 4, which also shows a box with a guard (the option box).

AUML defines a number of box types including Alternative, Option, Break, Parallel
and Loop:

• Alternative – Exactly one7 of the box’s regions is executed. For example, the simple
protocol in Figure 1 shows a message from an agent of type Alice to an agent of type
Bob followed by either a reply of ‘Yes’, or a reply of ‘No’.

• Option – This box type can only have a single region and specifies that this
region may or may not occur. It is equivalent to an alternative box with a second,
empty, region.

• Break – Terminates the interaction. It isn’t entirely clear from (Huget and Odell,
2004) whether other threads of the interaction are terminated at the start of the break
box or at the end.

• Parallel – Specifies that each of the regions takes place in parallel and that the
sequence of messages is interleaved.

• Loop – Can only have a single region. Specifies that the region is repeated some
number of times. The tag gives the type (‘Loop’) and also (optionally) an indication
of the number of repetitions which can be a fixed number (or a range) or a Boolean
condition (OMG, 2003, p.413). By default ‘Loop’ on its own means ‘zero or
more times’.

In addition to these box types (and others, e.g., critical region) AUML provides a number
of other constructs (see Figure 3):

• Ref – This box type is a little different in that it does not contain other AUML
elements, only the name of a protocol. The interpretation of the Ref box is obtained
by replacing it with the protocol it refers to.

• Continuations – Incoming and outgoing continuations are just (respectively) labels
and gotos. Both continuations are depicted by rounded rectangles; outgoing
continuations (goto) have a right pointing triangle on their right side whereas
incoming continuations (labels) have a right pointing triangle on their left side. Each
goto must have a single corresponding label in the protocol, and when a goto is
reached execution continues at the corresponding label.

• Stop – Depicted as an X on the lifeline of an agent, this denotes ‘the end of
participation of a lifeline in the communication’ (Huget and Odell, 2004,
Section 2.9).

 Defining syntax and providing tool support for Agent UML 127

• Timing constraints – Timing constraints can be depicted in a number of ways.

One way is to indicate a region of the sequence diagram (see Figure 2) and give
a constraint on the time. For example, the constraint in Figure 2 states that the
response must be received within seven days of the request. An alternative way of
depicting timing constraints (not supported by the textual notation) is to attach an
indication of the form ‘t = now’ to a message, and then later use indications such as
‘{t ... t + 7d}’.

• Crossed messages – Depending on the transport mechanism used for messages, it can
be possible for (asynchronous) messages to arrive out of order. AUML provides a
way of depicting this (see Figure 6). Although this is arguably more useful for traces
than for protocols, AUML provides this, and so we support the notation.

Figure 2 Example of timing constraint

Alice Bob

request
{0 .. 7d} response

sd timing

Figure 3 Additional AUML notation

ref Ref to another protocol

goto

label

Figure 4 shows an English auction protocol. The protocol begins with the Initiator
informing the Participants of the start of the auction. This is then followed by a number
of rounds each of which consists of a call for proposals (cfp) from the Initiator to
Participants, followed by a response from the Participant. If a Participant’s response is
not understood, then that participant does not continue to interact in the protocol.
Otherwise, the response is a price (propose-price) which is accepted or rejected by the
Initiator. Finally, the Initiator informs the Participants that the auction has finished
(inform-end-of-auction), and if the price reached exceeds or equals the reserved-price
then the Initiator requests the item.

 128 M. Winikoff

Figure 4 English auction protocol

Initiator Participants

inform-start-of-auction

cfp

not-understood(syntax-error)

not-understood(ontology)

propose-price

accept

reject

alternative

alternative

loop

inform-end-of-auction

request

option

sd English Auction

[actual-price >= reserved-price]

3 A textual format for AUML

A textual AUML protocol (see Figure 7 for the formal grammar) consists of a sequence
of commands (one per line). The first line defines the name of the protocol (start
name) and the last concludes the protocol (finish). Commands in between are used to:

 Defining syntax and providing tool support for Agent UML 129

• Define agents (agent shortname longname) – the shortname (which cannot contain

white-space characters) is used to refer to the agent when sending messages whereas
the longname is used in the box at the top of the lifeline. This avoids having to
repeatedly type the long agent name in messages.

• Define messages between agents (message, message-sync and
message-async)

It is possible to specify asynchronous and synchronous messages – the latter have
closed arrowheads, the former open arrowheads. To retain compatibility with
the earlier version of the textual notation we introduce two new commands:
message-sync and message-async.

Also, although not specified explicitly, a message from an agent to itself can be
written and is depicted appropriately. For example, in Figure 5 after receiving the
message Request, Bob sends a Reminder message to himself, followed by sending
a Response to Alice.

• Define the start and end of boxes (box and end). The box command is followed
by the type of box (e.g., alternative, option, break). The end command is optionally
followed by the type of the box, if the type is given then it is possible to check that
box and end commands match up.

• Define the boundary between regions within a box (next) and guards (guard). The
next command denotes the boundary between two regions, within a box. The
guard command is followed by the text of the guard.

• Define Ref boxes (sub). The sub command is followed by the name of the protocol
being referred to.

• Define continuations (goto and label). Each of the commands is followed by the
name of the element.

• Define the end of an agent’s participation in the protocol (stop)

• Define timing constraints. This is done using a command to specify the start of a
timing constraint, and a second command to denote the end. Timing constraints
cannot be nested, and both the start and end commands (respectively timestart and
timeend) must be followed by a message.8 For example, the following code was
used to generate Figure 2:

start sd timing

agent a Alice

agent b Bob

timestart

message a b request

timeend {0 .. 7d}

message b a response

finish

 130 M. Winikoff

• Define crossed-over messages: these are done by defining a message in two
parts. The first part specifies the beginning of the message using the declaration
‘mes-’ which is followed by a name, used to refer to the message, the sender,
recipient, and the text on the message. The second part specifies the end of the
message using the declaration ‘-sage’ which is followed by a name, which matches
the name given in the first declaration. For example the following text corresponds
to the AUML fragment in Figure 6.

start sd crossed

agent i Initiator

agent p Participant

mes- label i p inform-end-of-auction

message-async i p request-payment

-sage label

finish

Figure 5 Depiction of messages to self

Alice Bob

Request

Reminder
Response

sd Self Message

Figure 6 Example of crossed messages

Initiator Participant

request-payment
inform-end-of-auction

sd crossed

 Defining syntax and providing tool support for Agent UML 131

Figure 7 The AUML notation

auml ::= start agentdef* pe* finish

start ::= start protocol-name

agentdef ::= agent short-name long-name

pe ::= message from-name to-name message-label

| message-sync from-name to-name message-label

| message-async from-name to-name message-label

| mes- message-name from-name to-name message-label

| -sage message-name

| boxstart boxcontents boxend

| sub protocol-name

| goto label-name

| label label-name

| stop agent-name

| timestart

| timeend text

boxstart ::= box boxtype

| box boxtype guard text

boxtype ::= Alternative | Option | Break | Loop | . . .

boxend ::= end boxtype | end

boxcontents ::= pe* | pe* nextregion boxcontents

nextregion ::= next | next guard text

“pe” is short for “protocol element”

Entities ending with “name” are strings, as are “text”

and “message-label”.

“ ” is used to denote a newline.

Terminal symbols are in bold and “*” is “zero or more”.

For example, the following textual protocol corresponds to Figure 4. Note that
the indentation is ignored by the tool, although it is, of course, very important to
human readers.

start sd English Auction

agent i Initiator

agent p Participant

 132 M. Winikoff

message i p inform-start-of-auction

box loop

message i p cfp

box alternative

message p i not-understood(syntax-error)

stop p

next

message p i not-understood(ontology)

stop p

next

message p i propose-price

box alternative

message i p accept

next

message i p reject

end alternative

end alternative

end loop

message i p inform-end-of-auction

box option

guard [actual-price >= reserved-price]

message i p request

end option

finish

4 Tool support for AUML

In this section, we describe four different tools that use the textual notation presented
in the previous section. The first tool,9 which was the first developed, takes as input
a protocol described in the textual AUML notation and produces as output an
Encapsulated PostScript (EPS) file containing a rendered depiction of the protocol in the
standard AUML graphical notation. In doing this the tool automatically computes layout
and places the graphical elements in a visually attractive manner (e.g., see Figures 1, 2, 4,
5, 6 and 8).

Although the tool lays out the interaction protocol’s graphical elements automatically,
and generally does a fairly good job, sometimes it is desirable to manually fine-tune
the appearance or layout of a protocol. The tool supports this by adding a number of
declarations to the textual notation defined in Section 3. These declarations include
the following:

• backup moves the current vertical position up. For example the sequence
message then backup then message will show the messages being sent at the
same time. Another common sequence is guard then backup then guard to
break a long guard over two lines.

• agsep+ must come before agents have been defined, and is followed by a number.
It increases the space between agents’ lifelines by that amount.

 Defining syntax and providing tool support for Agent UML 133

• agwidth+ is followed by a number, and increases the width of the box containing

the labels on the agents’ lifelines by that amount. It too must come before agents
have been defined.

• tagwidth+ is followed by a number. It increases the width of the tags of boxes by
this amount.

• inittagwidth+ is the same as tagwidth+ but affects the initial tag containing
the name of the protocol. It must come before the start command.

The protocol in Figure 4 was produced by adding the following declarations to the
protocol specification given in the previous section:

inittagwidth+ 50

agsep+ 50

The layout algorithm used by the tool is given in the Appendix. One issue is that certain
graphical elements need to be placed above other graphical elements, for example, a
continuation (goto or label) should hide lifelines that are ‘beneath’ it. There are a number
of ways of achieving this. One is to use a graphical toolkit that supports z coordinates.
Another is to modify the algorithm so that when a continuation or sub-protocol box are
drawn the lifelines are interrupted. A third option, and the one which is adopted by the
tool, is to ensure that continuations and sub-protocols are drawn after lifelines are drawn.
Since lifelines are drawn at the end (once the height of the protocol is known), this means
that the drawing of continuations and sub-protocols needs to be delayed. Thus the
algorithm has three phases, but only needs to read the file once:

1 Read the text file, drawing elements as they are encountered, with certain elements
being placed into a queue of delayed graphical operations.

2 Once all of the text file has been read, draw the lifelines.

3 Draw all of the delayed elements in order.

Internally, the tool uses Tcl/Tk’s canvas widget to draw the protocol and exploits its
ability to export the diagram to encapsulated postscript, which can then be included in
documents, or converted to a range of formats. So, in fact, the tool generates a Tcl/Tk
script which is run to produce the encapsulated postscript file.

The tool has proven to be very easy to extend with additional constructs. For
example, recent work on extending Prometheus to be more goal-oriented (Khallouf and
Winikoff, 2005) added goals to interaction protocols (depicted as boxed text on agents’
lifelines). The tool was extended with a new command goal agentname goal. Another,
more significant, extension was done in the context of the Hermes methodology for
designing flexible agent interactions (Cheong and Winikoff, 2005). One of the design
artefacts produced is an Action Message Diagram (see Figure 8 for an example) which
depicts actions (boxed text on agent lifelines), along with messages that they trigger.
Actions can be final (depicted with a thicker border) and take place in order to achieve
Interaction Goals. This is shown with a grey shaded region for each Interaction Goal.
Again, the tool was extended with new commands for expressing these constructs. Both
these modifications were very easy to perform: the tool was extended in a matter of a few
hours by the author.

 134 M. Winikoff

Figure 8 Action message diagram

Customer Merchant

PROPOSE: blue Monitor

ACCEPT-PROPOSAL

Negotiate Details

PROPOSE: price 100

ACCEPT-PROPOSAL

Negotiate Price

ProposeDetails

ConsiderDetails

AcceptDetails

TerminateIG

ProposePrice

ConsiderPrice

AcceptPrice

TerminateIG

Source: From Cheong and Winikoff (2005)

The second tool that supports the textual notation is an interactive AUML editor.
Whereas the first tool operates in batch mode, the second tool shows both the textual
notation and the graphical view simultaneously, and updates the graphical view in
real-time as the text is changed (see Figure 9).

This tool, which was built over a period of eight or so weeks by an undergraduate
student, extends UMLet with a new diagram type. The top right hand side pane in
Figure 9 is the palette, showing an example protocol that the user clones and then
modifies. The English auction protocol is shown in the left hand side pane, with the
textual notation view being in the bottom right hand side pane.

 Defining syntax and providing tool support for Agent UML 135

Figure 9 The UMLet tool

Note that this UMLet-based tool modifies the textual notation in a few ways. Firstly, the
declarations for agents follows the form used for declaring objects in UMLet interaction
diagrams: they are declared initially as a list of names separated with bars, also UMLet
does not use the start and finish commands. Secondly, the declaration for a
message is given using the agent names (there is no distinction between short and long
names), and using the syntax from_agent arrow to_agent : message_label where the
arrow can be a number of different things to denote different arrow types, as is used
elsewhere in UMLet. Thirdly, the syntax for specifying a sub-protocol is a little more
verbose:

box ref

sub name of protocol

end

 136 M. Winikoff

as opposed to just sub name of protocol. Finally, the commands for depicting time
constraints are different (timestart and timeend versus begin and finish) and in the
UMLet-based tool the textual annotation, i.e., the constraint, is given with the begin,
rather than with the timeend.

The English auction example using the UMLet tool is given below:10

Initiator|Participant

Initiator->>>Participant:inform-start-of-auction

box Loop

Initiator->>>Participant:cfp

box alternative

Participant->>>Initiator:not-understood(syntax-error)

next

Participant->>>Initiator:not-understood(ontology)

next

Participant->>>Initiator:propose-price

box alternative

Initiator->>>Participant:accept

next

Initiator->>>Participant:reject

end

end

end

Initiator->>>Participant:inform-end-of-auction

box Option

guard [actual-price >= reserved-price]

Initiator->>>Participant:request

end

The third tool is the Prometheus Design Tool (PDT), a freely available11 tool supporting
the design of agent systems using the Prometheus methodology. PDT has been recently
extended with support for specifying protocols using the AUML textual notation
described in this paper. Figure 10 shows the relevant dialog box showing the textual
notation (left) and the resulting rendered protocol (right).

In addition to the commands described in Section 3, a number of additional
commands are supported. These provide features which are not part of AUML, but which
are useful in the context of Prometheus. Specifically, we allow life-lines corresponding to
actors and to the environment to be included. Actors are depicted with dashed boxes and
the environment is depicted as an actor called ‘{environment}’ or can be simply
invisible. We also allow actions and percepts to be included in the sequence diagram. An
action is depicted as a message, with name enclosed in angle brackets (‘<action name>’),
from an agent to either an actor or the environment; and a percept is depicted as a
message, with name enclosed in angle brackets (‘>percept name<’), to an agent from
either an actor or the environment.

The AUML protocol is integrated with the rest of PDT: when the protocol is saved
entities declared in the protocol (e.g., agents and messages) are propagated to the rest of
the model.

 Defining syntax and providing tool support for Agent UML 137

Figure 10 PDT AUML support

The fourth and final tool which uses the textual notation was developed by Casella
and Mascardi (2006). The primary aim of the tool is to convert AUML protocols to
WS-BPEL. The tool operates in batch mode, taking as input an XMI12 file, and producing
as output a number of files, including a WSDL document, a WS-BPEL document, and
the protocol in the textual notation. This demonstrates the ease of using the textual
notation as an interchange format between tools. The format, unlike XML-based formats,
is concise and human readable.

5 Related work

Huget (2002) has proposed an XML-based machine-readable representation for AUML
protocols, called AXF. However, the notation, which is based on the earlier version of
AUML, is considerably more verbose: the English auction protocol is encoded in 250
lines of AXF. Additionally, the notation is not human-readable. Although our notation is
not XML-based (and hence less ‘buzzword-compliant’), it is just as formal, easier to
parse, and considerably easier for humans to read and write.

 138 M. Winikoff

Similarly, although it would be possible to use a subset of XMI to represent sequence
diagrams, the result is verbose, and is not easy for humans to read or write. The tool of
Casella and Mascardi (2006) takes XMI as input and generates AUML, it would also be
useful to be able to go in the other direction: to take the human-friendly textual notation
of this paper and generate from it XMI. This is left for future work.

Doi et al. (2004) have proposed a textual notation for describing protocols. The
notation is not intended to capture AUML protocols, but to serve as a stepping-stone
between AUML and implementation. Their notation covers only a part of AUML.13 They
give an encoding for the English auction protocol which takes around 130 lines of
IOM/T. However, the IOM/T description does include additional details, such as the
contents of messages.

By contrast, using our notation the English Protocol is under 30 lines.
Tool support for AUML is fairly limited. Viper (Rooney et al., 2004) is a graphical

editor for the earlier version of AUML, which is very different to the current version. The
only tool that we are aware of that supports the current version of AUML is the Ingenias
Development Kit (IDK) which includes support for an AUML-like notation for protocols.
However, this seems to be in alpha version and is limited (‘So far, only alternatives, basic
messages, and subprotocols have been implemented.’ – IDK reference manual,14 page
30). It is not clear when this limitation is likely to be removed – it was present in May
2005, and is still unchanged in version 2.5 of the IDK, described in version 2.5.2 of the
manual (November 2005).

Recent work by Ehrler and Cranefield (2004) has described a tool for executing
AUML protocols. Protocols are created by directly editing XML corresponding to the
meta-model, i.e., there is no graphical editor. Additionally, the AUML protocols are
augmented with additional information, and at the time of publication of (Ehrler and
Cranefield, 2004) (mid-2004) the PAUL15 tool could only handle the Alternative box
type and was limited to two agent lifelines. It appears that work on PAUL has not
progressed further since 2004 (presumably due to one of the authors completing their
studies and changing countries).

Although UML 2.0 is supported by tools, there are differences between UML 2.0 and
AUML. For example, in UML 2.0 object lifelines have activation boxes showing when
objects are active. For example, Casella and Mascardi (2006) uses the Poseidon UML
tool to create AUML diagrams which are then exported to XMI format. However, the
notation supported by Poseidon is, apart from the activation boxes, a subset of AUML,
for instance continuations are not supported.

6 Conclusion

We have highlighted two issues that AUML suffers from – the lack of a precise formal
definition, and the lack of tool support – and argued that by using a textual notation we
could easily define AUML’s syntax, and facilitate the task of providing tool support.

We defined a textual notation that is simple and concise, then presented evidence
for the facilitation of tool support in the form of four tools that make use of the
textual notation.

The notation and the first tool have been used by colleagues of the author and by
students (both postgraduate and undergraduate). Our experiences have been very
positive: the textual notation is very easy to learn and it provides a surprisingly practical

 Defining syntax and providing tool support for Agent UML 139

way of capturing AUML sequence diagrams, and with the first tool, generating the
standard graphical rendition. Writing interaction protocols textually is quite fast, and in
particular it is faster than interacting with a graphical user interface. Additionally, the
rendering tool takes care of the graphical layout, automatically producing visually
attractive sequences diagrams with consistent spacing, etc., thus the designer is freed to
focus on the logic of the protocol, rather than its presentation.

Although the tool has proven quite useful in its current form there is, as always, scope
for further work. The tool supports a significant (and increasing) subset of the AUML
sequence diagram notation, but still does not support all of the notation. Some aspects
that are not currently supported include cardinality annotations on messages and ‘gates’.

There is also potential for developing other forms of tool support which make use of
the textual notation as an input format, output format, or interchange format. The tool of
Casella and Mascardi is one example. Other possibilities include converting AUML
protocols to Petri nets (e.g., in order to monitor the execution of protocols (Padgham
et al., 2005b)). It would also be possible to extend the rendering tool into an interactive
protocol execution visualisation tool by highlighting messages dynamically as they are
sent and received.

We have precisely defined the syntax of AUML, but have not addressed its semantics.
Defining the notation’s semantics precisely (and formally) is clearly an important area for
future work. Since AUML’s sequence diagram notation is quite similar to the UML 2.0
sequence diagram notation, work in this area would be expected to build on existing work
on the semantics of UML 2.0 sequence diagrams (e.g., Störrle, 2003; 2004).

Finally, our experience in developing AUML sequence diagrams has highlighted
some areas where the notation itself lacks expressiveness, and could be improved.
One key weakness concerns protocols where there are multiple instances of a given
agent type, such as auctions. AUML does not provide support to clearly indicate the
parallelism associated with a broadcast message and the point at which the different
threads synchronise.

Acknowledgements

I would like to acknowledge the support of Agent Oriented Software Pty. Ltd. and of the
Australian Research Council (ARC) under grant LP0453486. I would also like to thank
Lin Padgham and David Poutakidis for discussions of issues relating to AUML. Last but
not least, I would like to thank Chun Wai (‘Steven’) Tsui who extended UMLet with
AUML support, and Ian Mathieson, who implemented AUML support in PDT.

References

Bergenti, F., Gleizes, M-P. and Zambonelli, F. (Eds.) (2004) Methodologies and Software
Engineering for Agent Systems, New York: Kluwer Academic Publishing.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A. (2004) ‘Tropos: an
agent-oriented software development methodology’, Journal of Autonomous Agents and
Multi-Agent Systems, Vol. 8, pp.203–236.

Casella, G. and Mascardi, V. (2006) ‘From AUML to WS-BPEL’, Technical Report
DISI-TR-06-01, Universita di Genova, Dipartimento di Informatica e Scienze
dell'Informazione (DISI).

 140 M. Winikoff

Cheong, C. and Winikoff, M. (2005) ‘Hermes: designing goal-oriented agent interactions’,
Proceedings of the 6th International Workshop on Agent-Oriented Software Engineering
(AOSE-2005).

DeLoach, S.A., Wood, M.F. and Sparkman, C.H. (2001) ‘Multiagent systems engineering’,
International Journal of Software Engineering and Knowledge Engineering, Vol. 11, No. 3,
pp.231–258.

Doi, T., Yoshioka, N., Tahara, Y. and Honiden, S. (2004) ‘Bridging the gap between AUML and
implementation using IOM/T’, Second International Workshop on Programming Multi-Agent
Systems: Languages and Tools (ProMAS).

Ehrler, L. and Cranefield, S. (2004) ‘Executing agent UML diagrams’, Proceedings of the
Third International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pp.906–913.

Henderson-Sellers, B. and Giorgini, P. (Eds.) (2005) Agent-Oriented Methodologies, Idea Group.

Huget, M-P. (2002) ‘A language for exchanging agent UML protocol diagrams’, Technical Report
ULCS-02-009, The University of Liverpool, Computer Science Department.

Huget, M-P. and Odell, J. (2004) ‘Representing agent interaction protocols with agent UML’,
Proceedings of the Fifth International Workshop on Agent Oriented Software Engineering
(AOSE).

Hunt, A. and Thomas, D. (2000) The Pragmatic Programmer: From Journeyman to Master,
Addison-Wesley.

Jennings, N., Kinny, D., Wooldridge, M. and Zambonelli, F. (2004) The Gaia Methodology, in
Bergenti et al. (2004), Chap. 4.

Juan, T., Pearce, A. and Sterling, L. (2002) ‘ROADMAP: extending the Gaia methodology for
complex open systems’, Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2002), ACM Press, pp.3–10.

Khallouf, J. and Winikoff, M. (2005) ‘Towards goal-oriented design of agent systems’, First
International Workshop on Integration of Software Engineering and Agent Technology
(ISEAT 2005).

OMG (2003) UML 2.0 Superstructure Specification, Object Management Group, document
ptc/03-08-02, www.omg.org.

Padgham, L. and Winikoff, M. (2004) Developing Intelligent Agent Systems: A Practical Guide,
John Wiley and Sons, ISBN 0-470-86120-7.

Padgham, L., Thangarajah, J. and Winikoff, M. (2005a) ‘Tool support for agent development using
the Prometheus methodology’, First International Workshop on Integration of Software
Engineering and Agent Technology (ISEAT 2005).

Padgham, L., Winikoff, M. and Poutakidis, D. (2005b) ‘Adding debugging support to the
Prometheus methodology’, Engineering Applications of Artificial Intelligence, Special Issue
on Agent-oriented Software Development, Vol. 18, No. 2, pp.173–190.

Raymond, E.S. (2004) The Art of UNIX Programming, Addison-Wesley.

Rooney, C., Collier, R. and O’Hare, G.M.P. (2004) ‘VIPER: VIsual Protocol EditoR’, 6th
International Conference on Coordination Languages and Models (COORDINATION 2004).

Spinellis, D. (2003) ‘On the declarative specification of models’, IEEE Software,
doi:10.1109/MS.2003.1184181, Vol. 2, No. 20, pp.94–96.

Störrle, H. (2003) ‘Semantics of interactions in UML 2.0’, Intl. Ws. Visual Languages and Formal
Methods, at HCC’03, Auckland, NZ.

Störrle, H. (2004) ‘Trace semantics of UML 2.0 interactions’, Technical Report TR 0403,
University of Munich.

Winikoff, M. (2005) ‘Towards making agent UML practical: a textual notation and a tool’, First
International Workshop on Integration of Software Engineering and Agent Technology
(ISEAT 2005).

 Defining syntax and providing tool support for Agent UML 141

Notes

1 http://www.uml.org

2 http://www.auml.org
3 The Foundation for Intelligent Physical Agents, http://www.fipa.org.
4 http://www.umlet.com

5 http://www.cs.rmit.edu.au/agents/pdt/
6 Actually the label of a lifeline can contain a type and/or an instance name, as well as other

information.
7 Actually it is possible for none of the regions to be executed if all guards are false. This can be

avoided by having an ‘else’ guard.
8 Neither of these constraints are captured by the grammar in Figure 7.
9 The tool is freely available from http://www.winikoff.net/auml.
10 At the time of writing the tool did not support the ‘stop’ command.

11 http://www.cs.rmit.edu.au/agents/pdt/
12 XML Metadata Interchange, http://www.omg.org/technology/documents/formal/xmi.htm.
13 “The current version [sic] IOM/T can not fully represent interactions which are equivalent to

design in AUML … there are not the notations which represent CombinedFragment. Only
CombinedFragments whose interaction operator [sic] are ‘Loop’ can be represented by ‘while’
structure” (Doi et al., 2004, Section 2.7).

14 http://ingenias.sourceforge.net (accessed 7 March 2006).

15 Plug-in for Agent UML Linking.

 142 M. Winikoff

Appendix The layout algorithm

The algorithm below uses a number of constants, corresponding to lengths, which are
illustrated below.

A Bagsep
agwidth

offset

agheightinterboxgap

boxtype

sd example

ch Label

agentsx ← {} //map agent names to x coordinates
agentsy ← {} //maps agent names to y coordinates
boxes ← {} //stack of entries, each of the form (box_type,y)
crossed ← {} //maps message names to details
agentnum ← 0
vp ← 0 //vertical position (i.e. y)
time_y ← 0 //y coordinate of timestart
while more input do

line ← read_line()
(type,line) ← get_first_word(line) //type is the first word, line is the remaining text
if type = “agent” then

(shortname,longname) ← get_first_word(line)
agentsy[shortname] ← vp
x ← agentnum × (agwidth + agsep) + offset
agentsx[shortname] ← x + agwidth/2
draw_rectangle(x, vp, x + agwidth, vp + agheight)
draw_centered_text(agentsx[shortname], vp, longname)
agentnum ← agentnum + 1
if next line is not an agent declaration then

increase vp
else if type ∈ {message, message-sync, message-async} then

(from,line) ← get_first_word(line)
(to,text) ← get_first_word(line)
x_from ← agentsx[from]
x_to ← agentsx[to]
if x_from = x_to then

draw_self_message(x_from,vp,text)

 Defining syntax and providing tool support for Agent UML 143

else

draw_arrow(x_from,vp,x_to,vp) //Draw appropriate arrow for “message-sync”
and “messsage-async”
draw_centered_text((x_from + x_to)/2,vp,text)

increase vp
else if type = “box” OR type = “start” then

boxes ← push(boxes,〈line, vp〉)
indent ← interboxgap × size(boxes)

draw_tag(indent, vp,line) //Draw boxtype
increase vp

else if type = “next” then
indent ← interboxgap × size(boxes)
x ← offset + agentnum × (agwidth + agsep) – indent
draw_heavy_dashed_line(indent, vp, x, vp)
increase vp

else if type = “end” or type = “finish” then
indent ← interboxgap × size(boxes)
x ← offset + agentnum × (agwidth + agsep) – indent
〈boxtype, y〉 ← pop(boxes) //pop from top of stack
if type = “end” and boxtype ≠ line then

print “Error: closing box type” + line + “doesn’t match opening box type” + boxtype
else

draw_rectangle(indent, y, x, vp)
if type = “end” then

increase vp
else if type = “guard” then

x ← agentsx[0]
delayed_draw_filled_white_rectangle(x–2,vp–5,x+2,vp) //Erase covered lifeline
delayed_draw_text(x,vp,line)
increase vp

else if type = “goto” or type = “label” then
x1 ← agentsx[0]
x2 ← agentsx[agentnum-1] //last agent’s x coordinate
y ← vp + ch //ch is the height of the continuation
delayed_draw_filled_roundrect(x1 – ch,vp, x2 + ch,y)
delayed_draw_centered_text((x1 + x2)/2, vp + (ch/2),line)
if type = “goto” then

x1 ← x2 //If goto then the triangle is at the right side
delayed_draw_triangle(x1-tr,vp+2,x1+tr,vp+ch/2,x1-tr,y-2)
//Draw ►, tr is half the triangle’s width

increase vp
else if type = “stop” then

draw_X(agentsx[line],vp)
increase vp

else if type = “sub” then
indent ← interboxgap × (1 + size(boxes)) //“+1” because we don’t push sub onto boxes
x ← offset + agentnum × (agwidth + agsep) – indent

 144 M. Winikoff

draw_tag(indent, vp, “ref”)
oldvp = vp
increase vp
delayed_draw_filled_rectangle(indent, oldvp, x, vp)
delayed_draw_centered_text((indent+x)/2,(oldvp+vp)/2, line)

else if type = “timestart” then
time_y = vp

else if type = “timeend” then
draw_doubleheadedarrow(agentsx[0]-to,time_y,agentsx[0]-to,vp)
// “to” is the offset to the left
draw_line(agentsx[0]-(2 × to),time_y,agentsx[0],time_y)
draw_line(agentsx[0]-(2 × to),vp,agentsx[0],vp)
draw_right_text(agentsx[0] – (1.5 × to), (vp + time_y) /2, line)
// “right” = right aligned text
//Note that we do not increase vp

else if type = “mes-” then
(message-name,line) ← get_first_word(line)
(from,line) ← get_first_word(line)
(to,line) ← get_first_word(line)
crossed[message-name] ← 〈vp, from, to, line〉
crosspoint ← (agentsx[from] × 0.75) + (agentsx[to] × 0.25)
draw_line(agentsx[from],vp,crosspoint,vp)
increase vp

else if type = “-sage” then
(name,line) ← get_first_word(line)
if not defined crossed[message-name] then

print “Error: no crossed message named” + name
〈y, from, to, line〉 ← crossed[message-name]
crosspoint ← (agentsx[from] × 0.75) + (agentsx[to] × 0.25)
textpoint ← (agentsx[from] × 0.25) + (agentsx[to] × 0.75)
draw_line(crosspoint,y,crosspoint,vp)
draw_arrow(crosspoint,vp,agentsx[to],vp)
draw_centered_text (textpoint,vp,text)
increase vp

for i = 0 to agentnum – 1 do
draw_dashed_line(agentsx[i],agentsy [i]+agheight,agentsx[i],vp) //Draw lifelines
Draw delayed items

Note that this algorithm does not draw ‘bridges’ over crossed messages. This can be done
by extending the arrow drawing in messages to check for outstanding crossed messages,
breaking the arrow into multiple lines (the last of which is an arrow), and adding
‘bridges’. This extension is straight-forward, but the details are somewhat verbose, and so
it is not shown here.

