
Journal of the Operations Research
Society of Japan

Vol. 45, No. 2, June 2002

A SCANLINE-BASED ALGORITHM
FOR THE 2D FREE-FORM BIN PACKING PROBLEM

Hiroyuki Okano
I B M Research, Tokyo Research Laboratory

(Received April 27, 2000; Final December 4, 2001)

Abstract This paper describes a heuristic algorithm for the two-dimensional free-form bin packing (2D-
FBP) problem, which is also called the irregular cutting and packing, or nesting problem. Given a set of 2D
free-form bins, which in practice may be plate materials, and a set of 2D free-form items, which in practice
may be plate parts to be cut out of the materials, the 2D-FBP problem is to lay out items inside one or
more bins in such a way that the number of bins used is minimized, and for each bin, the yield is maximized.
The proposed algorithm handles the problem as a variant of the one-dimensional bin-packing problem; i.e.,
items and bins are approximated as sets of scanlines, and scanlines are packed. The details of the algorithm
are given, and its application to a nesting problem in a shipbuilding company is reported. The proposed
algorithm consists of the basic and the group placement algorithms. The basic placement algorithm is a
variant of the first-fit decreasing algorithm which is simply extended from the one-dimensional case to the
two-dimensional case by a novel scanline approximation. The group placement algorithm is an extension of
the basic placement algorithm with recombination of input items. A numerical study with real instances
shows that the basic placement algorithm has sufficient performance for most of the instances, however,
the group placement algorithm is required when items must be aligned in columns. The qualities of the
resulting layouts are good enough for practical use, and the processing times required for both algorithms
are much faster than those by manual nesting.

1. Introduction
In the two-dimensional free-form bin packing (2D-FBP) problem, which is also called the
irregular cutting and packing, or nesting problem, given a set of 2D free-form items, which
in practice may be plate parts, and a set of 2D free-form bins, which in practice may be
plate materials from which parts are to be cut, one is asked to lay out items inside one
or more bins in such a way that the number of bins used is minimized and the yield is
maximized, where the yield for a layout in a bin is defined as the area of items over the
area of the minimum rectangle parallel to the x- and y-axis containing the layout, called
the bounding rectangle. The 2D-FBP problem is seen in a number of industries in which
parts with free-form (irregular) shapes are cut from free-form or rectangular materials. For
example, in the shipbuilding industry, plate parts with free-form shapes for use in the inner
frameworks of ships are cut from rectangular steel plates, and in the apparel industry, parts
of clothes are cut from fabric or leather.

Since the 2D-FBP problem belongs to the class of NP-hard combinatorial optimization
problems, heuristic algorithms play an important role in practical applications. In the
literature, heuristic algorithms for the 2D-FBP problem generally consist of procedures
for approximating input items and bins, and for placing items into bins one by one and
obtaining a solution. Some algorithms also include a subsequent recombination process. In
the approximation of input items, representations of items are generally classified into four

146 H. Ukano

types: bounding orthogonal rectangles, collections of orthogonal rectangles, simple polygons,
and bitmaps (grids). A drawback of these types of representations is that, because they are
two-dimensional, the subsequent placement procedure becomes complicated.

This paper proposes a new method for approximating input items and bins by scanlines,
and for representing them by sets of intervals. A procedure for placing items is also proposed.
The proposed algorithm packs sets of intervals along scanlines, instead of faces, and is shown
to be efficient and practical through an intensive numerical study.

In Section 2, algorithms for the one- and two-dimensional bin-packing problems are
reviewed. In Section 3, a new heuristic algorithm for the 2D-FBP problem, consisting of an
algorithm for approximating input items and bins and placement algorithms, is described.
Section 4 describes a numerical study using real instances obtained from a shipbuilding
company. Finally, the paper is summarized in Section 5.

2. Preliminary
2.1. ID bin-packing algorithms
Given a set P of items, a rational size (0,1] for each item, and a set of unit-capacity bins,
the one-dimensional bin-packing problem is to find a partition of P into disjoint subsets
such thatitems can be placed into the minimum number of bins; i.e., the sum of the sizes
of items in each subset should be no more than 1, and the number of bins used should be
minimized. This problem is known to be NP-hard [7].

One algorithm for the one-dimensional bin-packing problem is the first-fit algorithm.
This algorithm, starting with a sequence of empty unit-capacity bins, places each item in
succession into the first bin it will fit. The asymptotic worst-case performance ratio of
the first-fit algorithm has been proved to be 1.7 [4]. When the input items are sorted
in decreasing order of size before applying the first-fit algorithm, it is called the first-fit
decreasing algorithm, and the bound is improved to 1.22. . . [4]. The algorithms for 2D-FBP
proposed in Section 3 are basically variants of the first-fit decreasing algorithm, modified
for the two-dimensional case.
2.2. 2D bin-packing algorithms
Given a set P of n items and a set M of m bins whose shapes are two-dimensional, the
two-dimensional bin-packing problem is to lay out items inside bins in such a way that the
number of bins used is minimized and the yield is maximized. Problems of this type are
obviously harder than one-dimensional bin packing, and thus NP-hard. They are also called
two-dimensional cutting stock problems; in this case bins are called stock sheets, and items
(products) are to be cut from the sheets. The shapes of items and the constraints to be
considered in placing them inside bins vary according to the problem. For example, when
items and bins are both rectangular, and items must be cut from bins only by orthogonal
guillotine cuts, it is called the guillotine-cutting stock problem. For this problem, a set-
covering based heuristic algorithm was proposed [12], in which a set of cutting layouts is
first generated and a subset of the layouts are selected by integer programming to cover all
the items to be produced.

When the shapes of the items and bins are not constrained, that is, when they may
be irregular, the problem is called the two-dimensional free-form bin packing (2D-FBP)
problem, or simply the nesting problem. Items in 2D-FBP are simple polygons which may
be non-convex, and may contain holes inside them. Allowing interior holes is crucial in the
application of 2D-FBP to the shipbuilding industry, where items (ship parts) have many
holes to reduce their weight. Bins in 2D-FBP are also simple polygons which may be non-

2D Free-Form Bin Packing Problem

Scan

Base-
1 ine

Figure 2: Scanlines in placement orientations parallel Figure 1: An input item.
to two baselines.

convex, and may contain unusable regions inside them. For example, in the application of
leather cutting, the bins (hides) are irregularly shaped, and any holes in a hide must be
taken into account.

Algorithms for the 2D-FBP problem generally consist of procedures for approximating
input bins and items, and for placing items into bins. One of the first attempts for 2D-FBP
approximated input items as rectangles [8]. A heuristic search proposed by Albano and Sa-
puppo handles input items as polygons [I]. Recent studies by Daniels and Milenkovic [5, 91
and Dowsland, Dowsland and Bennell [6] also handle polygons. Qu and Sanders approx-
imated input items as collections of orthogonal rectangles [lo]. The above approaches do
not allow items to contain holes. However, in practical applications, small items sometimes
must be placed inside holes in large items. Some recent approaches, in which items and bins
are both approximated as bitmaps (grids), satisfy this requirement. For the placement algo-
rithms, some researchers have tried Genetic Algorithm (G A)-based approaches using large
amounts of computing power. For example, a nesting system by Yamauchi and Tezuka [13]
and an algorithm by Ratanapan and Dagli [ll] are both GA-based. For related work, see
the survey paper by Cheng, Feiring and Cheng [3].

The algorithm described in the next section approximates input items and bins by scan-
lines, and handles them as sets of intervals. One typical application of the algorithm is a
problem involving the nesting of plate parts for shipbuilding, where the shapes of input items
(ship parts) are free-form, and the shapes of input bins (material plates) are all rectangular.
A convenient property of this problem is that the orientations of items to be placed into bins
can be predetermined, and the number of such placement orientations for each item may be
practically restricted to two for most input items. This is because each input item typically
contains two or more long straight lines (Figure I), and the best results are obtained when
one of these lines is parallel to the x axis of a rectangular bin, where the x axis is the longer
side of the bin. The proposed algorithm, taking advantage of this property, determines two
placement orientations for each item, and approximates an item by scanlines along these
orientations.

3. Placement Algorithms
The placement algorithms for the 2D-FBP proposed in this section have the following frame-
work:
1. Approximate input items and bins, and represent them using sets of interval arrays.
2. Obtain an ordering of items with respect to their areas and the similarities among them.

Reference
point

Figure 3: Intervals in run-length coding
along a scanline and a reference point of
an item.

Figure 4: An example of {O,l}-intervals.

3. Select an item (or a group of items), and place it into a bin.
4. Continue Step 3 while any items remain.
3.1. Approximation and representation of items
For each input item, one or two orientations are first determined. These orientations, called
the placement orientations, are used to place the item into a rectangular or irregularly
shaped bin so that one of the orientations is parallel to the x axis of the bin. In determining
the placement orientations of an item i, a convex hull of the item is calculated, and one or
two of the longest edges in the hull are selected. The selected edges in the hull are called
baselines and denoted as basei = {I, 2}. Placement orientations parallel to the baselines are
thus determined. Each item is then sliced along the placement orientation into strips of the
same width 6 that was given to the algorithm as input (Figure 2). This width refers to the
size of each strip in the direction orthogonal to the baseline. The lines are called scanlines,
and the width 0 of strips is called the scan width.

An item i 6 P, sliced parallel to one of the placement orientations, is further represented
by a set of intervals in run-length coding. Let the number of scanlines and the width of the
item i with respect to the current placement orientation be hi and wi, respectively. hi is
determined by the item size and the scan width 9, which is 0(1/9) assuming that the item
size is a constant factor for all the items. The value of wi is the difference between the
minimum and the maximum x-coordinates of the item's edges. Arrays a,,[] (9 = 1,. . . , h,}
for the run-length coding of the item i along the j-th scanline are constructed as follows:
Starting from the leftmost position of the item, the length of the first portion of the scanline,
which lies outside the item, is set to aij[lj; this portion is called a 0-interval, and is denoted
as 0 in Figure 3. The length of the next portion of the scanline, which lies inside the item,
is set to aÃˆ-[2] this portion is called a 1-interval, and is denoted as 1 in Figure 3, and so
on. The lengths of 0- and 1-intervals are set to a*,[], one by one, ending with a 0-interval
even if the length of the last 0-interval is zero. Finally, SV is set so that 2sy + 1 is equal
to the number of elements in aij[1. Arrays aÃˆj] are called interval arrays. When the
{O, 1}-intervals of an item are obtained for the example in Figure 4, the number of scanlines
h, is 5, the width of item wi is 100, and the arrays a,,[] and their sizes sij are set as follows:

ai,t[1 = {14,16,70}, si,5 = 1,
ai,4[] = {18,32,50}, si,4 = 1,
ai,3[] = {20,50,30}, si,3 = 1,
ai,;[] = {15,50,15,10, lo}, si,2 = 2,
a,,,[] = {O, 100, O}, si.1 = 1.

2D Free-Form Bin Packing Problem

unmatched
scanlines

matched
scanlines

Figure 5:
shaped bin;
which some

An Figure 6: Matched and unmatched scan-
a rectangular material from lines of two items.

items have already been cut.

Note that, for simplicity, wi, hi, a,,, and sij are written without subscripts to specify place-
ment orientations, although they are generated for each placement orientation, base* =
{1,2}, in actual implementations. Note also that a much smaller scan width is normally
used. For example, the item in Figure 3 is sliced along 62 scanlines in the numerical study
described later.

The running time complexity of this step is O (' ^ , ~ ~ (Z , ~ ~ (S , ~ + log ei) + ei log e,)) =
O((n/9 + nE) logÂ£') where ei is the number of edges of an item 2, and E = max*gp{ei}.
The loge* is for finding the crossing points of a scanline and the item's edges using a ray
shooting data structure [2], and ei loge, is for constructing the convex hull and the ray
shooting data structure for the item i. In the actual implementation used in the numerical
study, however, searches for crossing points are performed by a naive method of O(ei)-time.
The required space for representing the input items, the convex hull, and the ray shooting
data structure is O(nE), and the space for representing the interval arrays for the input
items is O(x,ep xzl ~ * j) = 0 (n/Ã‡)
3.2. Approximation and representation of bins
The input bins may either be free-form or rectangular. When a bin has a free-form shape,
a supporting line of the convex hull of the bin parallel to its diameter is selected as the x
axis. When a bin is rectangular, one of the longer sides of the bin is selected as the x axis.

Each input bin b ? M is sliced parallel to the x axis into strips of the scan width 0, that
is, with the same distance between scanlines as that used in approximating input items.
Let I& be the number of scanlines and be the width of the bin, where the width of
the bin is the difference between the minimum and the maximum z-coordinates of the bin's
edges. Note that both and Wb are given to the algorithm as input. The bin b just after
placing the 2-th item is represented by interval arrays, Ari [} (k = 1, . . . , Hi,). S$ maintains
the number of 1-intervals so that 2 ~ k + 1 is equal to the number of elements in A'[1.
The interval arrays for bins b ? M are maintained in the same manner as those for items;

2s(Â¥)+ (*)
i.e., xjd; Abk[j] = Wb. In the beginning, SF is set to 0, and A^)[l] is set to Wb for
k = 1,. . . , I&,. When the bin has a free-form shape, interval arrays of its bounding rectangle
are first generated, and 1-intervals are added to the arrays so that portions of the bounding
rectangle which lie outside the bin are filled (Figure 5).

The running time complexity of this step is O(EbcM Hi,) = 0(m/0), if all the input bins
are rectangular; otherwise additional cost is required to initialize the interval arrays of the
bins to represent their shapes. Note that the bin size Hi, is assumed to be 0(1/0). The
required space for representing the input items is O (G E M &S) = O(rn/ff), where S is the
maximum number of intervals to be used for representing layouts.

1 Base1 ine

(a) A baseline facing up. (b) A baseline facing down.

Figure 7: Two ways of placement of an item with respect to baselines.

3.3. Preprocess
An ordering v of items in P is obtained in the preprocess step with respect to their areas
and the sirnilanties among them. The area area(i) of each item 2 ? P is calculated without
taking into account holes inside the item. It can be easily estimated by summing up the
lengths of its scanlines; i.e., urea(i) = ~z~ (wi -au [1] -aij [2sij + 11). The similarity sim[i, j)
between two items i, j ? P is defined as

min { # of unmatched scanlines
sim(i, j) =

base, xbasej # of matched scanlines

where a scanline is said to be matched if more than 80% of intervals along the scanline
overlap each other without taking into account holes (Figure 6) . In sim(i, j) , min is taken
for all the combinations of baselines. The similarity has small value (< 1.0) if items are
similar, 1.0 if the number of matched and unmatched scanlines are the same, and +oo if no
scanline matches. Note that the above definition of similarity was chosen heuristically as it
is suited for the target data set used in the numerical study described in the next section,
and other definitions may be more suitable for other situations.

The ordering TT is obtained in the following manner:
PI. Let v := (f> and k := 1.

P2. Find the largest unselected item i := arg max,cp\Ã {area(i)}.
P3. Find a cluster of similar items P(*) := {i} U {j 6 P \ v \ sim(i, j) < 0.2}.
P4. Sort the items in P (~) in decreasing order of area, and let the resulting ordering be ~ i k .

P5. v := TT U T T ~ . [Append T T ~ to v.]
P6. If P \ v # # then k :=k+l, and go toP2.

In Step P3, the similarities of the items are checked, and clusters of similar items are
created. In Steps P4 and P5, the ordering is updated so that similar items are placed
in consecutive positions in the ordering. Furthermore, the items in TT are re-indexed in
increasing numerical order so that ~ (2) = i. The obtained ordering TT is called an items list.

The calculation of items' area at Step P2 requires O(Eiep E:L~ 1) = O(n/O)-time and
0(n)-space, and finding and sorting a cluster of size I P ^ I costs 0(] P**)I log 1 P^I)-time and
0(1 ~ (~) [) - s ~ a c e , where Ek I-P^)I = n. The total running time complexity for preprocessing
for input items is, therefore, O(n/O + n log n), and the required space is O(n).

The input bins are also sorted in decreasing order of area, and re-indexed. in increasing
numerical order in the list. The resulting list is called a bins list. The time and space
required for preprocessing bins are O(m log m) and 0 (m) , respectively.

2D Free-Form Bin Packing Problem 151

3.4. Basic placement algorithm
The basic placement algorithm is essentially the same as the first-fit decreasing algorithm,
whose one-dimensional version was described in Section 2.1. It selects items in the items list,
one by one, and examines two ways of placement for each of their baselines, base = {I, 2};
one with the baseline facing up (Figure 7(a)), and the other with the baseline facing down
(Figure 7(b)). Those two patterns are denoted as dir = {up, down}. The procedure of the
basic placement algorithm is as follows:

BO.
Bl.
B2.
B3.

B4.

B5.

B6.

Initialize sets of items Pb := 4, b = 1 , . . . , m.
Let i := 1. [For each item 2 = 1, . . . , n, do the following:]
Let b := 1. [For each bin b = 1, . . . , m, do Steps B3 and B4.1
Try to place the item 2 for all combinations of base and dir, at the leftmost position in

the bin b, and evaluate each of the layouts.
If any of placement was feasible then go to B5, otherwise let b := b + 1, and go to B3,
where a placement is said to be feasible if the item can be placed in the bin.

Select the best layout with respect to the cases of placement (base and dir)) and place
the item accordingly; i.e., the 1-intervals of the item i are added in the interval arrays
of the selected bin b, and let Pb := Pi, U {i} and bi := b, where bi denotes the bin in
which the item i is placed.

If i < n then let 2 := i + 1, and go to B2.

In Step B3, an item is placed at the leftmost position in the bin, as depicted in Figure 8
(a). Let F be a set of feasible placement positions of an item in a bin; i.e., xy-coordinates
of the reference point (Figure 3) with which the item fits in the bin without overlapping
existing items. The leftmost position is defined as arg miniEF{xi}. When there are many
such positions, the one with the smallest y-coordinate is chosen.

The placement in Step B3 is realized by three procedures: place-left, containment, and
add. In this section, they are briefly sketched, and their details are deferred to the Appendix.

Place-left(b, i, base, dir), called for each placement in Step B3, places an item i in the
leftmost space in a bin b using the item's baseline specified by base = {I, 2}, facing it up
or down according to dir = {up, down}. Place-left calls containment with several possible
positions until it finds a position where the item will fit, and calls add to actually place the
item at the position. Containment(b, i, j, k, x) (Figure 9) returns zero if 0-intervals in the
bin's interval array A!^[] can contain all the 1-intervals in the item's interval array ajj[]
starting at position x; otherwise it returns a promising position where the item may fit.
The return value, if it is non-zero, is used for shifting the placement position of the item.
In Figure 9, the specified interval arrays cannot contain each other in Step 1 because the
intervals corresponding to A[2] and a[4] overlap each other, and the value of 1 2 depicted in
the figure is returned. x2 is determined so that the interval of a[4] will be placed just after
the interval of A[2]. Note that, in this example, Step 2 with xi will fail again because the
intervals of a[2] and A[2] will overlap each other, and a feasible position is found in Step
3. Containment is called for consecutive y-coordinates until all of aij, j = 1,. . . , hi, can be
placed at the position. Add(b, i,j, k, x) (Figure 10) merges the specified two interval arrays

] , setting the starting point of an item's interval arrays at x. ai j [1 and
The number of x-coordinates examined by place-left for the i-th item is at most the

number of combinations of EteM xzi ŝ '" < E;=: E;L~ su and gsl S*j, i.e., 0(i/02).
Each call to containment and add run in 0(1/0)-time. Thus, the worst-case time complexity
for placing n input items is O(E?_, i/Q3) = 0(n2/03). The actual cost, however, is smaller

H. Okano

(a) In the leftmost position by (b) In the bottom-most position by
place-left procedure. place-bottom procedure.

Figure 8: Two placement strategies. The hatched item is being placed in the leftmost and
the bottom-most positions.

a., [I
Step 1

Step 3 I
x3

Figure 9: Shifting placement position x, in containment(b, i, j, k, 4, to get the next promis-
ing position, and to obtain a feasible position where the item's 1-intervals will fit into the
bin. A:;')[] is an interval array of the bin, and a,,[] is that of the item i along a scanline.

Figure 10: Merging an interval array aij [] into an interval array A : [1, in add(b, i, j, k, x) ,
to obtain A!i[].

2D Free-Form Bin Packing Problem

(a) A preferable layout. (b) A bad layout.

Figure 11: To maximize the rightmost unused area.

than that because containment skips some x-coordinates when 1-intervals conflict (Figure
9). The required space for the placement procedure is O(l/fl).

The layouts in a bin are evaluated in Step B3, and the layout with the largest value is
selected in Step B5. The evaluation function e(b) to be maximized, which estimates the
rightmost unused area (Figure 11) of the bin b, is defined as

By selecting the layout with the largest value of e(b) among the various placements, layouts
in which a large empty space remains at the rightmost part in a bin are preferred (Figure
11(a)) over layouts in which unused space is scattered into small regions (Figure ll(b)).
Note that the primary objective of the 2D-FBP problem is minimization of the number of
bins used, and maximization of the yield is the secondary objective. The objective function
/(-) to be minimized for this problem can be written as follows:

where L is a large value, nbins is the number of bins used, yield estimates the yield,
and xmax(b) and yrnax(b) are the x- and y-coordinates of the right and the top edges,
respectively, of the bounding rectangle of the bin 6. The basic placement algorithm proposed
in this paper does not directly handle this objective, though it is indirectly taken into
account. Note that, by the nature of place-left procedure, ymax(b) ĉ Hb for most cases,
and thus xmax(b) x ymax (b) ^Wb x Hb - e (b) .
3.5. Group placement algorithm
In one of the target applications of this paper in the shipbuilding industry, there are layouts
created by experts that contain aligned columns of items, as seen in Figure 11(a) as groups
of four vertically aligned items. It is therefore regarded as a good heuristic to use such
patterns for some instances which contain many items with similar shapes. When the
aligned columns cannot be obtained by using the basic placement algorithm introduced in
the previous subsection, one can improve the solution by placing a group of a few items in
the list and at the same time examining all combinations of placements for each item.

Groups of items are created within each cluster ~ (~ 1 of similar items by selecting u items
from the associated sorted list vk as {wk(l), . . . , wk (u)}, { n f u + I), . . . , ~ k (2 ~) } , . . . Note
that, in the preprocess step, the items list is generated so that clusters of similar items are
adjacent in the list. The size u of the group is set to four in the numerical study described
in the next section. When a group consists of two items 2 and i + 1, i.e., u = 2, for example,
all combinations of placement are examined as follows:

{ place-leftd, 1, up), place-left(i + 1 , l , up) },
{ place-left(i, 1, down), place-left(i + 1,1, up) },
{ place-left(i, 2, up), place-left(i + l,l, up) },

{ placeJeft(i, 2, down), placeJ,eft(i + 1,2, down) }.
In this example for u = 2, there are 4" = 16 combinations of placements.

In addition, all combinations of placements in which the first item in each cluster is
placed at the bottom-most positions (Figure 8 (b)) are examined as follows:

{ place-bottom(z, 1, up), place-left(i + 1,1, up) },
{ place-bottomfi, 1, down), place-leftd + 1,1, up) },

Gl.
G2.

G3.

G4.

G5.

G6.

{ place-bottom^, 2, up), place-left^ + 1,l, up) },

{ place-bottom(i, 2, down), place-left(z + 1,2, down) 1,
where the bottom-most position is defined as arg miniEF{i/,}. When there are many such
positions, the one with the smallest ^-coordinate is chosen. Place-bottomfb, 2, base, dir) is
a procedure to place an item i in the bottom-most space in a bin b using the item's baseline
specified by base, facing it up or down according to dzr.

Place-bottom is defined by using the containment and add subroutines described in the
last subsection, in the same manner as place-left. That is, it calls containment with several
possible positions, until it finds a position where the item fits in, and calls add to actually
place the item at the position. Its details are described in the Appendix.

The improved placement algorithm, called the group placement algorithm, is as follows:

Let k := 1, and initialize sets of items Pi, := #, b = 1,. . . , m.
If any group of up to u items remains in wk, take the first group (denote i t as wf), and
continue placing from Step G3; otherwise, stop the process.

Try to place the items in the ordering d(i) , i = 1,. . . , u, for all combinations of
placements at the leftmost positions in the input bins, and evaluate each of the layouts.

Try to place the items in the ordering wf (i), i = 1, . . . , u, for all combinations of
placements a t the bottom-most positions in the input bins for w'(1) and at the leftmost
positions for d(z), z = 2, . . . , u, and evaluate each of the layouts.

Select the best layout with respect to the placements, and place the items in vt accord-
ingly; i.e., 1-intervals of each item d(i) are added in the interval arrays of the bin b
into which w'[i) was placed, and let Pb := Pb U {i} and b,~(,~ := b.

If any clusters of items remain then k := k + 1, and go to G2; otherwise, stop the
process.

Steps G3 and G4 call a subroutine based on the basic placement algorithm as follows:
Bl'. Let z := 1. [For each item in vt(i), 2 = 1, . . . , u, do the following:]
B2'. Let b := 1. [For each bin b = 1,. . . , m, do Steps B3' and B4'.]
B3'. Try to place the item 7rf(2), with the specified placement and strategy, leftmost or

bottom-most, into the bin b.

2D Free-Form Bin Packing Problem 155

((Parts = 40 Y i e l d = 73.4% CPU time = 11 min,
Plate #l (3150 un x 19480 an)

Figure 12: Layout obtained for instance A
by group placement algorithm.

Plate #l (2775 am x 17140 urn)

Plate 92 (2775 am x 16930 im)

P3ate #3 (3000 am x 15120 urn)

Plata #l (3150 cm x 19680 no)

Figure 15: Layout obtained for instance B
by basic placement algorithm.

Figure 13: Layout obtained for instance A Rarts = litU = zÃ mi iiÃ§ =
by limited group placement algorithm. Plate ftfl (3925 am x 18620 UITJ

((Parts=40 Yield=64.7% CPUtime=lmin,
Plate #l (3150 am x 19960 na) Plate 92 (3700 an x 18430 am)

Plate 92 (2450 m x 2530 lan)
Plate #3 (2625 cm x 13460 4

Figure 14: Layout obtained for instance A -
by basic placement algorithm. Figure 16: Layout obtained for instance C

by basic placement algorithm.

B4'. If the placement was feasible, tentatively place the item ?rf(i) into the bin 6; otherwise
let b := b + 1, and go to B3'.

B5'. If i < u then let z := i + 1, and go to B2'.
B6'. Evaluate the layout, undo all the placements, and return.

Note that two layouts are examined in Steps G3 and G4 for each combination of place-
ment, one by calling place-left for all the items in the group, and the other by calling
place-bottom for the first item. The effects of the group placement algorithm and the use
of the bottom-most strategy will be considered in the next section.

The group placement algorithm places groups of items one by one and terminates when
all the groups have been processed; i.e., it is a deterministic greedy heuristic. The numerical
study in the next section will show that solutions obtained by the algorithm are sufficiently
practical for use in a shipbuilding company. If the solutions are not good enough, however,
a local search or a meta-heuristic-based recombination can be applied to them.

The time and space complexities of the proposed group placement algorithm are the
same as those of the basic placement algorithm, because place-left and place-bottom have
the same time and space complexities, and the number of combinations in each group of

items, 4", can be regarded as a constant.
The proposed two algorithms, the basic and the group placement algorithms, can be

naturally extended to the three-dimensional case, in which items and bins can be sliced into
layers and each layer can be approximated by scanlines.

4. Numerical study
A numerical study was carried out by using real instances obtained from a shipbuilding
company. In the company, plate parts for building the inner frameworks of ships are grouped
by thickness and specification, and a nesting problem for each group is solved manually.
Solving the nesting problem involves finding appropriate sizes of material plates (bins)
among given standard sizes. In this numerical study, it was assumed that the groups of
ship parts (items) and the appropriate sizes of the material plates (bins) are given for each
instance. CPU times were measured on an IBM RS/6000 with a 332-MHz CPU.

Figure 12 shows the layout for instance A obtained by the group placement algorithm
with the group size u set to four. Figures 13 and 14 show the layouts for the same instance
obtained by the group placement algorithm without using the bottom-most strategy (Step
G4 of the group placement algorithm) and by the basic placement algorithm, respectively.
The yield and the CPU time are shown in each figure. The plate sizes shown in the figures
are of the bounding rectangles of the layouts. Figure 12 shows the aligned columns of parts
generated by the group placement algorithm, and Figure 13 shows that the bottom-most
strategy is necessary to obtain aligned columns for this instance. Figures 15 and 16 show the
layouts for instances B and C obtained by the basic placement algorithm. These figures show
that the basic placement algorithm has sufficient performance when the aligned columns as
seen in Figure 12 are not needed.
4.1. Comparison with another method
The above experiments show that when an aligned structure of items is required for obtaining
a good layout, a special search mechanism is needed in addition to a simple first-fit decreasing
type algorithm; i.e., the basic placement algorithm. Dowsland, Dowsland and Bennell [6]
proposed a local improvement method, called the jostling approach, for a type of 2D-FBP
problem. In their problem, the number of placement orientations for each item is set to one,
and not even a 180' rotation of items (Figure 7) is considered. Although their approach takes
advantage of the restriction of rotation of items, in this paper, their approach is compared
to the group placement algorithm using the problem setting of this paper; i.e., up to two
placement orientations and 180Â rotations are considered for each placement orientation.

The jostling approach, as does the group placement algorithm, assumes an existing
simple placement algorithm which places items at the leftmost positions in each bin. Starting
with a layout, the items are ordered in increasing or decreasing order of the x-coordinates of
their leftmost or rightmost points, respectively, and a layout is created using the leftmost or
the rightmost placement strategy, respectively. This process is continued for a fixed number
of iterations.

The jostling approach can be emulated by using the basic placement algorithm, which
always uses the leftmost placement strategy, as follows:
Jl. Create an ordering TT of the input items (with respect to their areas and similarities

between them).
J2. Call the basic placement algorithm with the ordering -IT, and obtain a layout.
J3. Let Xi be x-coordinates of the rightmost points of items in the input bins. Re-order the

items in decreasing order of zi + Wb. Let the resulting ordering be -IT.

2D Free-Form Bin Packing Problem

Plate #l (2775 am x 17020 inn)

Plate #2 (2775 am x 16900 Btn)

Plate 93 (3000 am x 17190 inn)

Plate ft (2775 am x 16860 min)

Plate #l (2775 am x 16970 inn)

Plate #2 (2775 am x 15190 inn)

Plate 93 (3000 an x 16640 inn)

(Tarts = 76 Y i e l d = 80.22 CPU tins = 3 min
Plate #1 (2775 m x 17140 am)

Figure 17: Layout obtained for instance B
after the second iteration of the jostling pro-
cedure.

Plate #4 (2775 am x 9030 d

Plate S3 (3000 m x 15280 mi)

Figure 18: Layout obtained for instance B
after the third iteration of the jostling proce-
dure.

(Carts = 40 Y i e l d = 67.1% CPU h = 4 min.
Piste #l (3150 dm x 19630 inn)

Plate #2 (2375 am x 2010 nÃ§n

N
Figure 20: Best layout obtained for instance
A by the jostling procedure.

Figure 19: Layout obtained for instance B
after the fourth iteration of the jostling pro-
cedure.

J4. If the terminal condition is met then stop the process; otherwise go to 32.
In the experiments, a total of ten calls to the basic placement algorithm were made for each
instance. The instances A and B were used for the comparison. The instance C was not
used because the sizes of its input bins differ so much, and the above procedure cannot
emulate the jostling approach very well.

Figures 17 through 19 show results of the second, third, and fourth iterations of the
jostling procedure for the instance B. Large items are packed first in the odd iterations,
and small items are packed first in the even iterations. The subsequent iterations could not
improve the layout obtained at the first iteration (Figure 15), and the qualities of solutions
tended to become worse as the iterations proceeded.

Figure 20 shows the best result by the jostling procedure for the instance A, which was
obtained at the sixth iteration. The number of bins used was two for all the results. The
aligned columns obtained by the group placement algorithm (Figure 12) were not created

158 H. Okano

Table 1: Time and space complexities of the algorithm.

Algorithm steps Time complexity Space complexity
Representation of items 0 ((n / 0 + nE) log B) 0 (n E + n/0)
Represent at ion of bins o(m/e) o(m/@)

Preprocess step for items 0 (n/0 + n log n) o(n)
Preprocess step for bins 0 (m log m) a m }
placement algorithms o (n 2 / ~3). 0(1 /8)

Total O(n2/S3 + (4 0 + nB) log E) O(n/0 + n B)

n: number of input items, m: number of input bins (< n), 0: a scan
width, E: maximum number of edges of items.

by the jostling procedure. These results show that the jostling procedure does not converge
to good solutions under the experimental setup of this paper. It seems rotation of items is
crucial for the jostling approach.
4.2. Discussion
Using the basic and the group placement algorithms, solutions of sufficiently high quality
for practical use were obtained for the tested instances when appropriate sizes of bins were
specified. The obtained layouts .have qualities comparable with those of layouts created by
human experts, and the required CPU times are much faster than those required for manual
nesting.

The comparison of the proposed algorithms and one of existing algorithms called the
jostling approach showed that the basic placement approach may be improved by local
search, however, a type of local search which does not consider groups of similar items cannot
find good solutions for special instances in which aligned columns of items are required. The
group placement algorithm is one of the suitable options for such a case.

As described in Section 3, the placement algorithms proposed in this paper have the
worst-case time complexity of O(n2/03), where n is the number of items, and 0 is the
input scan width. In practice, however, by using promising x-coordinates returned by
the containment subroutine, the algorithms run faster than the worst-case time, and it is
estimated as O(n2/02). In all the experiments described above, the scan width 0 was set
to 25 mm. To investigate the effect of the change in 0 to the running time, 0 was changed
to 10 mm, and the group placement algorithm was applied to the instance A. Then the
running time was increased from 11 minutes to 59 minutes, which indicates that the effect
of 0 is less than quadratic in the computational cost.

When the scan width was set to 250 mm, the resulting layouts include overlapping
items when the layouts were evaluated using the original edges of items, which means, the
approximation of the items was not precise enough. The appropriate scan width should be
determined so that all of the input items and bins are approximated with enough precision,
and the running time of the program is reasonable. In the experiments in the previous
subsection, the scan width was chosen heuristically.

5. Conclusion
A new heuristic algorithm for the two-dimensional free-form bin packing (2D-FBP) prob-
lem was described. The algorithm approximates input items and bins by scanlines, and
handles the 2D-FBP problem as a variant of the one-dimensional bin-packing problem.

2D Free-Form Bin Packing Problem 159

The algorithm consists of preparation, a basic placement algorithm, and a group placement
algorithm, whose time and space complexities are shown in Table 1. The basic placement al-
gorithm is a two-dimensional extension of the first-fit decreasing algorithm, which is known
to be efficient for the one-dimensional case. The group placement algorithm is an improved
version of the basic placement algorithm that examines recombination of a few similar items.

A numerical study was carried out, using real instances obtained from a shipbuilding
company, and it was shown that the proposed algorithm can find layouts of ship parts com-
parable to those obtained by human experts, and the CPU times required by the algorithm
are much shorter than the times required for manual nesting.

For future study, it is planned to improve the algorithm by slightly rotating the items in
the placement procedures. It is noted that the approach used in the proposed algorithm can
also be applied to the three-dimensional bin-packing problem, which appears, for example,
in data preparation for 3D rapid-prototyping machines.

Acknowledgment
The author would like to thank the anonymous editors and referees for their valuable

comments on the original version of this paper.

Appendix
Figures 21 through 24 are pseudocode for the procedures used in the described basic and
group placement algorithms. The parameter b refers to a bin, 2 refers to an item to be
placed into the bin, and the parameters base and d2r refer to a placement. Base describes
a baseline (1 or 2 if the item has two baselines), and d2r = {up,down} describes that the
baseline should be facing up or down (Figure 7). In the pseudocode, for simplicity, base and
d2r have been omitted, and a placement with the baseline facing down is assumed.

The notations used in the pseudocode are:
wi Width of an item 2,

hi Number of scanlines in the item 2 for the selected baseline,
a,,[tsU + 11 Interval arrays of the item 2 where j = 1,. . . , hi,
si j Number of 1-intervals in aÃ [1,
Wh Width of a bin b,
H Number of scanlines in the bin b, f i) AH [2 ~ f f + 11 Interval arrays of the bin b just after placing the 2-th item in the items

list, where k = 1,. . . , I&,
ski) Number of 1-intervals in A![1.

Place-left (Figure 21) and Place-bottom (Figure 22) find the leftmost and the bottom-
most space, respectively, in the bin b into which the given item 2 will fit, and adds the
1-intervals of the item to the bin's interval arrays (Figure 8). They call the check and place
subroutines to find empty spaces into which the items may fit, and add 1-intervals in the
arrays.

The check and place procedures call subroutines for checking the containment of interval
arrays and for merging two interval arrays, where the interval arrays are able to contain each
other if no 1-intervals from the two arrays overlap each other. Check(b, 2, x, y) (Figure 23)
calls the containment (b, 2, j, k, x) procedure (Figure 9), for each scanline j = 1, . . . , hi of the
item 2 and k = y + j - 1 of the bin 6, to check if the interval arrays along the scanlines can
contain each other. Place(b, i, x, y) (Figure 24) calls the add procedure for each scanline of
the item i and the bin b just as the check procedure does, where add(b, 2, j, k, x) (Figure 10)
merges a+[] into A ^ [] starting at position x.

1: function place-left(b, i , base, d i r) : boolean; (* Place an item i in a bin b *)
2: var j , x , y , pos: integer; (* with the specified placement. *)
3: next: array [l..Hf, - hi + 11 of integer; (* Array of x positions in the bin. *)
4: begin
5: for j := 1 to HI) - hi + 1 do next\j} := 1; (* Initialize n e x t [] . *)
6: while true do (* Main IOOD. *) -
7: begin
8: x := Wb; (* Set x a large value (width of the bin). *)
9: for j := 1 to - hi + 1 do (* Find the smallest value in next[1, *)

10: if x > next\j\ then (* which is the leftmost position *
11: begin x := next\i ; y := j; end; L (* of the empty area. *
12: i fx>Wb-wi+11 en (* If there is no space where the item will fit, *)
13: return false; (* return false. *)

pos := check(b; i , x , y) ;
if pos = 0 then
begin place(b, i, x , y) ;

return true: end:
18: next[y] := pos;
19: end;
20: end;

(* Check if the item fits at position (x , y) . *)
(* If the item fits at (x , y) , *)
(* place it there, *)
(* and return true. *)
(* Save the position. *)

Figure 21: Pseudocode for placing an item at the leftmost position in a bin.

1: function place-bottom(b, i , base, dir) : boolean; (* Place an item i in a bin b *
2: var x := 1, y, pos: integer; (* with the specified placement. *)
3: begin
4: for - y - := 1 to H b - hi + 1 do (* Scan the bin from the bottom to the top. *)
5: begin
6: while x < W6 - Wi + 1 do
7: begin
8: pos := check(b, i, x , y) ;
9: ifpos=Othen

10: begin place(b, i , x , y) ;
11: return true; end;
12: X :=pas;
13: end;
14: end;
15: return false;
16: end;

(* Scan the bin from the left to the right. *)

(* Check if the item fits at position (x , y) . *)
(* If the item fits at (x , y) , *)
(* place it there, *)
(* and return true. *)
(* The next x position. *)

(* There is no space where the item will fit. *)

Figure 22: Pseudocode for placing an item at the bottom-most position in a bin.

1: function check(b, i, x, y : integer) : integer; (* Check if an item z fits at (x , y) in a bin b. *)
2: var j , pos: integer;
3: begin
4: forj:= 1 to hi do (* Scan the item from the bottom to the top. *)
5: begin
6: pos := containment(b, i , j , y + j - 1, x) ; (* Check for intervals along j-th scanline. *)
7: ~fpos>Othen (* If the item does not fit in the bin, return a *)
8: return pos; (* promising x position to try later by *)
9: end; (* the caller. *)

10: return 0; (* If the item fits at (x , y) , return zero. *)
11: end;

Figure 23: Pseudocode for checking if the given item fits in the given bin.

2D Free-Form Bin Packing Problem

1: procedure place(b, i, a;, y : integer); (* Set an item i at (x, y) in a bin b. *)
2: var j: integer;
3: begin
4: for j := 1 to hi do (* Scan the item from the bottom to the top. *)
5: add(b,i , j ,g+j-1,x); (* Add 1-intervals of the item along j-th *)
6: end; (* scanline to the (y + j - 1)-th interval *)

(* array of the bin b. *)

Figure 24: Pseudocode for checking if the given item fits in the given bin.

References

A. Albano and G. Sapuppo: Optimal allocation of two-dimensional irregular shapes
using heuristic search methods. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-10-5 (1980) 242-248.
B. Chazelle and L. J. Guibas: Visibility and intersection problems in plane geometry.
Discrete Computational Geometry, 4 (1989) 551-581.
C. H. Cheng, B. R. Feiring and T. C. E. Cheng: The cutting stock problem - a survey.
International Journal of Production Economics, 36 (1994) 291-305.
E. G. Coffman, Jr., M. R. Garey and D. S. Johnson: Approximation algorithms for
bin packing: a survey. In D.S. Hochbaum (ed.): Approximation algorithms/or NP-hard
pro blerns (PWS Publishing Company, 1997), 46-93.
K. Daniels and V. J. Milenkovic: Column-based strip packing using ordered and compli-
ant containment. Proc. 1st A CM Workshop on Applied Computational Geometry, (1996)
33-38.
K. A. Dowsland, W. B. Dowsland and J. A. Bennell: Jostling for position: local im-
provement for irregular cutting patterns. Journal of the Operational Research Society,
49 (1998) 647-658.
M. R. Garey and D. S. Johnson: Computers and Intractability - A Guide to the Theory
of NP-Completeness. (W. H. Fkeeman and Company, New York, NY, 1979).
M. J . Haims: On the optimum two-dimensional allocation problem. Ph.D. Dissertation,
Department of Electrical Engineering, New York University, 1966.
V. J . Milenkovic: Rotational polygon containment and minimum enclosure. Proc. 14th
ACM Symposium on Computational Geometry, (1998) 1-8.

[lo] W. Qu and J. L. Sanders: A nesting algorithm for irregular parts and factors affecting
trim losses. International Journal of Production Research, 25 (3) (1987) 381-397.

(111 K. Ratanapan and C. H. Dagli: An object-based evolutionary algorithm: the nesting
solution. Proc. 1998 IEEE Conference on Evolutionary Computation, (1998) 581-586.

[12] P. Y. Wang: Two algorithms for constrained two-dimensional cutting stock problems.
Operations Research, 31 (3) (1983) 573-586.

[13] S. Yamauchi and K. Tezuka: Automatic nesting system by use of genetic algorithm.
Journal of the Society of Naval Architects of Japan, 178 (5-21) (1995) 707-712. (in
Japanese)

Hiroyuki Okano
IBM Research, Tokyo Research Laboratory
1623-14 Shimotsuruma, Yamato
Kanagawa-ken 242-8502, JAPAN
E-mail: okanohO j p . ibm . corn

