
REAL-TIME SYSTEMS: AN INTRODUCTION
AND THE STATE-OF-THE-ART

INTRODUCTION

Our goal in this article is togiveanoverview of the broad area
of real-time systems. This task daunting because real-time
systems are everywhere, and yet no generally accepted
definition differentiates real-time systems from non–real-
time systems. We will make an attempt at providing a
general overview of the differentclasses of real-time systems,
scheduling of tasks (or threads) in such systems, design tools
and environments for real-time systems, real-time operating
systems, and embedded systems. We will conclude our dis-
cussions with research challenges that still remain.

Definitions

Real-time systems cover a broad spectrum of automated
platforms in which the correctness of the system not only
requires functionally (or logical) correct operation but also
produces results within prespecified ‘‘real-time con-
straints.’’ By contrast, a non–real-time system is one for
which there is no deadline, even if fast response or high
performance is desired or even preferred. Real-time sys-
tems are usually ‘‘situated’’ in an environment and involve
in sensing apparatus to detect, control, and adapt to the
environmental conditions. Real-time systems can be net-
worked and distributed (e.g., sensor networks) or
embedded (e.g., automotive control systems, cell phones).

Hard versus Soft Real-Time Systems

Real-time systems are classified as hard or soft real-time
systems. Hard real-time systems have very strict time
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constraints, in which missing the specified deadline is
unacceptable. The system must be designed to guarantee
all time constraints. Every resource management system
such as the scheduler, input–output (I/O) manager, and
communications, must work in the correct order to meet the
specified time constraints.

Military applications and space missions are typical
instances of hard real-time systems. Some applications
with real-time requirements include telecom switching,
car navigation, the medical instruments with the critical
time constraints, rocket and satellite control, aircraft con-
trol and navigation, industrial automation and control, and
robotics.

Soft real-time systems also have time constraints; how-
ever, missing some deadline may not lead to catastrophic
failure of the system. Thus, soft real-time systems are
similar to hard real-time systems in their infrastructure
requirements, but it is not necessary that every time con-
straint be met. In other words, some time constraints are
not strict, but they are nonetheless important. A soft real-
time system is not equivalent to non-real-time system,
because the goal of the system is still to meet as many
deadlines as possible.

Some applications with soft real-time requirements
include web services such as real-time query, call admit-
tance in voice over internet protocol and cell phone, digital
TV transmissions, cable and digital TV set-top-boxes, video
conferencing, TV broadcasting, games, and gaming equip-
ment. Multimedia systems in general are examples of soft
real-time systems (e.g., dropping frames while displaying
video).

Even in some typical hard real-time applications, some
functions have soft real-time constraints. For instance, in
Apollo 11, the lunar module guidance computer could not
keep up with the data stream from the landing radar.
However, it was discovered that the missed deadlines
were nonfatal, and the scheduler automatically adjusted,
to meet soft real-time behavior for the landing tasks.

Periodic and Aperiodic Tasks

Real-time applications are also classified depending on the
tasks that comprise the application. In some systems, tasks
are executed repetitively within a specified period. A task ti

is characterized as (pi, ei), where pi its periodicity and ei is
its (worst-case) execution time. Monitoring patient’s vitals
is an example of such a system. Hard real-time systems are
usually designed using periodic tasks, and static schedul-
ing can be used for periodic tasks.

Aperiodic tasks are tasks that are executed on demand
(or with unknown period). A task is executed in response to
an event, and a task ti is characterized as (ai, ri, ei, di) where
ai its the arrival time. ri is the time when the task is ready
for execution, ei is its (worst-case) execution time, and di is
the deadline by which the task must complete. It should be
noted that the arrival time may not be specified in some
systems, and the ready time is defined by the arrival of an
event. Real-time systems that must react to external sti-
muli will consist of aperiodic tasks, which define the
response to the events. Systems that include aperiodic
tasks fall into the class of soft real-time applications,

because scheduling may not guarantee completion of tasks
within specified deadlines.

Real-time applications may also include sporadic tasks,
which are defined random arrival times. Sporadic task can
be characterized by (ai, ri, ei, di); similar to aperiodic tasks.

Embedded Real-Time Systems

Hard real-time systems typically interface with the physi-
cal hardware at a low level in an embedded system. The
embedded system is usually a special-purpose system
designed to perform a few or even only one dedicated
function usually with real-time computing constraints.
Antilock brakes on a car is a simple example of an embedded
real-time system in which the real-time constraint is the
short time in which the brakes must be released to prevent
the wheel from locking. Other examples include medical
systems such as heart pacemakers, industrial process con-
trollers, communication systems, aircraft control systems,
and weapon systems.

In general, embedded real-time systems are designed as
reactive systems: The system observes changes in the
environment, computes appropriate actions, and conveys
the actions to various components so that the system as a
whole operates correctly while the designated time con-
straint is met. For example, cruise-control systems in auto-
mobiles must continuously monitor and react to current
speed of the vehicle and adjust the engine’s acceleration or
deceleration appropriately within a prespecified time; long
delays will cause the system to fail in maintaining the
cruising speed. In addition to meeting correctness and
timing constraints, the embedded real-time systems
must also meet constraints imposed by the embedded nat-
ure of such systems. These constrain include (1):

1. Nonrecurring engineering costs: The one-time cost of
designing system must be as minimal as possible.

2. Unit Cost: The cost of each unit must be minimal.

3. Size: The physical dimension of the system is limited
by the environment in which it will be embedded.

4. Power: Because some embedded systems run on bat-
teries, various power management schemes must be
employed to minimize the power consumption.

5. Performance: If the system must meet real-time con-
straints, then performance is a critical metric.

Inmanycases,embedded real-time systemsuseapplication-
specific hardware [such as Digital Signal Processing (DSP)
processors and application specific integrated circuits
(ASIC)]. However, more recently, general-purpose proces-
sors along with reconfigurable fabrics [i.e., field program-
mable gate arrays (FPGAs)] are becoming commonly used
to designing real-time embedded systems. The reconfigur-
able fabric can be used to speed up common functionalities
without having to custom design circuits. The reconfigur-
ability allows flexibility to support multiple functionalities
and added features. Recent technological innovations have
led to very powerful general-purpose processors that can be
used to meet the performance requirements of modern
embedded real-time systems. Such systems also permit
for power saving options such as dynamic frequency
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and voltage control, shutting unused subsystems, and
reconfigurability of memory [particularly cache (2–5)]
subsystems.

Several design tools are currently available either to
customize the hardware and software subsystems or to use
general-purpose processors augmented with FPGA compo-
nents. The nonrecurring costs are higher with the first
option (ASIC); however, such systems can be designed to
meet stringent size, power, and performance requirements.
The latter option (FPGA) provides greater flexibility.

These tools, however, are designed for use by experts
with a clear understanding of both hardware and software.
Tools are needed that permit higher-level abstractions to
designers and that automatically optimize lower-level sys-
tems to meet the specified constraints.

Cyber-Physical Systems

Cyber-physical systems (6) are integrations of physical
processes with computation. Networks and embedded com-
puters monitor and control the physical processes using
feedback loops where computations affect physical pro-
cesses and vice versa. Applications include medical devices,
traffic controllers, advanced automotive systems, avionics,
critical infrastructure control (e.g., electric power, water
resources, and communication systems), defense systems,
and smart structures. Cyber-physical systems are concur-
rent by nature, because physical processes are intrinsically
concurrent, and their coupling with computing requires
concurrent composition of the computing processes with
the physical system.

SCHEDULING IN REAL-TIME SYSTEMS

Most real-time systems are designed as concurrent proces-
sing systems, rather than as monolithic control systems.
The concurrency allows for the system to react to events
more easily. The scheduling of concurrent activities (tasks
or threads) is critical to achieving real-time constraints.
Different scheduling approaches are available for different
types of real-time systems: hard versus soft real-time;
periodic, aperiodic or sporadic tasks. Most scheduling algo-
rithms aim to meet deadlines associated with tasks while
optimizing the use of resources.

Static versus Dynamic Priority Scheduling

Classic scheduling theory deals with static scheduling.
Static scheduling refers to the fact that the scheduling
algorithm has complete information regarding the task
set, which includes knowledge of deadlines, execution
times, precedence constraints, and release times.

In rate-monotonic (RM) scheduling, the shorter the
period of a task, the higher is its priority. In deadline-
monotonic (DM) scheduling, the shorter the relative dead-
line (i.e., the difference between the deadline and the
current time, also known as the laxity) of a task, the higher
is its priority. This approach investigates schedulability
tests for sets of periodic tasks whose deadlines are per-
mitted to be less than their period. Such a relaxation
enables sporadic tasks to be incorporated directly with

periodic tasks (7, 8). For arbitrary relative deadlines,
DM outperforms RM in terms of use.

Real-Time Algorithm Metrics

The most important metric of a real-time system is the
success ratio of system deadlines. The success ratio is
defined as the percentage of jobs completed before their
deadlines. However, other metrics, such as the minimized
total (or weighted sum) of the execution times of real-time
jobs, the minimized average response time, the minimized
maximum lateness or tardiness of real-time jobs, and the
minimized number of processors required for real-time
jobs, may be important for real-time systems, especially
for soft real-time systems.

In soft real-time systems, missing a few deadlines is not
critical; however, the overall performance and use of
resources are important. Using the aforementioned metrics
(in addition to success ratios) is often overlooked in many
real-time systems. Minimizing total or average execution
time has secondary importance in helping to minimize
resource requirements for a system. It should be noted
that minimizing execution time does not directly address
the fact that individual tasks have deadlines.

For instance, minimizing the maximum lateness metric
can be useful during the design process where resources
can be continually added until the maximum lateness � 0
(i.e., no deadline is missed) is met. However, generally,
the metric is not always useful because minimizing the
maximum lateness does not necessarily prevent tasks from
missing their deadlines.

In some applications, the ‘‘quality of service’’ (QoS) is
used as a metric in achieving specified requirements. QoS
requirements allow for trading off different performance
parameters. For example, in some applications, users may
be ‘‘charged’’ different rates depending on the level of the
service required. The objective in such systems is the
optimization of total revenues by allocating resources to
tasks of users who pay higher rates.

Another concept that often appears in the real-time
literature is the optimality of an algorithm. Scheduling
algorithm is optimal if no other scheduling algorithm can
find a better solution for the same scheduling problem.

Scheduling Algorithms

Real-time systems are also distinguished based on their
implementation: In preemptive systems, tasks may be
preempted by higher priority tasks, whereas nonpreemp-
tive systems do not permit preemption. It is easier to design
preemptive scheduling algorithms for real-time systems.
However, nonpreemptive scheduling is more efficient, par-
ticularly for soft real-time applications and applications
designed for multithreaded systems, than the preemptive
approach caused by the reduced overhead needed for
switching among tasks or threads (9,10).

In many practical real-time scheduling scenarios such as
I/O scheduling, the properties of device hardware and soft-
ware make preemption either impossible or prohibitively
expensive. Nonpreemptive schedulingalgorithms are easier
to implement than preemptive algorithms, and they can
exhibit dramatically lower overhead at run time. The
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overhead of preemptive algorithms is more difficult to char-
acterize and predict than that of nonpreemptive algorithms.
Nonpreemptive scheduling on a uniprocessor naturally
guarantees exclusive access to shared resources and data,
which eliminates both the need for synchronization and its
associated overhead. The problem of scheduling all tasks
without preemption forms the theoretical basis for more
general tasking models that include sharing of resources.

Scheduling decisions can be clock driven or priority
driven. In the first case, scheduling decisions are made
at specific time instants, and these instants are chosen a
priori. Hard real-time systems use this approach. In a
priority-driven (or event-driven), approach scheduling
decisions are made when tasks complete or resources
become available (which permits other tasks to acquire
the resources and start execution).

Earliest Deadline First (EDF) Scheduling. The EDF algo-
rithm is the most widely used scheduling algorithm for real-
time systems on uniprocessors and multiprocessors (11,12).
Recall that real-time applications can be characterized as
hard real-time or soft real-time systems. Hard real-time
applications require that all time constraints be met,
whereas soft real-time systems permit some tolerance in
meeting time constraints.

For a set of preemptive tasks (be periodic, aperiodic, or
sporadic), EDF will find a schedule if a schedule is possible
(13). The application of EDF for nonpreemptive tasks is not
as widely studied. EDF is optimal for sporadic nonpreemp-
tive tasks, but EDF may not find an optimal schedule for
periodic and aperiodic nonpreemptive tasks.

EDF scheduling is one of the first dynamic priority-
driven scheduling algorithms proposed. As the name
implies, tasks are selected for execution in the order of
their deadlines. It provides the basis for many real-time
algorithms. EDF suffers significantly when the system is
overloaded. Compared with static priority-driven schedul-
ing such as RM with approximate 69% use, EDF can
approach 100% use for periodic jobs.

It should be noted that dynamic scheduling does not
mean online scheduling. An online-scheduling algorithm
has only complete knowledge of the currently active set of
tasks, and no knowledge of any new arriving tasks. Like-
wise, offline scheduling is not the same as static scheduling.
Offline includes preanalysis of scheduling regardless of
whether the runtime algorithm is static or dynamic.
Usually, offline scheduling has higher performance than
online scheduling but may lead to poorer use of resources.

First Come First Served (FCFS) Scheduling. FCFS schedul-
ing uses a simple ‘‘first in, first out’’ (FIFO) queue. It is
simple to implement, but it has several deficiencies. Its
average wait time is typically long relative to EDF. It is a
nonpreemptive scheduling technique, and it is subject to
the negative effect in I/O-bound applications. In such cases,
large amounts of idle times can occur as the I/O-bound
processes sit idle waiting for the Central Processing Unit
(CPU)-bound process to complete.

Round Robin (RR) Scheduling. RR scheduling is similar to
FCFS scheduling with added preemptive capability. As the

name suggests, on each time quantum a new process
receives access to the system resources. This way, each
process gets a share of the system resources without having
to wait for all processes ahead of it to run to completion. The
average wait time is typically long relative to EDF, and its
performance is proportional to the size of the time quan-
tum. RR scheduling is the degenerative case of priority
scheduling when all priorities are equal.

Shortest Job First (SJF) Scheduling. SJF scheduling is
probably optimal but requires clairvoyance, profiling, or
expected execution time to implement fully. SJF can be
implemented either preemptively or nonpreemptively. SJF
has low average waiting time. In fact, SJF is optimal with
respect to average waiting time.

Although FIFO/FCFS, RR, and SJF are very basic real-
time scheduling schemes, they are widely implemented in
real-time systems.

Group-EDF (gEDF) Scheduling. gEDF is a variation of
EDF that can improve the success ratio (that is, the number
of tasks that have been successfully scheduled to meet their
deadlines), particularly in overloaded conditions. gEDF can
also decrease the average response time for tasks. In gEDF,
tasks with ‘‘similar’’ deadlines are grouped together (i.e.,
deadlines that are very close to one another), and the SJF
algorithm is used for scheduling tasks within a group. It
should be noted that this approach is different from adaptive
schemes that switch between different scheduling strate-
gies based on system load; gEDF is used in overloaded as
well as underloaded conditions. The computational com-
plexity of gEDF is approximately the same as that of EDF.

gEDF is particularly useful for soft real-time systems as
well as applications known as ‘‘anytime algorithms’’ and
‘‘approximate algorithms,’’ in which applications generate
more accurate results or rewards with increased execution
times (14,15). Examples of such applications include search
algorithms, neural-net based learning in artificial intelli-
gence, fast fourier transform, and block-recursive filters
used for audio and image processing.

Table 1 shows the taxonomy of real-time scheduling in
real time systems.

Table 1. The Taxonomy of Real-Time Scheduling in Real-
Time Systems

Nonpreemptive
Dynamic

Preemptive
Soft

Nonpreemptive
Static

Preemptive

Nonpreemptive
Dynamic

Preemptive
Hard

Nonpreemptive
Static

Preemptive
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DESIGN AND ANALYSIS TOOLS AND ENVIRONMENTS

Real-time systems interact with real-world entities, and
the interactions can be very complex. The system must
respond to real-world events within a specified time.
Because many real-time systems are embedded, the
designers must deal with both hardware and software
subsystems. When multiple processors are involved, it is
also necessary to decide on the interconnections among the
processors and the speed of communication among the
processing nodes. Communication and task scheduling is
often performed by the operating system (OS) running on
the processing nodes. Thus, it is necessary to understand
the OS overheads while estimating execution times and
message communication delays.

Real-timedesigntoolsshouldpermittherepresentationof
concurrency, communication, synchronization, and timing
constraints. Additionally, the tools should facilitate analysis
of the temporal characteristics for feasibility, predictability,
and correctness. A typical design workflow of real-time sys-
temisshowninFig.1 takenfromRefs.16and17.Theshaded
boxes represent activities providing feedback that deter-
mines the feasibility of the design.

Since Unified Modeling Language (UML) (18) has
received widespread acceptance among software
designers, several UML based design methodologies for
real-time systems are becoming available. Several real-
time design patterns are available, which can aid in the
real-time software design. Examples of patterns include
communication patterns, resource management patterns,

patterns for hierarchical state machines, hardware inter-
face patterns, and architectural patterns.

In this section, we will discuss the Harmony design
process (19). The process starts with a system functional
analysis with use-case models. The Harmony process
permits incremental development of the use case model.
System architectural design is the next step in the Har-
mony process. In this step, the overall system architec-
ture is defined, which includes functional blocks along
with their connections and interfaces. It should be noted
that system blocks include both hardware and software
components, and it is necessary to model them for ana-
lysis so that the system can be verified. Harmony permits
incremental modeling and analysis as well as formal
specifications and analysis using state machines. Follow-
ing the model-based analysis, Harmony allows the devel-
opment of a design for the system. This phase allows
optimization of the system for implementation. The opti-
mization at architectural level considers subsystems,
concurrency, distribution of tasks, deployment, and
QoS (safety, reliability, and possibly security). The
mechanistic design phase of Harmony is concerned
with the optimization of collaborations. Finally, the
detailed design phase elaborates the implementation
of the objects and classes, which include data structures
and algorithms. The last two steps of the Harmony
process involve the actual implementation (code genera-
tion) and testing.

Harmony allows for a systematic approach to the design
of software for real-time systems. It should be remembered,
however, that real-time systems include not only software
but also hardware and mechanical systems. The timing
analysis for tasks must take into account for OS overheads,
unless the system is small and OS services are included in
the design. Most CPUs used in embedded systems are
becoming complex, and modeling execution times on
such systems is very difficult, particularly in the presence
of components that exhibit nondeterministic behaviors
(e.g., Cache memories).

Because real-time systems include multiple tasks or
threads, testing such systems is difficult as the interactions
among the threads may not be reproducible. Improper use
of synchronization (such as mutual exclusion) can either
lead to performance bottlenecks or race conditions. Addi-
tional capabilities are needed with Harmony to aid the
design of complex real-time systems fully.

Predictability and Schedulability Analysis

Schedulability analysis is used to verify whether every task
inthereal-timesystemcanmeetitsdeadlinewhenscheduled
on the deployed system. The precise (and predictable) execu-
tiontimeanalysesareneededforhardreal-timesystems.RM
(20,21) and DM (22,23) are fixed-priority scheduling algo-
rithms, which are widely used for hard real-time systems.
These algorithms require exact or worst-case execution
times of individual tasks. The execution times can be esti-
mated from actual execution of the task or the analysisof the
code.Severalmethodsareavailable forestimatingexecution
time of tasks and designing languages that permit predict-
able execution times for tasks. For example, task execution
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times can be estimated from instruction counts and max-
imum number of loop iterations. To obtain worst-case execu-
tion estimates, the task is analyzed for longest control paths
and without cache memories.

Petri nets have been used to model and analyze real-
time systems. A Petri net is a bipartite graph with two
types of nodes called Places and Transitions, which repre-
sent events and activities. The occurrence of an event is
represented by the presence of a token in the correspond-
ing place. An activity (transition) is enabled with all input
places that contain tokens (representing the occurrence of
input events), and when the transaction completes execu-
tion, it stores tokens in all its output places. Time can be
associated either with a transition (Timed Transition
Petri nets) or with places (Timed Place Petri Nets). Execu-
tion times may also be represented as probability distri-
butions that lead to stochastic Petri nets. Resources can be
modeled as places.

For soft real-time systems, exact execution times are not
required. Execution times can be modeled as probability
distributions. Schedulability analysis then will provide a
probabilistic estimate of meeting the time specifications.

Performability and Stochastic Assurance

The term ‘‘performability’’ was first introduced by Meyer
et al. (24) to combine performance and reliability analyses
in fault-tolerance systems. Informally, performability can
be defined as the probability that a system performs
at different levels of ‘‘accomplishment.’’ We can extend
the definition of performability to real-time systems and
define the term as the probability that the set of tasks that
comprise the real-time system complete their execution
successfully by the deadline defined with the system. The
failure of a task to complete successfully within the specified
deadline is included in the computation of performability. A
failure to meet deadlines may be because of the following
reasons.

1. For a particular instance, the input data required
longer execution time, which is particularly true with
systems that include cache memories, branch predic-
tion and other techniques that are not easy to include
in task execution time estimations. This is also the
case when a choice between migrating the task or
data versus executing the task at the site where it is
initiated lead to different execution times for the task.

2. Because of failures, the task has to be re-executed,
migrated, and restarted.

3. The task is delayed (hence missed the deadline)
because the failure of a preceding task to complete
successfully.

If PDi
is the probability that task Ji will complete success-

fully during its deadline Di, then it is possible to obtain the
probability of the system (i.e., performability) comprising
several tasks in meeting system deadlines. This probability
can be improved by providing the system with some ‘‘slack’’
time so that tasks failing to meet deadlines are provided
with additional time to complete, and yet meet the overall
deadline.

REAL-TIME OPERATING SYSTEMS (RTOS)

Relatively very few and simple real-time systems can be
developed effectively as a single control program. Most
real-time systems use a RTOS or a kernel to support at a
minimum creation and management of tasks (and threads)
and scheduling of the task on available processing
resources. A real-time kernel is memory resident part of
an operating system that provides the necessary services to
real-time applications. Many RTOS and kernels are avail-
able, which include ThreadX from Xpresslogic, VxWorks by
Wind River, QNX Neutrino by QNX Software Systems,
Real-time Linux (by several vendors). A key characteristic
of a RTOS is that all services (or system calls) must have
deterministic behavior. In addition, the response time to
interrupts must have a guaranteed worst-case latency, and
context switching times must be very short.

RTOS (25) is not simply a real-time system. It is the core
part of any real-time system. A real-time system includes
all the system elements such as hardware, middleware,
applications, communications, and I/O devices. All the
elements are needed to meet the system requirements.
However, RTOS provides sufficient functionality to enable
a real-time application to meet its requirements. It is also
important to distinguish between a fast operating system
and a RTOS. Speed, although useful for meeting the overall
requirements, by itself is not sufficient to determine
whether a system meets the requirements for an RTOS.

Real-time OS kernels are either designed as monolithic
kernels or micro-kernels. In the first case, the OS kernel
provides all required services (including I/O, scheduling,
memory management). Applications make calls to these
services. Such designs are easy to design and implement,
but they are generally not suitable for larger systems. In
the case of a micro-kernel, the system includes very basic
services. Other system services run as separate user pro-
cesses. Applications invoke these services (via message
passing) and the microkernel arbitrates the request for
the services. Microkernels are easier to maintain in large
system and incur overheads because of message passing
and switching between applications and system services.

Real-time OS systems often support very limited virtual
memory functionality. For example, RT-Linux keeps all real-
timeapplications in adedicated address space; this memory is
never paged out of main memory. RTOS normally support
several scheduling methods and applications have the flex-
ibility of specifying which scheduling to use. Most RTOS
systemssupportPOSIX-definedcommunicationandsynchro-
nization mechanisms (e.g., semaphores, mutexes, condition
variables, spin locks, signals, pipes, and message queues).

Table 2 compares some commonly available RTOSs.

POSIX 1003.1 for RTOS

The IEEE Computer Society’s Portable Application Stan-
dards Committee defined a standard for Portable Operat-
ing System Interface (POSIX) (26,27). This IEEE Standard
1003.1 includes IEEE Standard 1003.1a, IEEE Standard
1003.1b, and 1003.1c; IEEE Standard 1003.1d/j/q; and
IEEE Standard 1003.13. IEEE Standard 1003.1a is the
base for all the POSIX standards. IEEE Standard
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1003.1b (formerly POSIX 1003.4) defines the needed real-
time extensions. IEEE Standard 1003.1c defines the func-
tionality of threads. These various standards have been
combined by the Austin Group in producing IEEE standard
1003.1-2001. The latest version is now known as the IEEE
1003.1 2004 Edition.

POSIX 1003.1b provides the standard criteria for RTOS
services and is designed to allow programmers to write
applications that can easily be ported to any OS that is
POSIX compliant. The basic RTOS services covered by
POSIX 1003.1b include asynchronous I/O, synchronous
I/O, memory locking, semaphores, shared memory, timers,
inter-process communication, real-time files, real-time
threads, and scheduling.

Real-time scheduling is the most important feature of a
RTOS. POSIX 1003.1b specifies the following scheduling
policies.

SCHED FIFO - Priority based preemptive scheduling,
FIFO is used among tasks with the same priority.

SCHED RR - Processes with same priority use Round
Robin policy. A process executes for a quantum of time; and
then it is moved to the end of the queue corresponding to its
priority level. Higher priority tasks can preempt tasks. The
size of the quantum can be fixed, configurable, or specific for
each priority level.

SCHED OTHER - Availability required but not defined
by the standard. Usually SCHED OTHER is implemented
as a classic time-sharing policy.

RTOS Examples

Microsoft Windows CE—Non-Linux Based Commercial
RTOS. Microsoft Windows CE is designed as a general-
purpose and portable real-time operating system for small
memory, 32-bit mobile devices. Windows CE slices CPU time
among threads and provides 256 priority levels. To optimize
performance, all threads are enabled to run in kernel mode.
All nonpreemptive portions of the kernel are broken into
small sections, which reduces the duration of non-preemp-
tive code. Windows CE incurs long latencies for tasks.

VxWorks—Commercial RTOS. VxWorks, by Wind River
Systems (Almeda, CA), is a real-time operating system. It
runs currently on its own kernel. However, its develop-
ment is done on a host machine such as Linux or Windows.
Its cross-compiled target software can be run on various
target CPU architectures. VxWorks runs in supervisor
mode, and it does not use traps for system calls. VxWorks
supports priority interrupt-driven preemption and
optional round-robin time slicing. The micro kernel sup-
ports 256 priority levels. VxWorks supports some IEEE
POSIX 1003.1 functions.

LynxOS—POSIX Compatible Commercial RTOS. LynxOS
is a POSIX compatible, multithreaded OS designed for
complex real-time applications that require fast, determi-
nistic response. It is scalable from small, embedded pro-
ducts to large switching systems. The microkernel can
schedule, dispatch interrupts, and synchronize tasks. It
uses scheduling policies such as prioritized FIFO, Dynamic
Deadline Monotonic (DDM, the shorter the dynamic dead-
line, the higher is its priority) scheduling, time-slicing, and
so on. It has 512 priority levels and supports remote console
and remote monitoring. For instance, LynxOS can be used
as a hard real-time system for controlling gas levels in
chemical plants remotely.

RTLinux—Open Source Linux-Based RTOS. RTLinux is a
hard real-time operating system that runs Linux as its
lowest priority thread. The Linux thread is completely
preemptible so that real-time threads and interrupt hand-
lers are never delayed by non-real-time operations. Real-
time applications can make use of all the powerful, non-
real-time services of Linux. RTLinux scheduling policies
supports EDF. RTLinux, which was originally developed
at the New Mexico Institute of Technology, is an open-
source product. RTLinux-specific components are
released under the GNU General Public License (GPL),
and Linux components are released under the standard
Linux license. The source code is freely distributed. Non-
GPL versions of the RTLinux components are available
from FSMLabs (28).

RED-Linux—Open Source Linux-Based RTOS. RED-Linux
(29) is an open-source real-time and embedded version of
Linux version 2.2.14. In addition to the original Linux cap-
ability, it improves the real-time behaviors of the Linux
kernel in many ways. RED-Linux supports a short kernel
blocking time, a quick task response time, and modularized
runtime General Scheduler Interface so that different sche-
dulingmethodscanbeselecteddependingontheapplication.

Kurt-Linux—Open Source Linux-Based RTOS. KU Real-
Time Linux (KURT) (30) is a Linux system with real-time
modifications that allow scheduling of real-time events at
tens of microseconds resolution. Rather than relying on
priority-based scheduling or strictly periodic schedules,
KURT relies on application-specified schedules. KURT
can function in two modes: focused mode, in which only
real-time processes are allowed to run; and mixed mode, in
which the execution of real-time processes still takes pre-
cedence, but non-real-time processes are allowed to run
when real-time tasks are not running. KURT was developed
by the Information and Telecommunication Technology

Table 2. Comparison of Real-Time Operating Systems

Kernel architecture IPC Memory management File systems Development environment
RTLinux Monolithic POSIX No virtual memory Ext3 No tool chain
VxWorks Microkernel POSIX Virtual memory DOS, NTFS, RT11 Tornado tool chain
QNX Microkernel POSIX Virtual memory DOS Eclipse tools
WinCE Monolithic Non-POSIX Restricted virtual memory support FAT, RAMFS Embedded Visual C++ tools
LynxOS Microkernel POSIX Virtual memory Flash, RAMFS Visual Lynx
TinyOS Monolithic Non POSIX No virtual memory Flash NesC
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Center at the University of Kansas. KURT may be used and
distributed according to the terms of the GNU Public
License.

QNX—Commercial POSIX-compliant Unix-like RTOS.
QNX is a commercial POSIX-compliant Unix-like real-time
operating system, which is aimed primarily at embedded
systems. The QNX kernel contains only interprocess com-
munication, CPU scheduling, interrupt redirection, and
timers. Memory management by operating in conjunction
with the microkernel runs as user process. Because of the
microkernel architecture, QNX is also a distributed OS
known also as transparent distributed processing. All I/O
operations, network operations, and file system operations
work through message passing, which includes data trans-
fer. The source for QNX kernel has been released for non-
commercial use.

CONCLUSIONS

In this article, we attempted to provide a broad overview of
real-time systems. It is hoped that the reader gains a general
appreciation of the range of applications, different types of
requirements that real-time systems must meet, and the
software and hardware design tools that are available. How-
ever, many challenges still remain before real-time systems
can be implemented without very specialized expertise or
hand coding of applications to meet timing constraints.

Our society is becoming more automated, and we are
discovering that many real-world systems have real-time
constraints. These constraints include transportation sys-
tems, financial systems, medical and healthcare systems,
intelligent residential and commercial workplaces, and ser-
vices provided by public and private organizations. Many of
these systems will be interconnected, which complicates the
design and implementation of such systems. It will become
necessary to include dynamic adaptability so that systems
can adapt to unexpected events. Dynamic adaptation
implies continuous monitoring to detect for unexpected
situations and to provide proper response from the system
(either automatically or with the aid of a human).

Lee (6) advocates a top-to-bottom rethinking of real-time
and cyber physical systems. However, this method may be
incompatible with legacy systems that may have to be
integrated with newer environments.

Simulation languages such as Simulink (31) have per-
mitted the specification of time. Newer programming lan-
guages [e.g. Giotto (32)] permit the specification of timing
semantics and reasoning about real-time systems. Such
time specifications should be integral to any programming
language.

Another recommendation of Lee (6) is that the tradi-
tional boundary between operating systems and program-
ming languages should be eliminated. Applications should
specify the needed services, and the system should be
assembled with only the required services.

Design environments should permit the adaptation of
applications to different hardware and software platforms,
which will require the estimation of execution times (and
other parameters as energy consumption, reliability, com-

munication delays) for each environment. Hardware/
software codesign environments must be enhanced with
such capabilities. The tools must also be easy to use.
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