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Abstract. Entailment is an important problem in computational logic
particularly relevant to the Inductive Logic Programming (ILP) commu-
nity as it is at the core of the hypothesis coverage test which is often
the bottleneck of an ILP system. Despite developments in resolution
heuristics and, more recently, in subsumption engines, most ILP systems
simply use Prolog’s left-to-right, depth-first search selection function for
SLD-resolution to perform the hypothesis coverage test.
We implemented two alternative selection functions for SLD-resolution:
smallest predicate domain (SPD) and smallest variable domain (SVD);
and developed a subsumption engine, Subsumer. These entailment en-
gines were fully integrated into the ILP system ProGolem.
The performance of these four entailment engines is compared on a rep-
resentative set of ILP datasets. As expected, on determinate datasets
Prolog’s built-in resolution, is unrivalled. However, in the presence of
even little non-determinism, its performance quickly degrades and a so-
phisticated entailment engine is required.
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1 Introduction and motivation

Inductive Logic Programming (ILP) systems construct hypotheses from a rich
hypothesis language and thus have to traverse a large hypothesis search space.
This search requires having to test some metric of the candidate hypothesis on
the provided examples. A metric typically used is coverage: positive examples
covered minus negative examples covered. Evaluating coverage of a single candi-
date hypothesis requires thus, potentially, testing the coverage of the candidate
clause on all training examples. Moreover, each one of these coverage tests can
be very expensive to compute as it is a query in first-order logic.

This problem is well known to ILP researchers and several techniques have
been proposed to alleviate it. Just to name a few, these techniques range from
combining queries in query packs [1] to take advantage of the similar structure
of the candidate clauses, transforming the clause before execution [4] so that the
transformed clause is more efficient to evaluate, improving the indexing mech-
anism [3] of the Prolog engine, to stochastic estimation of the clause coverage
[14], [7].
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Another approach to improve the coverage test efficiency is to use a custom
resolution engine instead of Prolog’s left-to-right, depth-first search implemen-
tation of SLD-resolution. In the 1980’s there was extensive research on this sub-
ject. In [15] it is noted that Prolog’s default evaluation order of goals in a clause
can lead to intolerable inefficiencies. The authors, motivated by a AI planning
application, propose a “cheapest-first” heuristic that is akin to ours smallest
predicate domain, letting the resolution engine choose, during evaluation, the
predicate that has fewer solutions. They also recognize the potential overhead of
this re-ordering procedure Later, [10] even proposes a machine learning approach
to automatically decide the goal order in a query.

In some scenarios a full resolution engine is not needed (see section 2.1 for
a discussion) and one can do the coverage test with a θ-subsumption engines.
Subsumption engines optimized to perform subsumption efficiently on complex
non-determinate clauses, have been developed recently, e.g. Django [9], Resumer2
[8] and Subsumer [13].

In section 2.2 we present two alternative heuristics for SLD-resolution. These
heuristics, together with the subsumption engine Subsumer and Prolog’s built-in
SLD-resolution were integrated in the ILP system ProGolem [11]. By empirically
evaluating the performance of these entailment engines on a representative set of
ILP problems, we try to characterize the properties an ILP problem must have
for it to payoff to use sophisticated entailment engines.

This characterization has immediate applicability to ProGolem as it already
implements these four entailment engines and could choose dynamically the most
suitable algorithm for each pair 〈hypothesis, example〉.

2 The θ-subsumption problem

θ-subsumption is an incomplete approximation to logical implication [12]. While
implication is undecidable in general, θ-subsumption is a NP-complete problem
[5]. A clause C θ-subsumes a clause D (C ⊢θ D) if and only if there exists a
substitution θ such that Cθ ⊆ D.

Example 1. C : h(X0)← l1(X0, X1), l1(X0, X2), l1(X0, X3), l2(X1, X2), l2(X1, X3)
D : h(c0)← l1(c0, c1), l1(c0, c2), l2(c1, c2)
Cθ subsumes D with θ = {X0/c0, X1/c1, X2/c2, X3/c2}.

The θ-subsumption problem is thus, given two clauses, C and D, find a
substitution θ such that all literals of C can be mapped into a subset of the
literals of D.

Prolog performs entailment using SLD-resolution [6] which is, in general,
stronger than pure subsumption (see 2.1). Within SLD-resolution all mappings
from the literals in C onto the literals in D (for the same predicate symbol) are
constructed left-to-right in a depth-first search manner.

As all Prolog programmers know, the order of the literals in C has a signifi-
cant impact on the (in)efficiency of the query evaluation.



2.1 Subsumption versus resolution

Selective Linear Definite clause resolution (SLD-resolution) is the inference rule
in logic programming. It allows the Prolog interpreter to derive all logical con-
sequences of a query. In order to use subsumption to decide if an example e is
covered by a clause C, one needs to encode all literals related to that example
in a single saturated clause Se (see below). When used to implement ILP’s cov-
erage test, θ-subsumption generates the same solutions as SLD-resolution when
the underlying prolog program (i.e. background knowledge in the ILP setting)
is pure Prolog.

If the background knowledge contains non-pure Prolog constructs (e.g. non-
constructive arithmetic operators, cuts, ...) subsumption will only find a subset,
usually empty, of the solutions that SLD-resolution finds.

Unfortunately many real-world ILP datasets express their background knowl-
edge in non-pure Prolog. Often the problem lies with real number arithmetic.
For instance, consider the program in Figure 1.

:- modeh(1, active(+molecule)). active(mol1). logp(mol1, 3.14).

:- modeb(1, logp(+molecule,-real)). gteq(X, X):- !.

:- modeb(1, gteq(+real,#real)). gteq(X, Y):- X>=Y.

Fig. 1. Simple ILP program with non-pure background knowledge

The saturated clause for active(mol1) is active(mol1) ← logp(mol1, 3.14),
gteq(3.14, 3.14). Suppose now we have an hypothesis active(X) ← logp(X, Y ),
gteq(Y, 3.05). This hypothesis does not subsume the ground bottom clause as
there is no literal gteq(3.14, 3.05) in it. However, were we to use SLD-resolution
we would be able to prove the hypothesis with the binding X = mol1, Y = 3.14.

The culprit of the problem is that the ground bottom clause did not capture
the full information available in the gteq/2 clause. There are two problems, the
cut in the first gteq/2 clause prevents retrieving more solutions, to the ground
bottom clause of mol1, when the second argument is unbound or equal to the
first argument. The most serious problem is that the >= comparison operator
is not constructive. That is, >= /2 requires both arguments to be instantiated,
not returning in backtracking numbers that verify the condition when one or
both of the arguments are unbound.

In situations like these one cannot use a θ-subsumption engine but need
instead a resolution engine.

Throughout this paper we sometimes use the terms entailment, subsump-
tion and resolution almost interchangeably although they are not equivalent.
This abuse of terminology is justified because, for the purpose of our experi-
ments, those expressions are equivalent. From the perspective of an ILP system,
what matters is whether a clause covers (i.e. entails) an example or not. Both
subsumption and resolution engines perform this entailment test with the same
result as long as the background knowledge is pure Prolog.



2.2 Entailment algorithms in ProGolem

ProGolem implements four entailment engines. Three are variants of SLD-resolution
and one is the subsumption engine Subsumer described in [13]. The three variants
of SLD-resolution are Prolog’s built-in left-to-right depth-first search heuristic for
SLD-resolution (hereafter Left-to-right) and two alternative selection functions
for SLD-resolution. Smallest Predicate Domain (SPD-resolution for simplicity)
and Smallest Variable Domain (SVD-resolution).

In SPD-resolution the literal with fewest number of solutions at each mo-
ment is picked. Note that in Prolog the literals are always picked left-to-right in
the order given in the clause. This is the same as the “cheapest-first” heuristic
described in [15].

SVD-resolution is more sophisticated, it computes the consistent domains of
each variable and at each moment binds the variable with smallest domain with
one of its possible values.

Subsumer improves upon SVD-resolution by decomposing a clause dynam-
ically in independent components but is no longer a resolution engine. It is a
θ-subsumption engine requiring the subsumee clause (the example) to be given
as a ground bottom clause. Note that in this case the background knowledge is
only used once to create the ground bottom clauses and is never called during a
subsumption test (see Section 2.1).

2.3 Time complexity

Let N be the length of an hypothesis H and M be the length of an example
E. The worst case complexity of SLD/SPD-resolution is O(MN ) as we need to
map each literal of H (ranging from 1..N) to a literal in E (ranging from 1..M).

In practice, since the SLD/SPD-resolution tests the consistency of the match-
ing while constructing the substitution (thus bounding other variables) and not
just at the end, for clauses C with too many literals (i.e. M ≈ N) the subsump-
tion problem may become overconstrained and thus be easier than when M is a
fraction of N .

An alternative way, employed by SVD-resolution and Subsumer, to tackle the
subsumption problem is to map variables of H to terms in E rather than literals
to literals. Let V be the set of distinct variables in H and T the set of distinct
terms in E. We can map the θ-subsumption problem to the problem of finding

a mapping from V to T . This approach has worst case complexity O(|T |
|V |

).
However, it is not easy in practice to antecipate whether the literal or variable

mapping works better as the average case complexity depends essentially on how
constrained the search gets when a literal or a variable is bound. Note that when
we map a literal all its variables get bound at the same time.

3 Empirical evaluation

In this section we extensively compare the four entailment engines described in
Section 2.2. We have not used Django or Resumer2 as it would not be practi-



cal and, as shown in [13], Subsumer is a good representative of sophisticated
subsumption engines. It outperforms Django and is competitive with Resumer2.
ProGolem with all the datasets and scripts to replicate these experiments can
be found at: http://www.doc.ic.ac.uk/∼jcs06/papers/ilp10.

3.1 Materials and Methods

The ProGolem ILP system [11] was used with a representative set of well-known
ILP datasets to generate hypotheses. Datasets PT.02, PT.15 and PT.31 are
less known. These are problems 02, 15 and 31 of the Phase Transition (PT)
framework [2], representing instances from the Yes, No and PT regions.

ProGolem is a bottom-up ILP engine that, among many other settings, al-
lows the user to choose which entailment engine to use. Since we wanted to use
a θ-subsumption engine, only pure Prolog was allowed in the background knowl-
edge. That meant removing or disabling cuts and non-constructive arithmetic
operators in some of datasets’ (e.g. mutagenesis) background knowledge.

For the resolution algorithms the examples are provided in the background
knowledge as usual in ILP. For the subsumption engine each example is a single
(saturated) clause with all facts known to be true about it. Below is a small
excerpt of a ground bottom clause for the mutagenesis dataset. The full clause
has 77 literals.

active(d112)← atm(d112, d112 9, h, 3, 0.136), atm(d112, d112 8, h, 3, 0.136), . . . ,
atm(d112, d112 1, c, 22,−0.125), bond(d112, d112 6, d112 9, 1), . . . ,
bond(d112, d112 1, d112 7, 1), bond(d112, d112 1, d112 2, 7).

Table 1 summarizes important statistics on the datasets used. The columns
are: number of examples, average example length, average number of distinct
predicate symbols per example, average number of solutions per predicate sym-
bol (assuming its input variables are bound) and average number of distinct
terms per example. The latter four columns have the respective standard error
associated. The figures in Table 1 were generated by computing the full ground
clauses for each example in each dataset.Recall is the maximum number of al-
ternative solutions a predicate may return.

As can be seen from Table 1, from the eight datasets selected, three are highly
non-determinate (PT.XX) with exactly 100 solutions per distinct predicate sym-
bol. Datasets Alzheimers-amine, Proteins and Pyrimidines are non-determinate
with each predicate symbol having at most one solution. Carcinogenesis and
Mutagenesis have a medium degree of non-determinism.

ProGolem was also used to induce theories for these datasets with all the
intermediate hypotheses being collected to be later evaluated by the different
entailment engines. When inducing theories, ProGolem’s recall was set to 20.
This is to limit the complexity of the hypotheses generated.

Since ProGolem is a bottom-up ILP system it is biased towards generating
longer clauses. However, because some of these datasets are rather simple and all
hypotheses were collected (including ones after negative reduction), many short



Dataset |Ex| Examples Len. Pred. Symb. Sols per P. S. Terms per Ex.

Alz-amine 686 31±0 20±0 1±0 23±0
Carcinogenesis 298 115±4 11±0 5±1 54±1
Mutagenesis 188 83±2 2±0 41±2 48±1
Proteins 2028 287±1 42±0 1±0 36±0
Pyrimidines 2788 50±0 10±0 1±0 22±0
PT.02 400 701±0 7±0 100±0 20±0
PT.15 400 1503±1 15±0 100±0 39±0
PT.31 400 804±0 8±0 100±0 28±0

Table 1. Relevant statistics for the examples used per dataset

hypotheses were generated as well. Many of those could have been generated
by a classical top-down ILP system like Aleph or Progol. For instance, one of
the simpler hypothesis generated for the mutagenesis dataset was active(A) ←
bond(A, B, C, 1), bond(A, C, D, 2).

Table 2 summarizes the information on the hypotheses collected. The columns
have an identical meaning to Table 1 except that column “Literals per Predicate
Symbol” is the average number of times a given (distinct) predicate symbol ap-
pears on the hypothesis. Note that in a hypothesis the terms are usually variables
and not just constants or function symbols.

Dataset |Hyps| Hypotheses Len. Pred. Symb. Lits per P. S. Terms per Hyp.

Alz-amine 328 28±1 18±0 1±0 21±0
Carcinogenesis 161 43±3 6±0 4±0 29±2
Mutagenesis 382 43±1 2±0 21±1 33±0
Proteins 464 75±3 19±0 3±0 21±0
Pyrimidines 1730 42±0 10±0 4±0 32±0
PT.02 444 131±8 5±0 24±0 20±0
PT.15 68 163±32 7±1 25±1 36±1
PT.31 156 119±13 5±0 23±0 27±0

Table 2. Relevant statistics for the hypothesis used per dataset

3.2 Results and discussion

Each entailment engine was used to test the Boolean coverage of a random sam-
ple of 20.000 pairs 〈hypothesis, example〉 from each dataset. Table 3 presents
the average times, with respective standard errors, in milliseconds, per subsump-
tion test. Whenever the subsumption test required more than 5 seconds it was
aborted. The “Timeout” column has the percentage of subsumption tests in
these circumnstances. To compute the average time all the timed out tests were
ignored.



Dataset Entailment engines
Left-to-right SPD-resolution SVD-resolution Subsumer

Avg time Timeout Avg time Timeout Avg time Timeout Avg time Timeout

Alz-amine 0.0±0.0 0.00% 0.1±0.0 0.00% 0.3±0.0 0.00% 0.9±0.0 0.00%
Carcinogenesis 3.2±0.5 0.45% 0.5±0.1 0.01% 0.8±0.1 0.00% 1.8±0.3 0.01%
Mutagenesis 224±5.0 36.9% 19±1.4 0.27% 35±1.8 0.74% 9.9±0.8 0.03%
Proteins 0.1±0.0 0.00% 0.4±0.0 0.00% 21±0.1 0.00% 8.8±0.0 0.00%
Pyrimidines 0.1±0.0 0.00% 0.2±0.0 0.00% 0.3±0.0 0.00% 1.9±0.0 0.00%
PT.02 1987±9.6 98.8% 721±8.0 25.8% 421±6.3 8.53% 26±0.3 0.00%
PT.15 771±8.9 97.7% 360±6.2 64.3% 327±6.1 60.3% 142±2.5 0.37%
PT.31 2289±9.9 98.8% 405±6.1 52.1% 543±7.6 43.3% 76±1.4 0.03%
Table 3. Entailment average times with respective standard error, in ms, per dataset
per entailment engine

Table 3 shows large differences in the entailment test costs on the non-
determinate datasets. On the determinate datasets Prolog’s left-to-right im-
plementation of SLD-resolution is unrivalled but the time required by SPD-
resolution is still competitive. As the degree of non-determinism grows, so does
the advantage of Subsumer compared with the other entailment engines. It is
important to note that Subsumer rarely timed out. However Subsumer’s main
drawback is its overhead on the determinate datasets and being unable to handle
non-pure background knowledge.

4 Conclusions and future directions

Prolog’s built-in left-to-right, depth-first search selection function for SLD-resolution
is unrivalled on determinate datasets. However, when the dataset is even mildly
non-determinate, Prolog’s built-in resolution should not be used as the perfor-
mance rapidly degrades and a large fraction of the entailment tests time out. For
medium to highly non-determinate datasets Subsumer should be used. However,
Subsumer is only applicable if the background knowledge is pure Prolog. If that
is not the case then SPD-resolution should be employed.

These conclusions are not specific to ProGolem. They are valid for top-down
ILP systems as well. Therefore it would be beneficial to integrate at least SPD-
resolution and Subsumer in other ILP systems, e.g. Aleph.

It could be interesting to study if there are performance gains in using a
specific entailment engine per pair 〈hypothesis, example〉 or whether looking at
global properties of the dataset is enough to choose the best engine.

To fully take advantage of these powerful entailment engines on complex
non-determinate problems such as the Phase Transition framework [2] one needs
to improve the search control strategy of the ILP system. Being able to explore
complex hypotheses is a necessary condition but is only half the way to enable
ILP systems to learn theories on complex non-determinate domains.
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