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Abstract

This paper describes how the MonaLysa control
architecture implements a route�following naviga�
tion strategy� Two procedures that allow map
building and self�positioning are described� and
experimental results are provided that demon�
strate that such procedures are robust with re�
spect to noise� This approach is compared to oth�
ers with similar objectives� and directions for fu�
ture work are outlined�

� Introduction

In robotics or animat research� traditional navigation
methods that use internal geometrical representations of
the environment 	Latombe� ����
 are confronted with
various implementation di
culties� due to memory and
time requirements� as well as sensory and motor errors
	Nehmzow� ����
� To overcome these di
culties� sev�
eral researchers 	Chatila and Laumond� ����� Kuipers
and Byun� ����� Mataric� ����� Nehmzow� ����
 have
advocated the use of various types of topological mod�
els to represent the connectivity of the environment� and
several such models have been devised that aim to mimic
known nervous architectures or behavioral capacities in
animals 	Muller et al�� ����� Mataric� ����� Schmajuk
and Thieme� ����� Penna and Wu� ����� Bachelder and
Waxman� ����� Nehmzow� ����� Scholkopf and Mallot�
����
� Basically� these topological models endow an an�
imat or a robot with cognitive abilities that make pos�
sible to � recognize � the place it is situated in and to
� know � that� if it performs a given move in a given
direction� it will arrive in another � known � place�
In other words� such models belong to the category of
so�called world models� and they encode a variety of
Stimulus�Response�Stimulus 	S�R�S
 information 	Riolo�
����� Roitblat� ����
� At the functional level� they al�
low the animat or the robot to navigate according to a
route�following strategy 	Gallistel� ����
 and to plan a
trajectory from a given starting place to a given goal
place� provided that such a trajectory can pass through
already known places and involves already experienced
moves from place to place� They also facilitate place

recognition because such a task may take into account�
not only the various features that characterize a given
place� but also the speci�c moves that lead to that place�
or depart from it� together with the speci�c places that
are thus connected to it� Moreover� additional informa�
tion can also be taken into account and facilitate the
place�recognition task� This is� for instance� the case
with Mataric�s robot 	Mataric� ����
� that uses the met�
ric information � like distances and orientations � pro�
vided by specialized sensors� This is also the case with
Kuipers and Byun�s animat 	Kuipers and Byun� ����

that uses the information provided by the control archi�
tecture that governs its successive moves�

This paper is primarily concerned with the place�
recognition and self�positioning functionalities� It de�
scribes how it has been possible to add to the basic
exploratory abilities of an animat endowed with the
MonaLysa control architecture 	Donnart and Meyer�
����� Donnart and Meyer� ����
 the faculties of build�
ing a so�called cognitive map 	Tolman� ����� O�Keefe and
Nadel� ����� Kuipers� ����� Thinus�Blanc� ����� Gallis�
tel� ����� Poucet� ����
 of its environment� and of locat�
ing itself despite the lack of precision in its sensors and
actuators� It is structured as follows� Section � summa�
rizes the characteristics of MonaLysa that have already
been described elsewhere� Section � describes how it de�
tects landmarks and builds a spatial representation of
the environment� Section � describes the self�positioning
procedure� Experimental results are shown in Section
�� The following section discusses the advantages and
drawbacks of this approach and ends with perspectives
for future work�

� The MonaLysa architecture�

In the present application� the MonaLysa architecture
enables an animat to explore a two�dimensional environ�
ment and to navigate from one place to another despite
the various obstacles that the environment may contain�
The animat is equipped with proximate sensors that keep
it informed of the presence or absence of any obstacle in
front of it� ��� to its right� or ��� to its left� It is also able
to estimate the direction of a goal to be reached in each
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of the eight sectors of the space surrounding it� Lastly�
it is capable of moving straight ahead� ��� to its right�
or ��� to its left� This architecture� which relies upon
a hierarchical classi�er system� is organized into � mod�
ules � a reactive module� a planning module� a context
manager� an auto�analysis module� an internal reinforce�
ment module� a mapping module� a spatial information
processor and a place recognition module 	Figure �
�
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Figure �� The MonaLysa architecture

The functionalities of the �rst �ve modules have been
extensively described elsewhere 	Donnart and Meyer�
����� Donnart and Meyer� ����
 and will accordingly be
dealt with only brie�y� As a whole� they manage a pile
of tasks that allow the animat to reactively escape from
any obstacle it gets trapped into by skirting around it�
and to plan a trajectory that will later allow it to avoid
the obstacle from a distance� Such an ability relies upon
the animat�s capacity to analyze its skirting paths and
to detect landmarks that will be used for locating itself
in the environment�
The reactive module chooses the next move to per�

form� It uses production rules that take the form �
If �sensory information� and �direction of current
goal� Then �action�
The sensory information that these rules take into ac�

count is that provided by the animat�s proximate sensors�
The planning module decomposes a task into a series

of subtasks� that is� into a series of planned trajectories
connecting a starting place to an end place� It uses pro�
duction rules that take the form �
If �sensory information� and �current task� Then
�subtask�

The sensory information that these rules take into ac�
count is that provided by the animat�s proximate sensors�
augmented with the animat�s coordinates and current
orientation�

The context manager contains a pile of the tasks that
the animat autonomously generates while it moves in its
environment� Such tasks can be either skirting tasks�
that are posted by the auto�analysis module when the
animat detects an obstacle� or obstacle�avoidance tasks
or subtasks� that are posted by the planning module�
At each instant� the task at the top of the pile speci�es
the current goal and the current task� i�e�� the internal
context in which reactive and planning rules can be trig�
gered�

The internal�reinforcement module is used to monitor
the satisfaction of the animat and to adjust the strengths
of the reactive rules� The satisfaction is an estimation of
the success with which a given rule brought the animat
closer to� or took it farther from� its current goal� The
strengths are used to probabilistically choose which rule
to trigger if the condition parts of several rules match
the current situation
The role of the auto�analysis module is to analyze the

current behavior of the animat in order to alter its cur�
rent task dynamically and to create new tasks that will
enhance its future behavior� It is also responsible for
characterizing landmarks in the environment� i�e� places
through which it will be useful to travel in the future in
order to avoid the obstacles from a distance� or which
are used for map building and place recognition�

When an obstacle is detected� as described in 	Donnart
and Meyer� ����
� the auto�analysis module generates a
skirting task that speci�es that the animat must cross
the line that lies parallel to the direction taken to avoid
the obstacle� and that passes through the place where
the obstacle has been detected� This task is coded by
the pair �coordinates of the place� � direction vector
of the straight line to be crossed� and is registered at
the top of the pile of the context manager� An emergent
functionality of the internal dynamics of this module is
to enable the animat to skirt around the obstacles it
encounters and to extricate itself from dead�ends with
arbitrarily complicated shapes�
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Figure �� Skirting tasks and skirting trajectories generated
by MonaLysa�
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For example� two skirting trajectories around a spe�
ci�c obstacle are shown on Figure �� The left trajectory
has been generated through the creation of three skirting
tasks at places A� B and C� respectively associated with
lines ��� �� and ��� The task associated with line �� �
that will simply be called task �� from now on � has been
erased at place C� and tasks �� and �� have been erased
respectively at places D and E� The right trajectory has
been generated through the creation of task �� at place
F and its erasing at place G�

� Landmark detection and map learning

Another role of the auto�analysis module is to analyze
the trajectory followed by the animat in order to detect
landmarks in the environment� There are � categories of
such landmarks � satisfying places� unsatisfying places�
task�erasing places and marker places�
To detect landmarks belonging to the �rst two cat�

egories� the auto�analysis module monitors the varia�
tion of the animat�s satisfaction between two successive
moves� It also detects constrained moves� that is� moves
that aren�t the most conducive to reaching the goal� and
to which the animat resorts because of the presence of
an obstacle� Such moves trigger obstacle detection� as
described in 	Donnart and Meyer� ����
� Places where
the satisfaction gradient is positive 	resp� negative
 and
that have been reached through a constrained move are
categorized as satisfying 	resp� unsatisfying
 landmarks�
Some such satisfying landmarks are used to de�ne the
start and end places of the obstacle avoidance subtasks
generated by the planning module� according to a recur�
sive procedure that has also been described in 	Donnart
and Meyer� ����
� Task�erasing landmarks are places
where a task can be erased from the context manager
pile� Finally� marker landmarks are places that belong
to any of the three preceding categories� They are de�
�ned as any �rst landmark the animat is capable of en�
countering after the triggering of a skirting task� or as
any last landmark the animat is capable of encountering
in the context of this skirting task� It turns out that
such landmarks are useful for expediting the hierarchical
positioning procedure described below�

The � map � that the animat builds while it explores
its environment has nothing in common with a classi�
cal two�dimensional map� Rather� it is coded as various
production rules that are created by the auto�analysis
module� that are memorized into the mapping module�
and that post their action part to the spatial information
processor� Such rules belong to � di�erent categories and
take the forms �

	�
 If �marker landmark A� and �current task � �

Then �record the pair �A� ���

	�
 If �marker landmark A� and �current task ����	�

Then �record the pair �A� ����

	�
 If �link between two landmarks �A� B� detected� and
��X� �� recorded� Then �support structure �X� Y��� �

	�
 If �unsatisfying landmark A and subtask ��
detected� and ��X� �	� recorded� Then �support struc�
ture �X� Y���	�

	�
 If �marker landmark Y� and ��X� �� recorded�
Then �record the structure �X� Y��� �

	�
 If �task�erasing landmark A and new task ��
detected� and �current task �	 to be erased� Then
�record the pair �A� ����

where expressions like �task ������ and �structure
�X� Y����� mean that task �� and structure �X� Y� are
detected within the context of a speci�c task ���

Thus� such rules are capable of recording the associ�
ation between a landmark and a skirting task 	type �
�
or the association between a landmark and two skirting
tasks� which can be hierarchically 	type �
 or sequentially
	type �
 linked� Such rules are also capable of recording
more global structures that include two or more land�
marks and subtasks 	type �
� Finally� they are capable
of providing support to some position hypotheses 	types
� and �
� as explained later�

When they involve a skirting task� the corresponding
records take into account the coordinates of the place
where the task is triggered and the direction vector of the
straight line to be crossed� A position and an orientation
error are also recorded� When they involve a landmark�
the corresponding records take into account the coordi�
nates of the corresponding place and the orientation of
the animat in this place� Such records also take into ac�
count on�line estimates of the animat�s position and ori�
entation errors and the category to which the detected
landmark belongs� It must be noted that� although ab�
solute coordinates and orientations are recorded into the
mapping rules� the matching process between two places
or two tasks that will be described later involves rela�
tive distances or orientations between such places and
tasks� Absolute information arbitrarily refer to the ani�
mat�s initial position� It is taken into account only when
matching is ambiguous � for instance when a given place
can be matched to two� or more� other places � or when
two places are too far apart to be linked within any map�
ping rule � for instance when they belong to two distinct
objects in the environment� It must also be noted that
no sensory information is used in the description of the
landmarks� even if such information would certainly in�
crease the animat�s self�positioning capabilities� There�
fore� the self�positioning capacities of MonaLysa do not
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depend upon the animat�s sensory errors� contrary to
what happens in many other realizations�
The process of landmark detection and map learning

also entails the management of two lists within the auto�
analysis module� a LC list and a S list� which are as�
sociated with each skirting task triggered� The LC list
records each landmark and each skirting subtask that are
encountered or generated within the context of a given
skirting task� The S list records speci�c portions of the
animat�s trajectory that are traveled within the context
of a given skirting task� that begin and end with a marker
landmark� and that can be encapsulated as hierarchical
structures likely to be used by mapping rules of types ��
� and ��
The management of these lists and the creation of the

mapping rules will be illustrated on the speci�c example
of Figure �� While the animat is traveling southwards�
it encounters an obstacle at place A and triggers � skirt�
ing tasks successively� characterized by lines ��� �� and
��� Having moved in turn through places A� B� ��� I� it
resumes traveling southwards from place I�
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Figure �� Skirting tasks �� lines� created and landmarks
��lled circles� detected along a trajectory

Along its path� the animat�s �rst encounter with the
obstacle occurs at place A� Because the animat cannot
proceed straight on� its gradient of satisfaction becomes
negative at A� However� this place is not characterized
as an unsatisfying place because the move that led to A
was not constrained� In place A� the animat chooses to
turn right and generates a skirting task characterized by
line ��� While it moves from A to B� its current goal is to
reach the projection of its current position onto line �� �
the corresponding satisfaction gradient remains constant
and no landmark is detected along the path 	Figure �a
�
However� the corresponding moves are constrained be�
cause the presence of the obstacle prevents the animat
from turning left� i�e� from reaching its current goal on
line ���
In B� the animat encounters a new obstacle� triggers

a new task ��� and turns to the right� Because its satis�
faction gradient with respect to line �� diminishes� and
because the preceding move was constrained� place B is
detected as both an unsatisfying landmark and a marker

landmark within the context of task ��� B and �� are
added to the LC list associated with ��� Likewise� B
is detected as a satisfying landmark and a marker land�
mark within the context of task ��� Thus B is also added
to the LC list associated with �� 	Figure �b
� From B to
C� the animat�s current goal is to cross line ��� the cor�
responding moves are constrained� and the satisfaction
gradient remains unchanged�

In C� the animat can turn towards its current goal on
line �� and its satisfaction gradient increases � therefore�
place C is detected as both a satisfying landmark and
a marker landmark associated with ��� Place C is then
added to the LC list associated with �� but� because this
list begins and ends with two marker landmarks� B and
C� these landmarks are encapsulated as a structure �BC�
which is added to the S list associated with ��� The
corresponding LC list shrinks into place C 	Figure �c
�
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Figure �� The management of the LC list and S list during
map learning

When the animat arrives at place D� task �� is erased
from the context�manager pile and place D is detected
as a task�erasing landmark and a marker landmark that
is added to the LC list associated with ��� However�
because� this list begins and ends with two marker land�
marks� C and D� these landmarks are encapsulated as
a structure �CD� which is added to the S list associated
with ��� The corresponding LC list shrinks into place D
	Figure �d
� Furthermore� the erasing of task �� allows
the creation of � type � mapping rules� which record the
pairs 	B� ��
 and 	C� ��
 and of � type � mapping rules�
which record the structures �B� C���� and �C� D�����
Then� the two lists associated with �� are erased� How�
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ever� because the obstacle still prevents the animat from
crossing line ��� D is also detected as an unsatisfying
landmark associated with �� and the skirting task �� is
added to �� on the top of the context�manager pile� Fi�
nally� within context ��� D is also detected as a satisfying
landmark and a marker landmark 	Figure �e
�

In place E� the animat can turn to its right and move
towards its current goal on line ��� As the preceeding
move was constrained� place E is detected as both a
satisfying landmark and a marker landmark associated
with ��� Place E is added to D� within the correspond�
ing LC list� This list shrinks to E when structure �D�E�
is created and added to the corresponding S list 	Fig�
ure �f
�

The same events as those that occurred in place D
now occur in place F� which is detected as a task�erasing
landmark and a marker landmark in context ��� and as
a satisfying landmark in context ��� In particular� the
type � and type � mapping rules that record pairs 	D�
��
 and 	E� ��
� and structures �C� D���� and �D� E����
are created 	Figure �g
� Then� task �� is erased and
the LC list and S list of task �� become as shown on
Figure �h�

Place G is not detected as a landmark� because the
move that led to it was not constrained� Conversely�
place H is detected as both a satisfying and a marker
landmark associated with �� and is added to the corre�
sponding LC list 	Figure �i
� Then� the list shrinks to
H� while structure �BH� is added to the S list 	Figure �j
�

In place I� structure �HI� is added to the S list 	Fig�
ure �k
 and task �� is erased� The type � and type �
mapping rules that record the pairs 	B� ��
 and 	H� ��
�
and the structures �B� H���� and �H� I���� are created�
As the navigation between B and H involves several de�
tections of landmarks and subtasks� two type � mapping
rules and one type � are also created� that record the
pairs 	B� ��
� 	D� ��
 and 	F� H
�

From place I� the animat resumes pursuing its initial
goal� However� in a purely exploratory mode � i�e�� in
the absence of any such goal � it might be motivated to
explore further the obstacle it is skirting around and�
thus� to turn to its left� This would consequently create
the task �� shown on Figure � and trigger the creation
of a type � rule� which would record the pair 	I� ��
�

Whatever the case� after the map has been learned� it
appears that landmark D� for instance� can be detected
as a marker landmark at the beginning of a structure
�DE� within context ��� or as a task�erasing landmark
ending structure �CD� within context ��� or as an un�
satisfying landmark belonging to structure �BH� within
context ��� It will be shown in the next paragraph that
such di�erent ways of recognizing landmark D substan�
tiate each other and contribute to make the animat�s
self�positioning easier�

� Self�positioning

Having learned a map of the environment� the animat
must be able to use it to position itself� even if its position
and orientation estimates are noisy� In this paragraph� a
simpli�ed version of the MonaLysa�s self�positioning pro�
cedure will be described� assuming that� although no er�
rors were made during a preliminary map�building stage�
the animat must now position itself under conditions of
noisy position estimates� In the following paragraph� ex�
perimental results obtained under more realistic condi�
tions will be presented�

In MonaLysa� the self�positioning procedure relies
upon the management of a H list within the spatial in�
formation processor� Such a list is associated with each
skirting task triggered and records all the pairs 	Ai� �i

on the map that match the animat�s current hypothesis
about its position within the environment�
The procedure also entails the management of

a PH list of position hypotheses within the place�
recognition module� each such hypothesis being charac�
terized by an error estimate and a con�dence estimate�
At every time step� one of these hypotheses is the ani�
mat�s current hypothesis and designates the place where
the animat estimates it is the most likely to be� Nev�
ertheless� the animat also considers that it could be sit�
uated in other places� although the corresponding hy�
potheses are less likely to be true� New hypotheses are
posted each time a marker is detected in the context of a
skirting task and matches a given landmark on the map�
This event occurs when a �rst marker is detected and
triggers type �� � or � mapping rules� or when a struc�
ture is detected and triggers type � mapping rules� When
the distance between such an hypothesized position and
a place already recorded on the map � that is� a place
recorded by mapping rules of types �� �� �� or � � doesn�t
exceed the animat�s length� the memorized place replaces
the hypothesized position� and the error estimate asso�
ciated with this position is reset to the memorized er�
ror� i�e�� to � if the map has been learned without error�
Between two such reset episodes� the error estimates of
each position hypothesis increase with the distance ac�
tually traveled by the animat in a manner that will not
be described here for lack of space�
As to the con�dence estimate associated with each

position hypothesis� it increases when the correspond�
ing position is replaced by a landmark already recorded
on the map� the importance of this e�ect being greater
when the landmark belongs to a structure than when
it doesn�t� Moreover� supports provided by individual
components of a given structure can modulate this ef�
fect� when mapping rules of types � and � are triggered�
The con�dence estimate associated with each position
hypothesis decreases when no equivalence with a mem�
orized landmark can be found� However� the exact way
such con�dence estimates are reset will not be described
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herein�

Figures � and � help to describe the self�positioning
procedure from a speci�c example� They assume that
the animat� after a preliminary exploratory stage� has
detected � obstacles in its environment and built the cor�
responding map� according to the mapping procedure
previously described� Such a map involves landmarks
B�����N�� B����� N� and skirting lines like ���� ������ �����
������ 	Figure �
� It also assumes that the animat� cur�
rently in a positioning phase� arrives at place A�� but
erroneously assumes it has reached place A� Thus place
A is its current positioning hypothesis � which is suppos�
edly characterized by an error of ��� and a con�dence
level of ��� � and the top of the context�manager pile
contains task �� 	Figure �a
�
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Figure �� The use of the cognitive map for self�positioning�
Filled circles refer to landmarks recorded in the map

In A�� the animat turns left and reaches place B�� which
is characterized as a satisfying landmark B� B is thus
added to the LC list associated with ��� Because the co�
ordinates of the animat in places B� and B� fall within
the error margin of place B� because the animat�s orien�
tation in these places is the same� and because all these
places are characterized as landmarks of the same type�
places B� and B� are said to match place B� Likewise� be�
cause the origins of the vectors de�ning lines ��� and ���
fall within the error margin associated with the origin
of the vector de�ning ��� and because the corresponding
orientations are the same� tasks ��� and ��� match task
��� On the contrary� place B doesn�t match place M�
because� although they are both satisfying landmarks�
the animat�s orientation in these places di�er� Neither
does place B match place C�� because the latter is a
task�erasing landmark and because the animat�s orien�

tations in both places di�er� Thus� � mapping rules of
type � that have their condition parts matching the cur�
rent situation are triggered and post pairs 	 B�� ���
 and
	B�� ���
 on the H list of ��� The current positioning
hypothesis becomes B� which is characterized by an er�
ror of ���� and two new positioning hypotheses� B� and
B�� are added to the PH list and are both characterized
by an error of � and an initial con�dence level of ���
The con�dence level of B� which is not recognized on the
map� decreases to �� 	Figure �b
� In other words� as
the animat moves away from a landmark recorded in its
map� its position error increases and its con�dence in the
current positioning hypothesis decreases�
From B� the animat moves to C�� where it updates its

� position hypotheses� and records that� although it has
probably moved from B to C �� it might have moved from
B� to C�� or from B� to C�� as well�
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Figure �� The management of the H list and PH list during
self�positioning� Shaded components of the PH list corre�
spond to the animat�s current position hypotheses�

At C�� the current position C is detected as a task�
erasing landmark� and structure �BC� is posted on the
S list of ��� Current conditions in C match those of C�
and C�� allowing the triggering of � mapping rules of type
�� which suggest that the place the animat is currently
in belongs to structures �B�C�� or �B�C��� Because place
B matches places B� and B�� because place C matches

�Place C� like several other places that are mentioned in the

text� is not shown on Figure ��

�



places C� and C�� and because the relative displacement
the animat made between B and C matches the relative
displacement it made from B� to C� and from B� to C��
structures �B�C�� and �B�C�� match structure �BC�� thus
supporting the hypothesis that place C could� in fact� be
either place C� or C�� These hypotheses are accordingly
posted to the PH list� Because positions of C�� and C��
are respectively no more distant from places C� and C�
than the animat�s length� the positions of C�� and C��
can be replaced by those of C� and C�� and their error
estimates can be reset to zero� The con�dence estimates
of C� and C� thus increase to �� when the con�dence
estimate of B decreases to �� 	Figure �c
�

Then the animat travels from C� to D�� updating its
� position hypotheses� and records that� although it has
probably moved from C to D� it might have moved from
C� to D�� or from C� to D�� as well 	Figure �d
� Then
it turns to the right and generates skirting task ��� At
place E�� the place E is characterized as an unsatisfying
landmark that matches places E� and E� and task �� is
created� Type � mapping rules post pairs 	E�� ���
� 	E��
���
� 	E�� ���
 and 	E�� ���
 respectively on the H list
of �� and ��� and the two place hypotheses E� and E�
are posted on the PH list� These hypotheses replace the
current hypotheses E�� and E��� and their con�dence
estimates increases to ��� while the con�dence estimate
of E decreases to �� 	Figure �e
�

At place F�� task�erasing landmark F is matched with
F� and F�� and structure �EF� is matched with struc�
tures �E�F�� and �E�F��� Thus� the con�dence estimates
of the hypotheses associated with F� and F� continue to
increase� while the con�dence estimate of the hypothesis
associated with F continues to decrease 	Figure �f
�

From F� to G�� H� and I�� the PH list maintained by
MonaLysa is updated according to Figures �g� �h and �i�

When the animat arrives at K�� it supposes itself to be
at K� and structure �EK� � 		E� ��
� 	G� ��
� 	I� K

 is
posted on its S list� As such a structure matches �E�K��
but not �E�K��� it turns out that K�� can be replaced
by K� and that its error estimate can be reset to �� Be�
cause the con�dence in hypothesis K� exceeds a given
threshold level 	i�e�� ��
 and because the con�dence as�
sociated with K and K�� does not� the animat�s current
hypothesis switches from K to K� 	Figure �j
� In other
words� the animat has positioned itself accurately in its
environment�

Had structure �E�K�� matched the detected structure
�EK� in the presence of a high noise level� then the sup�
ports posted during navigation fromE� to K� by the three
components of the detected structure �EK� would never�
theless have been more likely to contribute to a greater
increase in the con�dence estimate of K� than to that
of K�� Indeed� components 	E� ��
 and 	G� ��
 of �EK�
would match the condition parts of type � rules that have
been created within the contexts of the exploration of

�E�K�� and �E�K�� and would receive support from both
categories of rules� On the contrary� component 	I� K

would be more likely to match the condition part of a
type � rule created within the context of the exploration
of �E�K�� than within the context of �E�K���

It should be understood that self�positioning success
relies upon the fact that MonaLysa has managed simul�
taneously several hypotheses about the animat�s moves
and that some of these hypotheses got support every time
a given landmark or structure in the environment was
matched with a landmark or structure in the map� Thus�
the hypothesis that the animat traveled fromE� to K� got
support not only from the matching of E with E�� of F
with F�� of G with G�� of H with H�� of I with I�� and of K
with K�� but also from the matching of �EF� with �E�F���
of �FG� with �F�G��� of �GH� with �G�H��� of �HI� with
�H�I��� and �nally from the matching of the whole struc�
ture �EK� with �E�K��� Had the animat failed to recognize
a given landmark on the E�K� trajectory� like landmark
I� for instance� the supports from the matchings of I with
I�� of �HI� with �H�I�� and of 	I� K
 in �EK� with 	I�� K�

in �E�K�� would have been lost� Nevertheless� the other
supports would have been retained� thereby preventing
the hypothesis that the animat actually moved from E�
to K� from being abandoned� Thus the management of
hierarchical structures a�ords the self�positioning proce�
dure of MonaLysa with interesting robustness features�

� Experimental results

To demonstrate the e
ciency of the mapping and po�
sitioning procedures just described in a more realistic
context� both procedures have been managed in paral�
lel� The animat has been placed in an initial random
position within the environment of Figure � and left free
to explore it� It has not been provided with any over�
all goal� but its satisfaction was assumed to be greater
when it was moving straight on� as opposed to turn�
ing right or left� Its orientation and position estimates
were assumed to be correct and the distance traveled af�
ter each move was assumed to be equal to the animat�s
length� Furthermore� a speci�c procedure� not described
herein� allowed it to learn to di�erentiate between ob�
stacles around which it could skirt� and obstacles that
merely delineated the environment�s boundaries� Fig�
ure � also shows parts of the cognitive map thus elab�
orated after ����� elementary moves� In particular� al�
though this map doesn�t represent any of the skirting
lines and structures that have been detected in the envi�
ronment� it shows the various landmarks and their topo�
logical links that the animat has memorized�

Figure � shows parts of the cognitive map elaborated
when the animat�s position estimates were assumed to be
noisy and to increase with the distance traveled� Thus�
after each elementary move beyond a given place� the
error on the corresponding position estimate was sup�
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posed to be a random normal variate� with a mean of ��
and a standard deviation proportional to the animat�s
size� After n such elementary moves� the correspond�
ing standard error was that of a sum of normal variates�
i�e�� it was proportional to

p
n�animat
s length� Because

such errors were taken into account in both the mapping
and positioning processes� the matching of two places
was considered successful when the corresponding error
margins intersected� Under such conditions� the animat
wandered in its environment and� after each move� up�
dated its cognitive map and its position estimate� Fig�
ure � shows parts of the cognitive map elaborated after
����� elementary moves�

Figure �� A square environment explored by an animat en�
dowed with the MonaLysa control architecture� The size of
the animat is �	 pixels
 the size of each side of the environ�
ment is ��	 pixels� Parts of the cognitive map elaborated by
MonaLysa in the absence of noise are shown on the picture
 as
vectors coding topological links between pairs of landmarks

Figure �� The cognitive map built when the standard devi�
ation of the noise on the position estimate after each elemen�
tary move was assumed to be equal to �
� of the animat�s
length�

Figure � shows how the distance between the animat�s
current position estimate and its actual position varies
over time in noisy conditions� when the mapping proce�
dure is used and when it is not� It thus appears that its
cognitive map allows the animat to control its position�
ing error� In particular� this error seldom exceeds twice
the animat�s length and� when such an event does occur�
the error decreases to its basic level in a few moves�

Figure �� Evolution of the distance between the animat�s
current position estimate and its actual position
 during the
construction of the cognitive map of Figure �� The upper
curve correspond to results obtained without using the map

the lower one corresponds to results obtained when the map
was used� Distances in pixels �ordinate� versus successive
elementary moves �abscissa�

Additional experiments indicate that the control of
the positioning error is robust at reasonable noise lev�
els� However� and as might be expected a priori� map
learning and self�positioning become impossible beyond
a certain noise threshold� roughly equal to �� � of the
animat�s length�

	 Discussion

It has been demonstrated here and elsewhere that
the MonaLysa control architecture enables an animat
equipped with a rudimentary sensory�motor apparatus
to explore its environment� to extricate itself from dead�
ends with arbitrary complicated shapes� to build a cog�
nitive map of its environment� to accurately estimate
its current position� to plan trajectories that avoid ob�
stacles and that lead to a given externally�speci�ed or
autonomously�generated goal� Such capabilities qualify
MonaLysa as a cognitive architecture and the animat
as a motivationally autonomous system 	McFarland and
B osser� ����� Donnart andMeyer� ����
� They rely upon
the use of production rules that take into account� not
only the animat�s current sensory information� but also
their � internal context �� which codes the animat�s ad�
ditional knowledge about the current situation� In the
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case of the reactive rules� this knowledge concerns the
direction of the current goal� In the case of the plan�
ning rules� it concerns the nature of the current task
the animat tries to accomplish� In the case of the map�
ping rules� it concerns the various tasks associated with
markers and structures the animat has detected in its en�
vironment� Moreover� the fact that this internal context
has a hierarchical structure confers several advantages on
MonaLysa� Besides expediting the learning of the plan�
ning rules as described in 	Donnart and Meyer� ����
� it
has been shown here that it facilitates the self�positioning
procedure and makes it relatively robust with respect to
noise�

It has also been shown here that such robustness makes
it possible for MonaLysa to detect� memorize and recog�
nize landmarks in the environment� although the cor�
responding procedures do not rely on the information
provided by the animat�s proximate sensors� Actually
this information is only used by the reactive rules of
MonaLysa for the purpose of skirting around obsta�
cles and of escaping from dead�ends� and place recog�
nition depends only upon the proprioceptive position�
orientation� and satisfaction estimates� Such a charac�
teristic is in sharp contrast with many other realiza�
tions that implement place�recognition capabilities� For
instance� several such realizations draw upon biology
	Zipser� ����� Cartwright and Collett� ����� Muller et
al�� ����� Burgess et al�� ����� Bachelder and Waxman�
����
 and implement a neural network in which the �ring
of some sensory neurons� tuned to the features of some
landmarks sensed in a given place� triggers the �ring of
a speci�c place cell that codes for this place� Likewise�
in 	Kuipers and Byun� ����
� distinctive places are de�
�ned as the local maxima of speci�c functions that are
de�ned over the various sensor readings of the animat�
and� in 	Mataric� ����
� landmarks are characterized as
features in the world that have physical extensions reli�
ably detectable over time� Few other realizations resort
to proprioceptive information for place recognition� A
speci�c example is provided in 	Nehmzow and Smithers�
����
� where landmarks are characterized as convex or
concave corners� such that� if the time a robot needs to
turn towards a wall exceeds a certain threshold time� a
convex corner is detected� Conversely� if the time it takes
the robot to get away from a detected obstacle exceeds
a certain threshold time� a concave corner is detected�

The route�following navigation strategy of MonaLysa
could also be contrasted with other realizations which do
not fully exploit the information encoded in their cogni�
tive maps� In such realizations� indeed� a speci�c place is
usually recognized because it has been reached by a spe�
ci�c move from another speci�c place� but no account
is taken of the hierarchical structures that MonaLysa
manages� As an example� in 	Nehmzow and Smithers�
����
� a speci�c concave corner can be recognized be�

cause it has been reached from a convex corner a given
distance away� but not because this speci�c concave cor�
ner belonged to a characteristic structure that linked�
for instance� three succeeding convex corners to the con�
cave corner in question� It is certainly because such re�
alizations do not take advantage of the robustness that
hierachical contexts a�ord to mapping and positioning
procedures that their exploration capacities are much
more limited than those of MonaLysa� The Nehmzow
and Smithers�s robot 	Nehmzow and Smithers� ����

cannot position itself in the environment if it doesn�t
keep following its boundary walls� Likewise� Mataric�s
robot 	Mataric� ����
 and Kuipers and Byun�s animat
	Kuipers and Byun� ����
 rely heavily upon their wall�
following and corridor�following exploration strategies to
avoid getting lost� In contrast� the animat described in
this paper is able to navigate randomly from one ob�
stacle to another and to position itself� However� the
present work and that of Mataric have in common the
fact that place�recognition not only depends upon topo�
logical information� but also upon metric information
about distances and orientations� Likewise� the present
work and that of Kuipers and Byun have in common
the fact that place�recognition depends upon topological
links that are indexed by the animat�s control strategy�
With MonaLysa� an actual move between two places can
be matched to a possible move on the map provided they
occur within the same skirting�task context� In Kuipers
and Byun�s approach� two moves can be matched if they
are actuated by the same follow�the�midline or move�
along�object�on�right control strategies�

Although MonaLysa seems able to cope with less care�
fully designed environments than those that have been
used in other realizations� it is nevertheless true that its
current mapping and self�positioning capabilities would
be lost if the environment contained non�polygonal ob�
stacles� To allow the management of arbitrarily shaped
obstacles� future research will be directed towards the use
of more general skirting tasks than mere line crossing�

Future research will also be directed towards the pos�
sibility of recognizing whole obstacles and not only sin�
gle landmarks or structures� This faculty will introduce
an additional hierarchical level in the mapping and self�
positioning procedures� and thus enhance the animat�s
cognitive capacities� In the present implementation� al�
though the animat uses relative distances and orienta�
tions to self�position itself along the external contours of
a given obstacle� it resorts to absolute distances and ori�
entations to position itself when it �rst encounters a new
obstacle� The possibility of characterizing whole objects
in the environment will make it possible to evaluate all
positions and orientations relatively to each object in the
environment� and thus to get rid of any reference to the
animat�s initial position�

The planning capacities of MonaLysa have already
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been demonstrated with a real robot 	Donnart and
Meyer� ����
� The present work has used simulations
to demonstrate its mapping capacities� Future research
will aim at combining the planning and mapping capac�
ities of the architecture� �rst within a simulation frame�
work� then with a robotic application� It will also aim
at translating the actual rule�based implementation of
MonaLysa into a biologically more realistic neural net�
work architecture�


 Conclusions

It has been shown here that the MonaLysa control ar�
chitecture endows an animat with map�building and self�
positioning capabilities that are robust with respect to
noise� Such capabilities rely upon mapping and posi�
tioning procedures that take into account speci�c land�
marks and structures in the environment� This approach
is original and exhibits several advantages in comparison
with other works that have similar objectives� In par�
ticular it can be used in environments that need not be
as carefully designed as usual� In the future� it will be
extended so that� beyond single landmarks and struc�
tures� it can characterize and recognize whole objects�
Future work will also target the management of general
skirting tasks that will hopefully cope with arbitrarily
shaped obstacles� It will also be extended to the imple�
mentation of MonaLysa on a Khepera robot and to the
demonstration that its mapping and planning capacities
do actually work in the real world�
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