$\mathbf{T}_{\text {he }} \mathbf{J o u r n a l}$ of $\mathbf{N}$ onlinear $\mathbf{S}_{\text {Cience and }} \mathbf{A}_{\text {pllications }}$ http://www.tjnsa.com

# GENERALIZED HYERS-ULAM STABILITY OF AN AQCQ-FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN BANACH SPACES 

CHOONKIL PARK ${ }^{1}$, MADJID ESHAGHI GORDJI ${ }^{2 *}$ AND ABBAS NAJATI ${ }^{3}$

Abstract. In this paper, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equation
$f(x+2 y)+f(x-2 y)=4 f(x+y)+4 f(x-y)-6 f(x)+f(2 y)+f(-2 y)-4 f(y)-4 f(-y)$
in non-Archimedean Banach spaces.

## 1. Introduction and preliminary

A valuation is a function $|\cdot|$ from a field $K$ into $[0, \infty)$ such that 0 is the unique element having the 0 valuation, $|r s|=|r| \cdot|s|$ and the triangle inequality holds, i.e.,

$$
|r+s| \leq|r|+|s|, \quad \forall r, s \in K
$$

A field $K$ is called a valued field if $K$ carries a valuation. The usual absolute values of $\mathbb{R}$ and $\mathbb{C}$ are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle inequality is replaced by

$$
|r+s| \leq \max \{|r|,|s|\}, \quad \forall r, s \in K,
$$

then the function $|\cdot|$ is called a non-Archimedean valuation, and the field is called a nonArchimedean field. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. A trivial example of

[^0]a non-Archimedean valuation is the function $|\cdot|$ taking everything except for 0 into 1 and $|0|=0$.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence call it simply a field.

Definition 1.1. [18] Let $X$ be a vector space over a field $K$ with a non-Archimedean valuation | • |. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is said to be a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii) $\|r x\|=|r|\|x\| \quad(r \in K, x \in X)$;
(iii) the strong triangle inequality $\|x+y\| \leq \max \{\|x\|,\|y\|\}$ holds for all $x, y \in X$.

Then $(X,\|\cdot\|)$ is called a non-Archimedean normed space.
Definition 1.2. (i) Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean normed space $X$. Then the sequence $\left\{x_{n}\right\}$ is called Cauchy if for a given $\varepsilon>0$ there is a positive integer $N$ such that

$$
\left\|x_{n}-x_{m}\right\| \leq \varepsilon
$$

for all $n, m \geq N$.
(ii) Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean normed space $X$. Then the sequence $\left\{x_{n}\right\}$ is called convergent if for a given $\varepsilon>0$ there are a positive integer $N$ and an $x \in X$ such that

$$
\left\|x_{n}-x\right\| \leq \varepsilon
$$

for all $n \geq N$. Then we call $x \in X$ a limit of the sequence $\left\{x_{n}\right\}$, and denote by $\lim _{n \rightarrow \infty} x_{n}=x$.
(iii) If every Cauchy sequence in $X$ converges, then the non-Archimedean normed space $X$ is called a non-Archimedean Banach space.
The stability problem of functional equations originated from a question of Ulam [37] concerning the stability of group homomorphisms. Hyers [10] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Th.M. Rassias [27] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias [27] has provided a lot of influence in the development of what we call the generalized Hyers-Ulam stability or the Hyers-Ulam-Rassias stability of functional equations. A generalization of the Th.M. Rassias theorem was obtained by Găvruta [9] by replacing the unbounded Cauchy difference by a general control function in the spirit of Th.M. Rassias' approach.

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [36] for mappings $f$ : $X \rightarrow Y$, where $X$ is a normed space and $Y$ is a Banach space. Cholewa [2] noticed that the theorem of Skof is still true if the relevant domain $X$ is replaced by an Abelian group. Czerwik [3] proved the generalized Hyers-Ulam stability of the quadratic functional equation.

The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [4], [8], [11], [13], [14], [16], [20]-[35]).

In [12], Jun and Kim considered the following cubic functional equation

$$
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x),
$$

which is called a cubic functional equation and every solution of the cubic functional equation is said to be a cubic mapping.

In [15], Lee et al. considered the following quartic functional equation

$$
f(2 x+y)+f(2 x-y)=4 f(x+y)+4 f(x-y)+24 f(x)-6 f(y)
$$

which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic mapping.
M. S. Moslehian and Th. M. Rassias [17] proved the Hyers-Ulam-Rassias stability of the Cauchy functional equation and the quadratic functional equation in non-Archimedean spaces.
Recently, M. Eshaghi Gordji and M. Bavand Savadkouhi [6] proved the generalized HyersUlam stability of cubic and quartic functional equations in non-Archimedean spaces.

In this paper, we prove the generalized Hyers-Ulam stability of the additive-quadratic-cubic-quartic functional equation (0.1) in non-Archimedean Banach spaces.

Throughout this paper, assume that $X$ is a non-Archimedean normed space and that $Y$ is a non-Archimedean Banach space. Let $|16|=|4|^{2}=|2|^{4} \neq 1$ and $|8|=|2|^{3}$.

## 2. Generalized Hyers-Ulam stability of the functional equation (0.1)

One can easily show that an odd mapping $f: X \rightarrow Y$ satisfies (0.1) if and only if the odd mapping mapping $f: X \rightarrow Y$ is an additive-cubic mapping, i.e.,

$$
f(x+2 y)+f(x-2 y)=4 f(x+y)+4 f(x-y)-6 f(x)
$$

It was shown in Lemma 2.2 of [7] that $g(x):=f(2 x)-2 f(x)$ and $h(x):=f(2 x)-8 f(x)$ are cubic and additive, respectively, and that $f(x)=\frac{1}{6} g(x)-\frac{1}{6} h(x)$.

One can easily show that an even mapping $f: X \rightarrow Y$ satisfies (0.1) if and only if the even mapping $f: X \rightarrow Y$ is a quadratic-quartic mapping, i.e.,

$$
f(x+2 y)+f(x-2 y)=4 f(x+y)+4 f(x-y)-6 f(x)+2 f(2 y)-8 f(y)
$$

It was shown in Lemma 2.1 of [5] that $g(x):=f(2 x)-4 f(x)$ and $h(x):=f(2 x)-16 f(x)$ are quartic and quadratic, respectively, and that $f(x)=\frac{1}{12} g(x)-\frac{1}{12} h(x)$.

For a given mapping $f: X \rightarrow Y$, we define

$$
\begin{aligned}
D f(x, y):= & f(x+2 y)+f(x-2 y)-4 f(x+y)-4 f(x-y)+6 f(x) \\
& -f(2 y)-f(-2 y)+4 f(y)+4 f(-y)
\end{aligned}
$$

for all $x, y \in X$.
We prove the generalized Hyers-Ulam stability of the functional equation $\operatorname{Df}(x, y)=0$ in non-Archimedean Banach spaces: an odd case.

Theorem 2.1. Let $\theta$ and $p$ be positive real numbers with $p<3$. Let $f: X \rightarrow Y$ be an odd mapping satisfying

$$
\begin{equation*}
\|D f(x, y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(2 x)-2 f(x)-C(x)\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|^{p}}\|x\|^{p} \tag{2.2}
\end{equation*}
$$

for all $x \in X$.
Proof. Letting $x=y$ in (2.1), we get

$$
\begin{equation*}
\|f(3 y)-4 f(2 y)+5 f(y)\| \leq 2 \theta\|y\|^{p} \tag{2.3}
\end{equation*}
$$

for all $y \in X$.
Replacing $x$ by $2 y$ in (2.1), we get

$$
\begin{equation*}
\|f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y)\| \leq\left(|2|^{p}+1\right) \theta\|y\|^{p} \tag{2.4}
\end{equation*}
$$

for all $y \in X$.
By (2.3) and (2.4),

$$
\begin{align*}
& \|f(4 y)-10 f(2 y)+16 f(y)\|  \tag{2.5}\\
& \quad \leq \max \{\|4(f(3 y)-4 f(2 y)+5 f(y))\|,\|f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y)\|\} \\
& \quad \leq \max \{|4| \cdot\|f(3 y)-4 f(2 y)+5 f(y)\|,\|f(4 y)-4 f(3 y)+6 f(2 y)-4 f(y)\|\} \\
& \quad \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \theta\|y\|^{p}
\end{align*}
$$

for all $y \in X$. Letting $y:=\frac{x}{2}$ and $g(x):=f(2 x)-2 f(x)$ for all $x \in X$, we get

$$
\begin{equation*}
\left\|g(x)-8 g\left(\frac{x}{2}\right)\right\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|^{p}}\|x\|^{p} \tag{2.6}
\end{equation*}
$$

for all $x \in X$. Hence

$$
\begin{align*}
& \left\|8^{l} g\left(\frac{x}{2^{l}}\right)-8^{m} g\left(\frac{x}{2^{m}}\right)\right\|  \tag{2.7}\\
& \quad \leq \max \left\{\left\|8^{l} g\left(\frac{x}{2^{l}}\right)-8^{l+1} g\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,\left\|8^{m-1} g\left(\frac{x}{2^{m-1}}\right)-8^{m} g\left(\frac{x}{2^{m}}\right)\right\|\right\} \\
& \quad \leq \max \left\{|8|^{l}\left\|g\left(\frac{x}{2^{l}}\right)-8 g\left(\frac{x}{2^{l+1}}\right)\right\|, \cdots,|8|^{m-1}\left\|g\left(\frac{x}{2^{m-1}}\right)-8 g\left(\frac{x}{2^{m}}\right)\right\|\right\} \\
& \quad \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \cdot \max \left\{\frac{|8|^{l}}{|2|^{p l+1}}, \cdots, \frac{|8|^{m-1}}{|2|^{p(m-1)+1}}\right\} \theta\|x\|^{p} \\
& \quad=\max \left\{2 \cdot|4|,|2|^{p}+1\right\} \cdot|2|^{\mid 3-p) l-1} \theta\|x\|^{p}
\end{align*}
$$

for all nonnegative integers $m$ and $l$ with $m>l$ and all $x \in X$. It follows from (2.7) that the sequence $\left\{8^{k} g\left(\frac{x}{2^{k}}\right)\right\}$ is Cauchy for all $x \in X$. Since $Y$ is a non-Archimedean Banach space, the sequence $\left\{8^{k} g\left(\frac{x}{2^{k}}\right)\right\}$ converges. So one can define the mapping $C: X \rightarrow Y$ by

$$
C(x):=\lim _{k \rightarrow \infty} 8^{k} g\left(\frac{x}{2^{k}}\right)
$$

for all $x \in X$.

By (2.1),

$$
\begin{aligned}
\|D C(x, y)\| & =\lim _{k \rightarrow \infty}\left\|8^{k} D g\left(\frac{x}{2^{k}}, \frac{y}{2^{k}}\right)\right\| \\
& \leq \max \left\{\frac{|2|^{p} \cdot|8|^{k}}{|2|^{p k}} \theta\left(\|x\|^{p}+\|y\|^{p}\right), \frac{|2| \cdot|8|^{k}}{|2|^{p k}} \theta\left(\|x\|^{p}+\|y\|^{p}\right)\right\} \\
& =\lim _{k \rightarrow \infty} \max \left\{|2|^{p},|2|\right\}|2|^{(3-p) k} \theta\left(\|x\|^{p}+\|y\|^{p}\right)=0
\end{aligned}
$$

for all $x, y \in X$. So $D C(x, y)=0$. Since $g: X \rightarrow Y$ is odd, $C: X \rightarrow Y$ is odd. So the mapping $C: X \rightarrow Y$ is cubic. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (2.7), we get (2.2). So there exists a cubic mapping $C: X \rightarrow Y$ satisfying (2.2).

Now, let $C^{\prime}: X \rightarrow Y$ be another cubic mapping satisfying (2.2). Then we have

$$
\begin{aligned}
& \left\|C(x)-C^{\prime}(x)\right\|=\left\|8^{q} C\left(\frac{x}{2^{q}}\right)-8^{q} C^{\prime}\left(\frac{x}{2^{q}}\right)\right\| \\
& \quad \leq \max \left\{\left\|8^{q} C\left(\frac{x}{2^{q}}\right)-8^{q} g\left(\frac{x}{2^{q}}\right)\right\|,\left\|8^{q} C^{\prime}\left(\frac{x}{2^{q}}\right)-8^{q} g\left(\frac{x}{2^{q}}\right)\right\|\right\} \\
& \quad \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{|2|^{3 q}}{|2|^{p q+1}} \theta\|x\|^{p},
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in X$. So we can conclude that $C(x)=C^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of $C$.
Theorem 2.2. Let $\theta$ and $p$ be positive real numbers with $p>3$. Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.1). Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\|f(2 x)-2 f(x)-C(x)\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|8|}\|x\|^{p}
$$

for all $x \in X$.
Proof. It follows from (2.6) that

$$
\left\|g(x)-\frac{1}{8} g(2 x)\right\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|8|}\|x\|^{p}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.3. Let $\theta$ and $p$ be positive real numbers with $p<1$. Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.1). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(2 x)-8 f(x)-A(x)\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|^{p}}\|x\|^{p}
$$

for all $x \in X$.
Proof. Letting $y:=\frac{x}{2}$ and $g(x):=f(2 x)-8 f(x)$ in (2.5), we get

$$
\begin{equation*}
\left\|g(x)-2 g\left(\frac{x}{2}\right)\right\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|^{p}}\|x\|^{p} \tag{2.8}
\end{equation*}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.4. Let $\theta$ and $p$ be positive real numbers with $p>1$. Let $f: X \rightarrow Y$ be an odd mapping satisfying (2.1). Then there exists a unique additive mapping $A: X \rightarrow Y$ such that

$$
\|f(2 x)-8 f(x)-A(x)\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|}\|x\|^{p}
$$

for all $x \in X$.
Proof. It follows from (2.8) that

$$
\left\|g(x)-\frac{1}{2} g(2 x)\right\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|}\|x\|^{p}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Now we prove the generalized Hyers-Ulam stability of the functional equation $\operatorname{Df}(x, y)=0$ in non-Archimedean Banach spaces: an even case.

Theorem 2.5. Let $\theta$ and $p$ be positive real numbers with $p<4$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.1). Then there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\|f(2 x)-4 f(x)-Q(x)\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|^{p}}\|x\|^{p}
$$

for all $x \in X$.
Proof. Letting $x=y$ in (2.1), we get

$$
\begin{equation*}
\|f(3 y)-6 f(2 y)+15 f(y)\| \leq 2 \theta\|y\|^{p} \tag{2.9}
\end{equation*}
$$

for all $y \in X$.
Replacing $x$ by $2 y$ in (2.1), we get

$$
\begin{equation*}
\|f(4 y)-4 f(3 y)+4 f(2 y)+4 f(y)\| \leq\left(|2|^{p}+1\right) \theta\|y\|^{p} \tag{2.10}
\end{equation*}
$$

for all $y \in X$.
By (2.9) and (2.10),

$$
\begin{aligned}
& \|f(4 x)-20 f(2 x)+64 f(x)\| \\
& \quad \leq \max \{\|4(f(3 x)-6 f(2 x)+15 f(x))\|,\|f(4 x)-4 f(3 x)+4 f(2 x)+4 f(x)\|\} \\
& \quad \leq \max \{|4|\|f(3 x)-6 f(2 x)+15 f(x)\|,\|f(4 x)-4 f(3 x)+4 f(2 x)+4 f(x)\|\} \\
& \quad \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \theta\|y\|^{p}
\end{aligned}
$$

for all $x \in X$. Letting $g(x):=f(2 x)-4 f(x)$ for all $x \in X$, we get

$$
\begin{equation*}
\left\|g(x)-16 g\left(\frac{x}{2}\right)\right\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|^{p}}\|x\|^{p} \tag{2.12}
\end{equation*}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 2.6. Let $\theta$ and $p$ be positive real numbers with $p>4$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.1). Then there exists a unique quartic mapping $Q: X \rightarrow Y$ such that

$$
\|f(2 x)-4 f(x)-Q(x)\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|16|}\|x\|^{p}
$$

for all $x \in X$.
Proof. It follows from (2.12) that

$$
\left\|g(x)-\frac{1}{16} g(2 x)\right\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|16|}\|x\|^{p}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.7. Let $\theta$ and $p$ be positive real numbers with $p<2$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.1). Then there exists a unique quadratic mapping $T: X \rightarrow Y$ such that

$$
\|f(2 x)-16 f(x)-T(x)\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|^{p}}\|x\|^{p}
$$

for all $x \in X$.
Proof. Letting $g(x):=f(2 x)-16 f(x)$ in (2.11), we get

$$
\begin{equation*}
\left\|g(x)-4 g\left(\frac{x}{2}\right)\right\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|2|^{p}}\|x\|^{p} \tag{2.13}
\end{equation*}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Theorem 2.8. Let $\theta$ and $p$ be positive real numbers with $p>2$. Let $f: X \rightarrow Y$ be an even mapping satisfying $f(0)=0$ and (2.1). Then there exists a unique quadratic mapping $T: X \rightarrow Y$ such that

$$
\|f(2 x)-16 f(x)-T(x)\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|4|}\|x\|^{p}
$$

for all $x \in X$.
Proof. It follows from (2.13) that

$$
\left\|g(x)-\frac{1}{4} g(2 x)\right\| \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \frac{\theta}{|4|}\|x\|^{p}
$$

for all $x \in X$.
The rest of the proof is similar to the proof of Theorem 2.1.
Let $f_{o}(x):=\frac{f(x)-f(-x)}{2}$ and $f_{e}(x):=\frac{f(x)+f(-x)}{2}$. Then $f_{o}$ is odd and $f_{e}$ is even. $f_{o}, f_{e}$ satisfy the functional equation (0.1). Let $g_{o}(x):=f_{o}(2 x)-2 f_{o}(x)$ and $h_{o}(x):=f_{o}(2 x)-8 f_{o}(x)$.

Then $f_{o}(x)=\frac{1}{6} g_{o}(x)-\frac{1}{6} h_{o}(x)$. Let $g_{e}(x):=f_{e}(2 x)-4 f_{e}(x)$ and $h_{e}(x):=f_{e}(2 x)-16 f_{e}(x)$. Then $f_{e}(x)=\frac{1}{12} g_{e}(x)-\frac{1}{12} h_{e}(x)$. Thus

$$
f(x)=\frac{1}{6} g_{o}(x)-\frac{1}{6} h_{o}(x)+\frac{1}{12} g_{e}(x)-\frac{1}{12} h_{e}(x) .
$$

Theorem 2.9. Let $\theta$ and $p$ be positive real numbers with $p<1$. Let $f: X \rightarrow Y$ be a mapping satisfying $f(0)=0$ and (2.1). Then there exist an additive mapping $A: X \rightarrow Y$, a quadratic mapping $T: X \rightarrow Y$, a cubic mapping $C: X \rightarrow Y$ and a quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
\| f(x) & -\frac{1}{6} A(x)-\frac{1}{12} T(x)-\frac{1}{6} C(x)-\frac{1}{12} Q(x) \| \\
& \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \cdot \max \left\{\frac{1}{|6|}, \frac{1}{|12|}\right\} \frac{\theta}{|2|^{p}}\|x\|^{p} \\
& =\max \left\{2 \cdot|4|,|2|^{p}+1\right\} \cdot \frac{\theta}{|12| \cdot|2|^{p}}\|x\|^{p}
\end{aligned}
$$

for all $x \in X$.
Theorem 2.10. Let $\theta$ and $p$ be positive real numbers with $p>4$. Let $f: X \rightarrow Y$ be $a$ mapping satisfying $f(0)=0$ and (2.1). Then there exist an additive mapping $A: X \rightarrow Y$, a quadratic mapping $T: X \rightarrow Y$, a cubic mapping $C: X \rightarrow Y$ and a quartic mapping $Q: X \rightarrow Y$ such that

$$
\begin{aligned}
\| f(x) & -\frac{1}{6} A(x)-\frac{1}{12} T(x)-\frac{1}{6} C(x)-\frac{1}{12} Q(x) \| \\
& \leq \max \left\{2 \cdot|4|,|2|^{p}+1\right\} \cdot \max \left\{\frac{1}{|6| \cdot|8|}, \frac{1}{|12| \cdot|16|}\right\} \theta\|x\|^{p} \\
& =\max \left\{2 \cdot|4|,|2|^{p}+1\right\} \cdot \frac{\theta}{|192|}\|x\|^{p}
\end{aligned}
$$

for all $x \in X$.

## Acknowledgement

The first author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2009-0070788).

## References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[2] P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[3] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64.
[4] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[5] M. Eshaghi-Gordji, S. Abbaszadeh and C. Park, On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, Journal of Inequalities and Applications 2009, Art. ID 153084 (2009).
[6] M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of cubic and quartic functional equations in non-Archimedean spaces, Acta Appl. Math., DOI 10.1007/s10440-009-9512-7, 2009.
[7] M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, C. Park and S. Zolfaghri, Stability of an additive-cubicquartic functional equation, Advances in Difference Equations 2009, Art. ID 395693 (2009).
[8] M. Eshaghi Gordji, H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Analysis.-TMA 71 (2009), 5629-5643.
[9] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[10] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[11] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[12] K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[13] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, Florida, 2001.
[14] H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010), 22-41.
[15] S. Lee, S. Im and I. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005), 387-394.
[16] F. Moradlou, H. Vaezi and G. M. Eskandani, Hyers-Ulam-Rassias stability of a quadartic and additive functional equation in quasi-Banach spaces, Mediterr. J. Math. 6 (2009), 233-248.
[17] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in non-Archimedean spaces,Applicable Analysis and Discrete Mathematics. 1 (2007), 325-334.
[18] M.S. Moslehian and Gh. Sadeghi, A Mazur-Ulam theorem in non-Archimedean normed spaces, Nonlinear Anal.-TMA 69 (2008), 3405-3408.
[19] C. Park, On an approximate automorphism on a $C^{*}$-algebra, Proc. Amer. Math. Soc. 132 (2003), 1739-1745.
[20] C. Park, Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras, Bull. Sci. Math. 132 (2008), 87-96.
[21] C. Park and J. Cui, Generalized stability of $C^{*}$-ternary quadratic mappings, Abstract Appl. Anal. 2007, Art. ID 23282 (2007).
[22] C. Park and A. Najati, Homomorphisms and derivations in $C^{*}$-algebras, Abstract Appl. Anal. 2007, Art. ID 80630 (2007).
[23] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126-130.
[24] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445-446.
[25] J.M. Rassias, Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math. 131 (2007), 89-98.
[26] J.M. Rassias and M.J. Rassias, Asymptotic behavior of alternative Jensen and Jensen type functional equations, Bull. Sci. Math. 129 (2005), 545-558.
[27] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[28] Th.M. Rassias, Problem 16; 2, Report of the $27^{\text {th }}$ International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
[29] Th.M. Rassias, On the stability of the quadratic functional equation and its applications, Studia Univ. Babes-Bolyai XLIII (1998), 89-124.
[30] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[31] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[32] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
[33] Th.M. Rassias and P. Šemrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[34] Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal. Appl. 173 (1993), 325-338.
[35] Th.M. Rassias and K. Shibata, Variational problem of some quadratic functionals in complex analysis, J. Math. Anal. Appl. 228 (1998), 234-253.
[36] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[37] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
${ }^{1}$ Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea

E-mail address: baak@hanyang.ac.kr
${ }^{2}$ Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran
E-mail address: madjid.eshaghi@gmail.com
${ }^{3}$ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran

E-mail address: a.nejati@yahoo.com


[^0]:    Date: Received: 19 May 2010; Revised: 10 Aug. 2010.

    * Corresponding author
    (C) 2010 N.A.G.

    2000 Mathematics Subject Classification. Primary 46S10, 39B52, 54E40, 47S10, 26E30, 12J25.
    Key words and phrases. non-Archimedean Banach space, additive-quadratic-cubic-quartic functional equation, generalized Hyers-Ulam stability.

