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GENERALIZED HYERS–ULAM STABILITY OF AN
AQCQ-FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN BANACH

SPACES

CHOONKIL PARK1, MADJID ESHAGHI GORDJI2∗ AND ABBAS NAJATI3

Abstract. In this paper, we prove the generalized Hyers–Ulam stability of the following
additive-quadratic-cubic-quartic functional equation

f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y)

in non-Archimedean Banach spaces.

1. Introduction and preliminary

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique element
having the 0 valuation, |rs| = |r| · |s| and the triangle inequality holds, i.e.,

|r + s| ≤ |r|+ |s|, ∀r, s ∈ K.

A field K is called a valued field if K carries a valuation. The usual absolute values of R and
C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality.
If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}, ∀r, s ∈ K,

then the function | · | is called a non-Archimedean valuation, and the field is called a non-
Archimedean field. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. A trivial example of
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a non-Archimedean valuation is the function | · | taking everything except for 0 into 1 and
|0| = 0.

Throughout this paper, we assume that the base field is a non-Archimedean field, hence
call it simply a field.

Definition 1.1. [18] Let X be a vector space over a field K with a non-Archimedean valuation
| · |. A function ‖ · ‖ : X → [0,∞) is said to be a non-Archimedean norm if it satisfies
the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (r ∈ K,x ∈ X);

(iii) the strong triangle inequality ‖x + y‖ ≤ max{‖x‖, ‖y‖} holds for all x, y ∈ X.

Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. (i) Let {xn} be a sequence in a non-Archimedean normed space X.
Then the sequence {xn} is called Cauchy if for a given ε > 0 there is a positive
integer N such that

‖xn − xm‖ ≤ ε

for all n,m ≥ N .
(ii) Let {xn} be a sequence in a non-Archimedean normed space X. Then the sequence

{xn} is called convergent if for a given ε > 0 there are a positive integer N and an
x ∈ X such that

‖xn − x‖ ≤ ε

for all n ≥ N . Then we call x ∈ X a limit of the sequence {xn}, and denote by
limn→∞ xn = x.

(iii) If every Cauchy sequence in X converges, then the non-Archimedean normed space
X is called a non-Archimedean Banach space.

The stability problem of functional equations originated from a question of Ulam [37]
concerning the stability of group homomorphisms. Hyers [10] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by
Aoki [1] for additive mappings and by Th.M. Rassias [27] for linear mappings by considering
an unbounded Cauchy difference. The paper of Th.M. Rassias [27] has provided a lot of
influence in the development of what we call the generalized Hyers–Ulam stability or the
Hyers–Ulam–Rassias stability of functional equations. A generalization of the Th.M. Rassias
theorem was obtained by Găvruta [9] by replacing the unbounded Cauchy difference by a
general control function in the spirit of Th.M. Rassias’ approach.

The functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. A generalized Hyers–Ulam stability
problem for the quadratic functional equation was proved by Skof [36] for mappings f :
X → Y , where X is a normed space and Y is a Banach space. Cholewa [2] noticed that
the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group.
Czerwik [3] proved the generalized Hyers–Ulam stability of the quadratic functional equation.
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The stability problems of several functional equations have been extensively investigated by
a number of authors and there are many interesting results concerning this problem (see [4],
[8], [11], [13], [14], [16], [20]–[35]).

In [12], Jun and Kim considered the following cubic functional equation

f(2x + y) + f(2x− y) = 2f(x + y) + 2f(x− y) + 12f(x),

which is called a cubic functional equation and every solution of the cubic functional equation
is said to be a cubic mapping.

In [15], Lee et al. considered the following quartic functional equation

f(2x + y) + f(2x− y) = 4f(x + y) + 4f(x− y) + 24f(x)− 6f(y),

which is called a quartic functional equation and every solution of the quartic functional
equation is said to be a quartic mapping.

M. S. Moslehian and Th. M. Rassias [17] proved the Hyers–Ulam–Rassias stability of
the Cauchy functional equation and the quadratic functional equation in non-Archimedean
spaces.
Recently, M. Eshaghi Gordji and M. Bavand Savadkouhi [6] proved the generalized Hyers–
Ulam stability of cubic and quartic functional equations in non-Archimedean spaces.

In this paper, we prove the generalized Hyers–Ulam stability of the additive-quadratic-
cubic-quartic functional equation (0.1) in non-Archimedean Banach spaces.

Throughout this paper, assume that X is a non-Archimedean normed space and that Y
is a non-Archimedean Banach space. Let |16| = |4|2 = |2|4 6= 1 and |8| = |2|3.

2. Generalized Hyers–Ulam stability of the functional equation (0.1)

One can easily show that an odd mapping f : X → Y satisfies (0.1) if and only if the odd
mapping mapping f : X → Y is an additive-cubic mapping, i.e.,

f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x).

It was shown in Lemma 2.2 of [7] that g(x) := f(2x)− 2f(x) and h(x) := f(2x)− 8f(x) are
cubic and additive, respectively, and that f(x) = 1

6
g(x)− 1

6
h(x).

One can easily show that an even mapping f : X → Y satisfies (0.1) if and only if the
even mapping f : X → Y is a quadratic-quartic mapping, i.e.,

f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x) + 2f(2y)− 8f(y).

It was shown in Lemma 2.1 of [5] that g(x) := f(2x) − 4f(x) and h(x) := f(2x) − 16f(x)
are quartic and quadratic, respectively, and that f(x) = 1

12
g(x)− 1

12
h(x).

For a given mapping f : X → Y , we define

Df(x, y) : = f(x + 2y) + f(x− 2y)− 4f(x + y)− 4f(x− y) + 6f(x)

− f(2y)− f(−2y) + 4f(y) + 4f(−y)

for all x, y ∈ X.
We prove the generalized Hyers–Ulam stability of the functional equation Df(x, y) = 0 in

non-Archimedean Banach spaces: an odd case.
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Theorem 2.1. Let θ and p be positive real numbers with p < 3. Let f : X → Y be an odd
mapping satisfying

‖Df(x, y)‖ ≤ θ(‖x‖p + ‖y‖p) (2.1)

for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|2|p‖x‖
p (2.2)

for all x ∈ X.

Proof. Letting x = y in (2.1), we get

‖f(3y)− 4f(2y) + 5f(y)‖ ≤ 2θ‖y‖p (2.3)

for all y ∈ X.
Replacing x by 2y in (2.1), we get

‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖ ≤ (|2|p + 1)θ‖y‖p (2.4)

for all y ∈ X.
By (2.3) and (2.4),

‖f(4y)− 10f(2y) + 16f(y)‖ (2.5)

≤ max {‖4(f(3y)− 4f(2y) + 5f(y))‖, ‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖}
≤ max {|4| · ‖f(3y)− 4f(2y) + 5f(y)‖, ‖f(4y)− 4f(3y) + 6f(2y)− 4f(y)‖}
≤ max{2 · |4|, |2|p + 1}θ‖y‖p

for all y ∈ X. Letting y := x
2

and g(x) := f(2x)− 2f(x) for all x ∈ X, we get
∥∥∥g(x)− 8g

(x

2

)∥∥∥ ≤ max{2 · |4|, |2|p + 1} θ

|2|p‖x‖
p (2.6)

for all x ∈ X. Hence∥∥∥8lg
( x

2l

)
− 8mg

( x

2m

)∥∥∥ (2.7)

≤ max
{∥∥∥8lg

( x

2l

)
− 8l+1g

( x

2l+1

)∥∥∥ , · · · ,
∥∥∥8m−1g

( x

2m−1

)
− 8mg

( x

2m

)∥∥∥
}

≤ max
{
|8|l

∥∥∥g
( x

2l

)
− 8g

( x

2l+1

)∥∥∥ , · · · , |8|m−1
∥∥∥g

( x

2m−1

)
− 8g

( x

2m

)∥∥∥
}

≤ max{2 · |4|, |2|p + 1} ·max

{ |8|l
|2|pl+1

, · · · ,
|8|m−1

|2|p(m−1)+1

}
θ‖x‖p

= max{2 · |4|, |2|p + 1} · |2|(3−p)l−1θ‖x‖p

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.7) that the
sequence {8kg( x

2k )} is Cauchy for all x ∈ X. Since Y is a non-Archimedean Banach space,

the sequence {8kg( x
2k )} converges. So one can define the mapping C : X → Y by

C(x) := lim
k→∞

8kg
( x

2k

)

for all x ∈ X.
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By (2.1),

‖DC(x, y)‖ = lim
k→∞

∥∥∥8kDg
( x

2k
,

y

2k

)∥∥∥

≤ max

{ |2|p · |8|k
|2|pk

θ(‖x‖p + ‖y‖p),
|2| · |8|k
|2|pk

θ(‖x‖p + ‖y‖p)

}

= lim
k→∞

max{|2|p, |2|}|2|(3−p)kθ(‖x‖p + ‖y‖p) = 0

for all x, y ∈ X. So DC(x, y) = 0. Since g : X → Y is odd, C : X → Y is odd. So the
mapping C : X → Y is cubic. Moreover, letting l = 0 and passing the limit m → ∞ in
(2.7), we get (2.2). So there exists a cubic mapping C : X → Y satisfying (2.2).

Now, let C ′ : X → Y be another cubic mapping satisfying (2.2). Then we have

‖C(x)− C ′(x)‖ =
∥∥∥8qC

( x

2q

)
− 8qC ′

( x

2q

)∥∥∥

≤ max
{∥∥∥8qC

( x

2q

)
− 8qg

( x

2q

)∥∥∥ ,
∥∥∥8qC ′

( x

2q

)
− 8qg

( x

2q

)∥∥∥
}

≤ max{2 · |4|, |2|p + 1} |2|3q

|2|pq+1
θ‖x‖p,

which tends to zero as q →∞ for all x ∈ X. So we can conclude that C(x) = C ′(x) for all
x ∈ X. This proves the uniqueness of C. ¤
Theorem 2.2. Let θ and p be positive real numbers with p > 3. Let f : X → Y be an odd
mapping satisfying (2.1). Then there exists a unique cubic mapping C : X → Y such that

‖f(2x)− 2f(x)− C(x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|8|‖x‖
p

for all x ∈ X.

Proof. It follows from (2.6) that∥∥∥∥g(x)− 1

8
g (2x)

∥∥∥∥ ≤ max{2 · |4|, |2|p + 1} θ

|8|‖x‖
p

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. ¤

Theorem 2.3. Let θ and p be positive real numbers with p < 1. Let f : X → Y be an odd
mapping satisfying (2.1). Then there exists a unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|2|p‖x‖
p

for all x ∈ X.

Proof. Letting y := x
2

and g(x) := f(2x)− 8f(x) in (2.5), we get
∥∥∥g(x)− 2g

(x

2

)∥∥∥ ≤ max{2 · |4|, |2|p + 1} θ

|2|p‖x‖
p (2.8)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. ¤
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Theorem 2.4. Let θ and p be positive real numbers with p > 1. Let f : X → Y be an odd
mapping satisfying (2.1). Then there exists a unique additive mapping A : X → Y such that

‖f(2x)− 8f(x)− A(x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|2|‖x‖
p

for all x ∈ X.

Proof. It follows from (2.8) that
∥∥∥∥g(x)− 1

2
g (2x)

∥∥∥∥ ≤ max{2 · |4|, |2|p + 1} θ

|2|‖x‖
p

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. ¤

Now we prove the generalized Hyers–Ulam stability of the functional equation Df(x, y) = 0
in non-Archimedean Banach spaces: an even case.

Theorem 2.5. Let θ and p be positive real numbers with p < 4. Let f : X → Y be an
even mapping satisfying f(0) = 0 and (2.1). Then there exists a unique quartic mapping
Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|2|p‖x‖
p

for all x ∈ X.

Proof. Letting x = y in (2.1), we get

‖f(3y)− 6f(2y) + 15f(y)‖ ≤ 2θ‖y‖p (2.9)

for all y ∈ X.
Replacing x by 2y in (2.1), we get

‖f(4y)− 4f(3y) + 4f(2y) + 4f(y)‖ ≤ (|2|p + 1)θ‖y‖p (2.10)

for all y ∈ X.
By (2.9) and (2.10),

‖f(4x)− 20f(2x) + 64f(x)‖ (2.11)

≤ max{‖4(f(3x)− 6f(2x) + 15f(x))‖, ‖f(4x)− 4f(3x) + 4f(2x) + 4f(x)‖}
≤ max{|4|‖f(3x)− 6f(2x) + 15f(x)‖, ‖f(4x)− 4f(3x) + 4f(2x) + 4f(x)‖}
≤ max{2 · |4|, |2|p + 1}θ‖y‖p

for all x ∈ X. Letting g(x) := f(2x)− 4f(x) for all x ∈ X, we get
∥∥∥g(x)− 16g

(x

2

)∥∥∥ ≤ max{2 · |4|, |2|p + 1} θ

|2|p‖x‖
p (2.12)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. ¤
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Theorem 2.6. Let θ and p be positive real numbers with p > 4. Let f : X → Y be an
even mapping satisfying f(0) = 0 and (2.1). Then there exists a unique quartic mapping
Q : X → Y such that

‖f(2x)− 4f(x)−Q(x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|16|‖x‖
p

for all x ∈ X.

Proof. It follows from (2.12) that
∥∥∥∥g(x)− 1

16
g (2x)

∥∥∥∥ ≤ max{2 · |4|, |2|p + 1} θ

|16|‖x‖
p

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. ¤

Theorem 2.7. Let θ and p be positive real numbers with p < 2. Let f : X → Y be an
even mapping satisfying f(0) = 0 and (2.1). Then there exists a unique quadratic mapping
T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|2|p‖x‖
p

for all x ∈ X.

Proof. Letting g(x) := f(2x)− 16f(x) in (2.11), we get
∥∥∥g(x)− 4g

(x

2

)∥∥∥ ≤ max{2 · |4|, |2|p + 1} θ

|2|p‖x‖
p (2.13)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. ¤

Theorem 2.8. Let θ and p be positive real numbers with p > 2. Let f : X → Y be an
even mapping satisfying f(0) = 0 and (2.1). Then there exists a unique quadratic mapping
T : X → Y such that

‖f(2x)− 16f(x)− T (x)‖ ≤ max{2 · |4|, |2|p + 1} θ

|4|‖x‖
p

for all x ∈ X.

Proof. It follows from (2.13) that
∥∥∥∥g(x)− 1

4
g (2x)

∥∥∥∥ ≤ max{2 · |4|, |2|p + 1} θ

|4|‖x‖
p

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1. ¤

Let fo(x) := f(x)−f(−x)
2

and fe(x) := f(x)+f(−x)
2

. Then fo is odd and fe is even. fo, fe satisfy
the functional equation (0.1). Let go(x) := fo(2x) − 2fo(x) and ho(x) := fo(2x) − 8fo(x).
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Then fo(x) = 1
6
go(x)− 1

6
ho(x). Let ge(x) := fe(2x)− 4fe(x) and he(x) := fe(2x)− 16fe(x).

Then fe(x) = 1
12

ge(x)− 1
12

he(x). Thus

f(x) =
1

6
go(x)− 1

6
ho(x) +

1

12
ge(x)− 1

12
he(x).

Theorem 2.9. Let θ and p be positive real numbers with p < 1. Let f : X → Y be a mapping
satisfying f(0) = 0 and (2.1). Then there exist an additive mapping A : X → Y , a quadratic
mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping Q : X → Y such
that ∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥

≤ max{2 · |4|, |2|p + 1} ·max

{
1

|6| ,
1

|12|
}

θ

|2|p‖x‖
p

= max{2 · |4|, |2|p + 1} · θ

|12| · |2|p‖x‖
p

for all x ∈ X.

Theorem 2.10. Let θ and p be positive real numbers with p > 4. Let f : X → Y be a
mapping satisfying f(0) = 0 and (2.1). Then there exist an additive mapping A : X → Y ,
a quadratic mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping
Q : X → Y such that∥∥∥∥f(x)− 1

6
A(x)− 1

12
T (x)− 1

6
C(x)− 1

12
Q(x)

∥∥∥∥

≤ max{2 · |4|, |2|p + 1} ·max

{
1

|6| · |8| ,
1

|12| · |16|
}

θ‖x‖p

= max{2 · |4|, |2|p + 1} · θ

|192|‖x‖
p

for all x ∈ X.
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