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1 Introduction

The planetary science community has been furnished with many thousands of surface images from our nearest
planetary neighbours since the 1960s. Early datasets were both low in volume and in resolution making the job of
their analysis tractable by human experts, despite it being a laborious and time consuming task. Recent missions
have been equipped with high resolution imaging capabilities yielding many more images than human analysts could
ever reasonably process manually. Massive Martian datasets generated from the Mars Reconnaissance Orbiter for
example include images with resolutions up to 50m over large regions of the planet. Complementary to these
images, 3D terrain maps exist for some areas notably from Mars Orbiter Laser Altimeter data, but these are of
a lower resolution and are not available in all cases. The ever increasing number of available images and future
missions such as DAWN to the asteroid belt and Messenger to Mercury add impetus to the search for a reliable
automated assistant to aid planetary image analysis. As well as the potential labour savings, automation can help
remove inherent subjectivity of human analysts thereby providing more consistent measurements to be extracted
from images. This document reviews potential planetary science applications of an automated system, critically
examines a number of existing algorithms for surface feature extraction and investigates possible scientifically valid
solutions.

2 Applications

2.1 Crater counting

Chronological studies of planetary surfaces rely heavily on crater counting. The older a surface the more impact
craters there are expected to be present. Debris in the early solar system is believed to have contained many large
objects resulting in the biggest impact craters during the late heavy bombardment approximately 4.0GA ago [1].
After this period it is believed there has been a steady accumulation of smaller impacts up to the present day. A
Size Frequency Distribution (SFD) is a plot relating the size and number of impact craters present within an area
[2]. The shape of these plots is indicative of a surface’s age. Radiometric dating techniques have been applied
to lunar samples thereby providing absolute calibration for SFDs applicable to the Moon. Other calibrations not
yet withstanding, SFDs can still be applied to give relative ages for Martian [3][4] and other surfaces. Figure 1
shows an example SFD. Beyond simply dating a surface, an SFD may be used to gain information about erosive
and other processes acting upon a surface as craters are in-filled and weathered at different rates under different
conditions.

2.2 Drainage networks

The study of drainage networks can provide information on climate history [5] and allow inferences to be made
about tectonic modification of a planetary surface. The parameters of a drainage network can help determine
the method by which the drainage system was created. Drainage density, defined as the total length of drainage
channels divided by the area of a drainage basin, is expected to be high if networks are formed in the presence of
precipitation and surface runoff. Conversely, lower drainage densities with channels exhibiting amphitheatre type
terminations are better accounted for by groundwater sapping [12]. As water will always drain via the steepest
path it is also possible to infer relative surface elevations from visual images. A great many drainage networks
have been observed on Mars, predominantly, but not exclusively, in the cratered southern uplands. These are
believed to have been formed in the Noachian period between 3.5GA and 4.6GA ago. As these networks have been
inactive for billions of years any inferred elevations will reveal paleo-gradients which can be compared to present
day gradients, discrepancies between which provide evidence of tectonic modification. As of yet no examples have
been observed on Mars but Earth exhibits numerous uplifted networks [6] [7].

3 Published feature detection methods

3.1 Crater detection

A broad range of algorithms have been proposed for the extraction of impact crater structures in images. All
algorithms face similar problems inherently found in crater images. Briefly, these problems include:

• Craters are different sizes

3



Figure 1: Size Frequency Distribution of impacts in the Arsia Mons caldera. Y axis shows cumulative frequency
of craters, X axis shows diameter of craters. It is typical for both axis to be plotted on a logarithmic scale. The
shape of the curve is indicative of the caldera’s age.

• Camera angles can cause craters to appear elliptical

• Crater illumination can vary considerably

• Craters can overlap, partially destroying crater walls

• Craters can be nested

• There are many other structures which can appear crater like

No proposed algorithm fully addresses all of these problems, preferring to focus on simpler problems such as scale
invariance. An overview of currently published crater detection methods is presented below.

3.1.1 Shadow topology method

Andre Smirnov of The University of Colorado developed a scale invariant crater detection algorithm based on
shadow topology [9]. This method was implemented and tested using Sandia National Labs’ FCDMF imaging
library. The algorithm consists of 4 mandatory steps, followed by 2 optional stages purported to improve perfor-
mance. Step 1 is the thresholding of an image in order to extract shadows. This step involves user intervention
to subjectively select and experimentally adjust a threshold to extract as much genuine shadow as possible. Step
2 clusters connected putative shadow pixels into separate objects. Step 3 places a bounding rectangle around
shadow objects and performs a simple filtering to eliminate objects deemed to be too large or small. Step 4, the
last mandatory step, searches for sharp discontinuities around object perimeters to differentiate between crater and
non-crater shadows. The discontinuity test operates under the premise that extremal points on crater shadows will
form acute angles with their neighbours as illustrated in Figure 2. An object containing two such discontinuities
is considered to be a crater.

The optional steps 5 & 6 are intended to remove false positives. A circle is fitted using three points on an object’s
perimeter, two of which being the discontinuity points and the third being selected at random. The mean distance
of all perimeter pixels from the fitted circle is used to reject objects if they fall outside of a user defined tolerance.
The author estimates that 80% positive detection rates are achievable and reports 100% successful detection of
craters during limited testing.
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Figure 2: Two vectors are formed between closely neighbouring pixels. The angle between vectors is expected to
be acute at extremal point on crater shadows.

Figure 3: Left: the parameter space for a circle. Right: slice through the parameter space at a given radius. The
bright spots show the accumulation of edges consistent with a circular interpretation with the given radius at the
corresponding location in an image.
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Figure 4: Circular conic section fitted to an arc of points. Various goodness of fit measurements include minimising
the sum of squared residuals, median of squared residuals, mean residual, maximum residual and others.

3.1.2 Circular and elliptical edge detection methods

Numerous algorithms have proposed the use of a Hough transform [10] [11] to detect circular or elliptical arcs as
a means of detecting craters [12] [13] [14] [19] [21]. The parameter space of a circle equation is partitioned into a
number of discrete bins. An edge detector is employed to identify potential crater rim edges, combinations of which
are then compared to possible circle parameters. Bins in the parameter space consistent with a circle interpretation
of the edges are incremented. After all edges have been analysed the bins with the highest count indicate the most
likely circles. This process is illustrated in Figure 3. Single arcs can be detected using this method, allowing for
the possibility of partially occluded craters to be detected. Ellipses can be detected to account for perspective
effects caused by different camera angles. Conic section fitting is an alternative approach for imposing similar
interpretations of detected edges. A conic section is defined as the intersection of a plane with a cone as expressed
by the following equation:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (1)

where A, B and C are constants fixing the shape of a cone, D, E and F define the intersecting plane and x, y are
Cartesian coordinates.

Various fitting algorithms are available which attempt to minimise the residuals between edges and a fitted circle,
ellipse or conic [15] [16] as illustrated in Figure 4. The Hough transform is a reliable statistically valid approach to
circular feature detection. The robust properties of the Hough transform are analysed in [17] where it is shown to
be similar to regression methods such as least median of squares. The HT will successfully detect features in the
presence of up 50% false or missing edges due to noise. Conic section fitting algorithms vary in their performance
and stability. Both methods easily incorporate scale invariance.

Both the Hough transform and conic methods depend upon having reliable edges to work with. Surface images
yield a great number of edges, many not associated with craters. Methods of preprocessing these edges include the
thresholding of edge strengths [12] [19], use of morphological operations [21], selection of regions of interest using
grey level co-occurrence matrices [18] and the removal of linear edges [19]. The removal of linearly aligned edges
will upon occasion erroneously delete crater edges, a problem which becomes increasingly severe with interacting
craters as depicted in Figure 5. Problems with such interacting craters are acknowledged by [18]. Other methods
of circle fitting have been employed including genetic algorithms [21] and radial consistency [20].

Another complication of applying edge based methods is the illumination of craters which can produce multiple
arcs between shadow transitions as illustrated in Figure 6. Some algorithms appear to make no explicate efforts
to account for multiple arcs, or at least do not report their handling. Other algorithms make explicit assumptions
about the nature of multiple arcs and attempt to extract the most appropriate arcs based upon the assumed shape
of typical craters [18], raising the question of how the algorithm would perform in non-typical cases.
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Figure 5: Misleading linear features become common in densely cratered images, just one problem associated in
interacting craters.

Figure 6: Multiple arcs are found within crater edge images. Left: most craters generate at least 4 arcs which
outline the shadow and illuminated ridges. Right: some craters generate up to 6 arcs if the ridges are raised above
the level of the surrounding surface leading to both inner and outer shadow and illuminated regions.
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Figure 7: A convolution kernel can approximate a crater orientated in the direction of illumination. The negative
regions respond to shadow and the positive regions respond to strong illumination.

3.1.3 Template and model matching methods

Annular convolution kernels have been used as matched filters which are sensitive to the direction of crater illumi-
nation [19]. One side of the kernel models the shadowed areas of a crater rim and the other models the illuminated
side. Such a kernel is shown in Figure 7. The resultant images are searched for local maxima which can be labelled
as potential craters. Craters of different sizes can be detected by either scaling the image or the kernel.

Naive convolution kernels only provide a rough model of a crater which are sensitive to many crater-like structures
and channels giving many false positives. These models can be improved by taking a typical crater as a template
and comparing it to all points in an image using normalised cross-correlation [19] [23]:

corr(i, j) =

∑n,m
k,l f(i+ k, j + l)g(k, l)√∑n,m

k,l f(i+ k, j + l)2
∑n,m
k,l g(k, l)2

(2)

where g is the n by m crater template and f the image under analysis.

A template crater is selected and compared using (2) at each point in an image under analysis. As with the
matched filter, points of local maxima are identified as potential craters. Multiple templates can be used to match
craters of different sizes and under different illumination conditions. This method tends to work best for small
craters and cannot cope with interacting craters or craters with illumination vastly differing from the template.
Unlike the shadow or edge methods, this method makes use of the full range of grey levels within an image making
it potentially more discriminating. Other template matching methods are presented by [22].

The idea of a typical crater can be formalised by computing an average crater from a set of samples. The eigencraters
borrowed from facial recognition literature [24] employ Principal Component Analysis to find the main forms of
variation within crater images. All pixels within a sample crater form a feature vector. The eigenvectors of the
co-variance matrix calculated from many sample vectors form the principal components. The components with the
largest eigenvalues are retained as a lower dimensional description of a model crater. Eigencraters were used for
false positive removal by [18], where the principal components of a putative crater are compared with the model
and are rejected if they fall outside a threshold.

Eigencraters rely upon comparing craters in eigenvector space. Alternatively, an appearance model can be con-
structed which is compared in image space, as has been used in lip tracking [25]. A Point Distribution Model can
pinpoint locations around a crater rim, allowing for elliptical or irregular craters to be modelled. PCA is used to
identify the main variations in crater rim shape. One pixel wide cross-sectional profiles across the selected points
are concatenated to form an overall grey level profile around the crater rim. PCA again is used to identify the
main variations within the grey levels. A model crater can be reconstructed from the mean shape and profile which
can be fitted with a cost function to detect craters in unseen images.

3.2 Drainage networks and channel-like structures

Algorithms for extracting extended channel-like structures must overcome some common obstacles including:

• large variability in channel length, shape and path
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• branching and interaction between channels

• connecting channel fragments into complete networks

Far less focus has been given to the detection of such features on Mars in comparison to craters.

Methods to automatically extract drainage networks on Mars have focused on Digital Elevation Maps (DEM)
generated by Mars Orbiter Laser Altimeter (MOLA) data [26] [27]. Such data is not affected by illumination
conditions. These methods apply virtual rain over an area to model how a surface will drain. Each pixel within
a DEM is assigned a pointer to the lowest of its neighbours. The pointer chains hierarchically coalesce forming
accumulations of water theoretically corresponding to actual drainage channels. To ensure no localised minima
unduly affects drainage a flooding stage identifies pits. The elevation of these pits is raised to the level of the lowest
pour point around their edges thus allowing a surface to be fully drained. These methods were first developed for
terrestrial river basins [28].

Fault scarps indicative of tectonic action has been extracted from DEMs using wavelet edge analysis [29]. A one
dimensional filter based on a cubic B-spline function was used over 5 pixels. Stacking in a north-south direction
formed a 5x5 convolution kernel which was tapered using a Hanning window in the east-west direction. The
rotation and scaling of either an image under analysis or the kernel itself allows for features to be detected at
different orientations and scales. It is reported erroneous features, particularly crater ridges, are identified using
this method requiring elimination. To link and localise features hysteresis thresholding is employed, followed by
hole filling and thinning morphological operations aimed at producing single pixel wide skeletons. Small braches
deemed to be spurious are pruned before measurements being taken such as length and density of faults. No test
results are formally presented for this method.

4 General solution - texture analysis

Craters, channel structures and other surface features have their distinctive properties, a-priori knowledge of which
may aid in their detection using individually designed algorithms. Alternatively, a general solution to the detection
of all surface features may be found in texture analysis. Texture analysis focuses on the recognition, segmentation
and synthesis of images based on repeated textural elements [30]. Such textural elements could include the ripples
of sand found within dunes or craters dispersed over a plane. Issues involved in texture analysis include defining
suitable texture descriptors, handling texture boundaries, and accounting for invariances such as illumination,
rotation and scale. Numerous texture analysis methods have been proposed, a selection of which are reviewed
below. Many methods focus on producing texture descriptions which can be fed into a classifier. Others take a
more direct statistical approach which directly build probability densities from textured images.

4.1 Texture Energy and Eigenfilters

Attempts have been made to describe textures by analysing their fine-grain structure. The more complex a region’s
structure the more energetic it is considered to be. Laws [31] proposed the use of three simple filters to detect
local grey level intensity, local edges and spots:

• ( 1, 2, 1) local grey level

• (-1, 0, 1) edge detection

• (-1, 2, -1) spot detection

These simple primitives can be combined to search for wider structures such as ripples and waves.

• ( 1, -4, 6, -4, 1) ripple detector

• (-1, 2, 0, -2, 1) wave detector

These basic filters can be transposed and combined using matrix multiplication to create 2 dimensional structure
detectors. The response to these filters highlights the correlations between pixels within texture primitives on a
trail and error basis. Many texture filters may be required to fully describe a texture element and these can not
generally be known a-priori. Once found, a selection of discriminating filter outputs can be fed into a classifier.
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Figure 8: Series of Gabor filters for the detection of spacial frequency components at different orientations. Rows
show increasing spacial frequencies downwards.

An alternative approach to finding the correlation between pixels in a textured region uses Eigenfilters proposed by
Ade [32]. All possible pixel pairs within a small window are considered using a covariance matrix. The eigenvectors
required to diagonalise this matrix expose the principal components. These components are analogous to the most
discriminating texture energy filters previously selected by trail and error.

4.2 Fourier domain and autocorrelation

As texture elements often repeat periodically attempts have been made to categorise textures in the Fourier domain.
This has been applied to the analysis of infrared satellite images [33]. Alternatives to crater counting have even
been proposed which suggest Size Frequency Distributions could be replaced with Fourier analysis [34]. Problems
with the Fourier analysis of textures include accounting for scaling, rotation and local deformations of texture
elements which can have a large effect. But the largest problem faced by this approach is the global nature of a
Fourier Transform as the 1 dimensional form below shows

FT (ξ) =

∫ ∞
−∞

f(x)e−2πixξdx (3)

where FT is the Fourier Transform returning the contribution of given frequency ξ within function f . Here, e is
the base of the natural logarithm and i is the imaginary number. In a two dimensional case f could be an image.
Clearly the integral required to calculate a spacial frequency’s contribution to an image does not take into account
any particular locality. Identifying the power spectrum for individual textures within a multi-textured image can
only be done by applying a Fourier Transform on smaller image patches. This can be done by using a Windowed
Fourier Transform which is more sensitive over a specified region, as defined by a window function in

WFT (ξ, t) =

∫ ∞
−∞

f(x)w(x− t)e−2πixξdx (4)

where w is the window function controlling f ’s contribution to the Fourier Transform and t positions the window
along the x axis. If the w is a Gaussian the transform is known as a Gabor transform. Such transforms can be
conveniently implemented as Gabor filters [36] [35] using convolution kernels such as those depicted in Figure 8.
These filters can provide various channels of information such as granularity, periodicity and orientation at points
in an image. By themselves these values do not constitute a full texture analysis system, as the probability of the
resultant values conditional on particular textures must be addressed separately.

Autocorrelation is another possible approach to texture analysis. Measuring the granularity of textures has been
attempted by counting how many pixels an image must be shifted before its autocorrelation drops below a threshold.
Kaizer [37] proposed a threshold of 1/e whilst analysing aerial photographs. These measures of coarseness do not
provide good information as to how isotropic or regularly distributed textural elements are, as in natural images
these can vary in appearance and distribution over textured regions.

4.3 Wavelets

Wavelet based texture analysis is similar to a Windowed Fourier Transform and has been applied to Martian
MOLA data [29]. A short-term wave segment, or wavelet, is any integrable function which can be scaled and
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Figure 9: Example wavelet Mother Functions. Left: Meyer. Centre: Morlet. Right: Mexican Hat

Figure 10: Left: patch of a textured image region containing grey levels gxy. Centre: co-occurring grey levels a
fixed vector apart. Right: Grey level co-occurrence matrix giving frequency of grey level co-occurrences.

shifted to model a signal. A series of such wavelets can describe the various oscillations in a textured region more
efficiently than Gabor filters, as they have more expressive powers not being limited to sinusoid forms. Example
wavelets include the Meyer, Morlet and Mexican Hat shown in Figure 9. The link between a wavelet transform
and Windowed Fourier Transform is clear

ψab(x) = a−1/2ψ(
x− b
a

) (5)

WT (b, a) =

∫ ∞
−∞

f(x)ψ∗ab(x)dx (6)

Where ψab(x) is the Mother Wavelet, a and b are scaling and shifting parameters repsectively, and ψ∗ab(x) is the
complex conjugate of the Mother Wavelet. The Mother Wavelet defines the overall shape of a wave segment
which can be used at different scales, which is especially convenient for texture analysis as texture elements are
by their nature multi-scaled properties. Like Gabor filters, wavelets can be implemented as sets of 2 dimensional
convolution kernels. A set of discriminating wavelets can then be used for classification.

4.4 Co-occurrence statistics

The most basic statistical method of differentiating between textures is to analyse grey levels. A grey level histogram
and thresholding scheme can provide a probabilistic method of segmenting textures containing significantly different
grey means. Whist this approach can be invariant to a great many parameters it is highly sensitive to illumination
conditions, especially uneven illuminations [38]. It is also inappropriate for multi-modal textures.

A more sophisticated approach is to build probability densities of grey level co-occurrences, an early technique
which has been applied to aerial photographs [39] [40] [41]. The co-occurrences of pixel grey levels in a textured
region at a fixed vector from each other can be recorded within a 2 dimensional histogram. Once normalised these
histograms yield probability mass functions against which other pixel pairs can be compared. Such a PMF is
known as a Grey Level Covarience Matrix (GLCM). Their construction is illustrated in Figure 10.
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There is little information within a single covariance matrix as texture elements cannot be fully modelled with
just pixel pairs [42]. Also, problems occur when computing likelihoods based on co-occurrence statistics due to
correlations between pixels. If pixel grey levels were uncorrelated it would be possible to relate the probability of
finding particular grey levels, j and i, within a textured region given a set of pixels, ∆, at fix vectors, δ, apart
using

P (j|∆) = P (j)

∆∏
δ

Pδ(i|j)
P (j)Pδ(i)

(7)

where Pδ(i|j) is determined from a set of GLCMs. This however will not work in practice as the structure of
textures ensures pixel values are correlated making the likelihood term invalid.

Algorithms designed to work with GLCM typically break away from the statistics, preferring to compute other
values [39] such as:

Entropy =

Ng∑
i=1

Ng∑
j=1

−Pδ(i, j) log(Pδ(i, j)) (8)

Contrast =

Ng−1∑
i=0

i2Px−y(i) (9)

Correlation =

∑Ng

i=1

∑Ng

j=1 ijPδ(i, j)− µxµy
σxσy

(10)

where Pδ(i, j) is the joint probability of the co-occurrence of grey level i and j at fixed offset, Ng the total grey
levels in an image, Px−y(i) the ith entry in the distribution of absolute differences in co-occurring grey levels, µx,
µy, σx, σy the mean and standard deviation of the two marginal probabilities of Pδ(i, j) respectively. Such values
can then be fed into other classifiers [43].

To directly utilise grey level co-occurrence statistics it is necessary to overcome the correlation problem of combining
pixel pairs as shown above where a product of multiple co-occurrence probabilities is computed. The most direct
way to do this is to construct co-occurrence matrices for multiple pixels, i.e. constructing probability densities
with one dimension per pixel [44]. This replaces the multiple GLCMs in the calculation of P (j|∆) with a single
matrix thereby modelling correlations and eliminating the need to compute products. For example, modelling the
relationship between 3 correlated pixels would require a 3 dimensional matrix, 4 pixels a 4 dimensional matrix
etc. Such density estimates will clearly grow rapidly with image patch size. It has been shown that such density
estimates can differentiate between textures using maximum likelihood and EM, however the storage requirements
become prohibitive when large numbers of correlations are being modelled [45]. Reducing the dimensionality of
these matrices may make a larger scale algorithm tractable.

4.5 Markov Random Fields

Texture filter methods (Gabor, Texture Energy, Wavelets etc.) focus on the microstructure of textured regions.
Attempts have been made to model the larger scale structure of textures using graphs which probabilistically
connect regions of micro texture to neighbouring areas. The Markov Random Field is a popular choice, which
assumes the micro-texture of a neighbouring region can be determined by learning the probability of transitions
from training samples exhibiting the Markov property. This assumes the property of a textured sub-region only
depends upon its immediate neighbours, i.e. the wider structure is a stochastic process which only depends upon
the present (local) state. An example application involving the analysis of aerial photographs can be found in
[46] where roads were segmented from urban scenes. Textures containing contextual dependencies beyond their
immediate neighbours can be modelled using MRFs organised hierarchically into multiple resolution pyramids [47].
Research in this area includes the modelling and synthesis of textures, results of which can be seen in Figure 11.
MRFs combine micro texture filter approaches with a statistical model with some similarities to GLCMs. Whereas
a GLCM provides the probabilities of grey level transitions at fixed offsets, a MRF provides the probabilities of
micro textures at adjacent nodes.
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Figure 11: Examples texture synthesis using Markov Random Field models. Small images show sample textures
along side their larger synthesised versions.

Figure 12: In 2 dimensions PCA can be seen as rotating data so new axis (principal components) account for the
most variation in values. The covariance matrix of the new data space will be diagonal. Discarding the smaller
principal components allows for lower dimensional representations at the loss of orthogonal information.

5 Dimensionality reduction

The high dimensionality of statistical texture analysis approaches was noted above. This section addresses the
issue of how computational and storage requirements of such approaches can be made tractable. Dimensionality
reduction techniques take high dimensional data and attempt to approximate the manifold upon which data points
exist using a lower dimensional space. In order to appropriately model any manifold a method must take correct
account of the underlying manifold’s shape, nature of data distributions and errors on data points. Reduction
techniques must minimise the residuals between actual data points and the approximated manifolds whilst not
over fitting.

5.1 Principal Component Analysis

Principal Component Analysis (PCA) [48] computes the vectors within data space which account for the maximum
amount of variance. PCA is equivalent to forming least squared hyperplane fits to data, as such errors on data
points are assumed to be uniform and isotropic. PCA amounts to finding a projection of the original data onto an
alternative coordinate system which yields a diagonal covariance matrix as illustrated in Figure 12.

S =
1

N

N∑
i=1

(yi − ȳ)(yi − ȳ)T (11)

D = WTSW (12)

Where S is the original covariance matrix, yi the data points and N the number of data points. Eigenvectors
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of the data’s covariance matrix are computed, the eigenvalues of which reflect the amount of variance in those
directions. These vectors, wi, are known as principal components and are used to diagonalise S forming D. The
least significant principal components can be discarded thereby leaving a lower dimensional representation of the
original data. PCA can be an effective method of reducing dimensionality as long as only linear relationships exist
between dimensions and there is sufficient variance remaining in the retained principal components.

5.2 Kernel PCA

Kernel PCA [50] is an extension to PCA which attempts to model non-linear manifolds by mapping data points
into a new space via a non-linear function (kernel).

S =
1

N

N∑
i=1

φ(yi − ȳ)φ(yi − ȳ)T (13)

The kernel φ attempts to flatten out data so regular PCA can subsequently be applied. The kernel function itself
contains an arbitrary number of degrees of freedom, the number of which will determine how accurately a manifold
can be approximated. Too few degrees of freedom will lead to a rough approximation, whereas too many may cause
over-fitting beyond the noise level and therefore poor generalisation to other datasets. The selection of kernel is
therefore based on a trail and error.

5.3 Probabilistic PCA

Whereas PCA only attempts to extract the axes occupied by data, Probabilistic PCA is an extension which
attempts to describe, in a probabilistic manner, a lower dimensional representation conditional upon its higher
dimensional counterpart and a transformation matrix [51]. The parameters of the appropriate transformation can
be determined using maximum likelihood on an iterative basis. This method assumes a high dimensional data
vector, xn, can be transformed into a lower dimensional approximation, yn via a linear transformation, W :

yn = Wxn + µ+ ε (14)

where µ is the mean to which data points must be translated and ε is an isotropic normally distributed error with
an expectation of zero. The transformation W is an l by m matrix where m is the dimensionality of the reduced
data vector and l the dimensionality of the original data vector. PPCA has a stronger requirement than the similar
Factor Analysis [51] which allows for non-isotropic errors.

Assuming data is first centred to give zero mean and data is normally distributed upon its manifold, PPCA gives
the probability of observing a data point as

p(yn|xn,W, σ) ∝ N(yn|Wxn, σ
2I) (15)

Integrating over x gives the marginal distribution

yn ∝ N(yn|0, C) (16)

where C = WWT + σ2I. Assuming all data points are independent, the likelihood of observing a lower dimen-
sional dataset Y conditioned on the transformation parameters can be calculate and maximised to determine the
parameters W and σ:

p(Y |W,σ) =

N∏
n=1

p(yn|W,σ) (17)

ML = arg max
W,σ

p(Y |W,σ) (18)
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Figure 13: Feed forward neural network containing an input layer (bottom), hidden lay (centre) and output layer
(top). Signals are propagate forward through the network as weighted sums at each node. Weight vectors W and
w are adjusted iteratively in a process of back propagation.

5.4 Gaussian Process Latent Variable Models

Gaussian Process Latent Variable Models (GPLVMs) [52] generalise PPCA by replacing the linear transformation
matrix W with an arbitrary function φ thereby combining the idea with that of Kernel PCA.

yn = φ(xn) + µ+ ε (19)

Agreement between data and model is obtained by minimising the Kullback-Leibler divergence in the latent (lower
dimensional) space.

5.5 Neural networks

A feed-forward back-propagation neural network trained to output a reproduction of its input can form a lower
dimensional representation by feeding though a hidden layer of neurons [53]. Each node (neuron) contains input
connections and output connections. The output is produced by passing a weighted sum of the inputs though a
non-linear (typically sigmoid) activation function.

With reference to Figure 13, given an input pattern µ, hidden unit j recieves a weighted input

hµj =
∑
k

wjkξ
µ
k (20)

yeilding an output

V µj = g(hµj ) (21)

where g is the non-linear activation function. The output unit i thus recieves

hµi =
∑
j

WijV
µ
j (22)

yeilding a final output

Oµi = g(
∑
j

Wijg(
∑
k

wjkξ
µ
k )) (23)

A network is trained by systematically adjusting the weights between neurons using a back-propagation algorithm.
Such an algorithm compares actual output with a desired output using a cost function

15



E =
1

2

∑
µ,i

[ζµi −O
µ
i ]2 (24)

where ζ is the target output, which would be equal to the input ξ in a dimensionality reduction scenario. This
cost function is appropriate for Gaussian distributed errors on the output data, and can be easily modified into a
weighted least squares form if the measurement errors on the data are known. This choice can also be shown to
approximate conditional probabilities of classification when training a network for ‘1 from C’ coding [54].

Partial derivatives of the cost function with respect to each neuron’s weight are assessed. Minimising the cost
function becomes an iterative process of adjusting weights in the downward direction of the derivatives using
gradient decent. For hidden-to-output and input-to-hidden weights the update functions are

∆Wij = −η ∂E

∂Wij
(25)

∆wjk = −η ∂E

∂wjk
(26)

where η is the learning rate which determines the speed of decent.

If the output is trained to reproduce the input and there are fewer nodes in the hidden layer, the hidden layer
acts as a lower dimensional representation of the data. If the hidden layer, Vj , can be trained to maintain a
metric space then it becomes a usable manifold approximation. A metric space will preserve euclidean distances
between data points. The ratio of distances between any points in a lower dimensional space will therefore match
corresponding ratios in the original space making linear interpolations between points meaningful and equivalent
in either representation.

Problems associated with neural networks include the inordinate amount of time they can take to train. Techniques
such as Boosting and Support Vector Machines were invented in order to circumvent the issues associated with
training. However, these approaches loose the link to estimation of conditional probability. Methods which seek
to regain this link using an additional mapping stage amount to using a low complexity neural network [49]. The
possibility of training into local cost function minima rather than finding the optimal solution and the possibility
of over training. An over trained network has learnt not only the underlying structure but also the noise found in
training data. As noise will differ between datasets the network becomes unable to generalise. Identifying when
training should stop is problematic. One solution can be to simulate noise on the sample data during training so
no stable patterns of noise are seen during back-propagation [55].

6 Discussion

The image analysis methods presented above must be evaluated in the context of a scientific planetary analysis
application. The following sections consider the minimum requirements of a practical working system and critically
assesses the potential solutions.

6.1 Science requirements

For measurements made by an automated system to be scientifically valid they must, as a bare minimum:

• be quantitatively representative of the underlying truth;

• provide confidence intervals, i.e. error bars;

• and be repeatable

The ultimate output of an automated system will be a series of plots, such as SFDs, which can be compared
against expected theoretical models. For the output to be useful it should quantify underlying features in inputted
data, appropriately accounting for any systematic errors such as false positive and negative detections. Assuming
classification errors are inevitable any analysis must make appropriate corrections to summary estimates. This
can be done either by a separate analysis of efficiency and background (i.e. Monte Carlo), or as an integral part
of the measurement. In this latter case, a practical system must be capable of providing honest estimates of the
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probability any given feature detected is indeed what its purported to be. For example, to account for possible
false positive crater detections an ambiguous feature should contribute to a plot proportionally to its probability of
being a crater. If it is 50% certain a feature is a crater then the associated SFD bin should be incremented by 0.5.
If 10 such ambiguous features exist only half will probably be actual craters therefore the quantitative assessment
of the number of craters will be inline with the ground truth, i.e. 5.

Despite best efforts to correct plots there will still be uncertainties which must be made explicit via error bars.
If such a confidence level cannot be assigned to a surface’s age for example, it cannot be usefully compared to
another. The interpretation of an SFD indicating one surface to be 100MA old and other to be 80MA old will
differ greatly if the associated errors were 1% or 20%. With a 1% error one could be reasonably assured the 100MA
old surface is indeed the oldest. On the other hand, with the presence of a 20% error both surfaces could be the
same age or even the inverse of what was originally suspected.

If the same patch of surface is dated twice under different illumination conditions the interpretation of the two
ages should not contradict. When compared, measurements taken under ideal and unfavourable crater counting
conditions should yield consistent, i.e. repeatable, ages - albeit with explicitly indicated larger errors in the
unfavourable cases. Similar arguments apply to any measurement, whether it be counting craters or parametrising
fluvial channels or any other surface features. When assessing the suitability of existing image analysis methods
these scientific requirements must be kept in mind. Any process manipulating input data which does not provide
confidence and repeatability cannot be considered as part of a robust automated planetary surface analysis system.

6.2 Evaluation

6.2.1 Crater detection methods

The Smirnov method of crater detection suffers a number of shortcomings. Firstly, there are at least four arbitrarily
selected thresholds, each with no principle behind their selection other than subjective trail and improvement. Such
an approach immediately excludes the autonomous operation of the algorithm on large and varied datasets, as the
repeatability necessary for scientific use is completely absent. Further to this, the measurements of discontinuities
take no account of possible image noise which is especially problematic as angles are measured between vectors
constructed from closely neighbouring pixels. A single mislabelled shadow pixel could swing the discontinuity
angle wildly making the system very sensitive to errors in grey levels. The false positive removal steps are also
problematic, as the random selection of a third reference point for circle fitting will lead to inconsistent rejection
behaviour on the same image, even with all other parameters held fixed. Finally, the 100% reported performance
during testing is exceedingly misleading, as the algorithm was only tested on a grand total of five craters. To be
pedantic, assuming Poisson counting errors, the error on this figure is close to 45%. The estimated 80% efficiency is
unsubstantiated and arguably highly optimistic. The Smirnov method is based largely on traditional binary image
processing techniques as found in early machine vision textbooks. Such techniques were originally developed for
use on very limited hardware. With modern equipment and more advanced image analysis methods now available
this method is an inferior choice for a practical system.

The various edge based methods of crater detection employing either a Hough transform or fitting algorithm benefit
from being scale invariant and tolerant to partial occlusion. These are great strengths given the nature of cratered
surfaces. Unfortunately, these methods suffer significant common limitations largely due to the preprocessing
involved in generating reliable edge images. Edges correspond to sharp discontinuities in grey levels which manifest
themselves as first derivative peaks. Such peaks are influenced by noise yet no algorithm reports any systematic
way of discriminating between significant peaks (i.e. above the noise level) and those that are not. This leads to the
selection of arbitrary thresholds which may differ between datasets. Assuming a generalised significance test can
be constructed to overcome these issues there are still problems associated with edges belonging to features other
than craters. The removal of linear features may appear sensible but there is no reported method of determining
how significant curvature has to be before a set of edges is retained. Plus, interacting craters can form linearities
as shown earlier. Selecting regions of interest based on co-occurrence statistics prior to edge detection could
potentially provide useful probabilistic interpretations of crater rims. However, rather than working directly with
probabilities, algorithms compute values such as contrast and homogeneity from the GLCMs with no quantitative
justification as to their application. The lack of a probabilistic framework capable of quantifying the significance of
detected features severely limits an approaches’ ability to correct for misclassification. Indeed, no method presented
reports any attempt to correct results.

Template and model matching methods of crater detection can be viewed from a statistical perspective. The
difference between a template or model in comparison to an area of an image under analysis is quantifiable. The
larger the residuals between model and image patch the less likely an image patch belongs to the same distribution
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as the model. Assuming residuals are independent, normally distributed random variables they can be seen as
belonging to a chi-square distribution with degrees of freedom equalling the number of pixels in the model. The
chi statistic can be computed and compared to a chi-square distribution yielding the probability that an image
patch is consistent with a crater interpretation. This statistic is computed by

χ2
ij =

m∑
k=1

n∑
l=1

[f(i+ k, j + l)− g(k, l)]2

σ2
f

(27)

where χ2
ij is the chi statistic for each location within an image, f is the image under analysis, σ2

f is the variance
on the image and g is an m by n pixel template crater. Expanding the squared term, the numerator becomes:

f(i+ k, j + l)2 + g(k, l)2 − 2f(i+ k, j + l)g(k, l) (28)

The convolution method of crater detection can be assessed against this theory. As g and σf are constant the
convolution of a simple crater template with an image

m∑
k=1

n∑
l=1

f(i+ k, j + l)g(k, l) (29)

is clearly monotonically related to the chi statistic making local maxima good candidates for craters. However,
this does not directly lead to a true probability for use in measurement corrections, nor is the convolution kernel a
true model crater. Also, the illumination across f will vary making comparisons between different maxima difficult
to interpret. Overall, the simple convolution method does not meet the scientific criteria.

The template matching crater detection methods via normalised cross correlation as given by equation (2) (repeated
below for ease of reference) attempts to overcome differences in illumination across f by dividing by a normalising
value. It also improves upon the template by using a real crater as a model.

corr(i, j) =

∑n,m
k,l f(i+ k, j + l)g(k, l)√∑n,m

k,l f(i+ k, j + l)2
∑n,m
k,l g(k, l)2

Again, it can be seen this is monotonically related to the chi statistic but does not directly result in true prob-
abilities. Plus, the selection of crater template is subjective and need not necessarily correspond to the typical
appearance of craters. To compound this, it is suggested different templates are used for different sized and illu-
minated craters meaning g is no longer constant. This results in correlation values which are no longer directly
comparable. This method may be an improvement on convolution, but still scientific criteria is not met.

6.2.2 Drainage networks and channel detection methods

Methods to detect drainage and channel structures can be quickly eliminated from consideration as they are all
based on Digital Elevation Maps rather than optical images. The extraction of such features from optical images
has presumably been neglected as DEM are easier to work with and are readily available for Mars. Available
software originally designed for terrestrial DEMs has been applied, but these were constructed for active river
systems. Their direct application to Martian datasets assume the elevations of drainage networks billions of years
old have not changed. To extract paleo-drainage networks which have been modified by tectonic processes it will
be necessary to work with optical images.

Assuming DEMs were available, there are still issues facing alternative methods of channel structure detection.
The detection of fault scarps, whilst intuitive, does not provide the necessary probabilistic information required
for measurement corrections. The hysteresis thresholding for linking requires arbitrarily selected thresholds. The
morphological operations designed to fill gaps and remove spurs are adversely affected by the spatial proximity of
other structures and are not accompanied by any estimate as to how efficient the linking is.

6.2.3 Texture analysis methods

The analysis of fine-grain textures is dominated by methods of filtering using either sets of explicitly or automati-
cally generated convolution kernels. The multichannel output of such filters is subsequently used to either identify
regions using standard classifiers (e.g. Support Vector Machines) or segment regions with common properties (e.g.
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K-means clustering). These methods do not in general provide quantitative information regarding the confidence
one has in the classification process vital to correct scientific measurements in the target application. Learning only
a decision boundary and forcing a classification may be appropriate in other contexts, but for an application such
as crater counting it is desirable to account for the possibility of features right down to the noise level, even if this
means counting fractional detections where the chance of correct classification is less than 50%. The multichannel
filtering approaches by themselves can only therefore constitute a partial solution.

Grey level co-occurrences between pixel pairs and Hidden Markov Models do provide a level of probabilistic
information for closely neighbouring pixels or regions but struggle to capture the wider correlations found within
all but the most fine-grain stochastic textures. The correlation problems with combining GLCM has been noted
and it can be seen in Figure 11 that MRFs can struggle to fully capture the process underlying a texture’s
generation. The assumption textures posses the Markov property does not always hold true as the probability of
region transitions may change across an image, perhaps accounting for the mistakes in the brick texture in 11.

GLCMs, like convolution kernel filters, produce multichannel information via quantities such as contrast, entropy
etc. which need further processing via classifiers, again only forming a partial solution. Multidimensional co-
occurrences could potentially provide direct probabilistic classification information, but at a huge storage cost.

6.2.4 Dimensionality reduction

Straight forward PCA will approximate a linear manifold and can be used locally in patches to approximate a
non-linear manifold to any desired granularity. Error propagation of PCA clearly shows that a lower dimensional
representation of data will be well behaved making this a possible candidate for a working application. On the other
hand, Kernel PCA can only be effective if input data is noise free as the non-linearity of kernels transform errors
on data points making them non-linear also. Once these non-linear errors propagate through to the covariance
matrix there can be no guarantee a least squared hyperplane fit will approximate the original manifold properly.

Probabilistic PCA assumes data is normally distributed upon its manifold. If data is not normally distributed this
method will weight data points inappropriately. In a worst case scenario, if data is bimodal PPCA may assume
the central tendency is in the trough between modes - exactly where the data should not be. The iterative maxi-
mum likelihood determination for parameter estimation will therefore only peak at the correct location in specific
restricted circumstances. This is especially problematic for texture analysis as [56] encourage bi-modal parametric
descriptions of textures which are shown to be significantly more accurate than simple Gaussian alternatives and
[57] provided impressive results using more expressive non-parametric methods.

Gaussian Process Latent Variable Models attempt to incorporate both probabilistic and non-linear manifold ap-
proximations. As such they suffer the shortcomings of Kernel PCA and PPCA simultaneously. Between them, the
non-linearities introduced by the kernel and strict requirement data be normally distributed prevents dimension-
ality reduction to be achieved reliably (i.e. minimised residuals between actual data and approximated manifold)
in general cases.

Neural networks may provide a better, albeit slower, manifold approximation by minimising the back-propagation
cost function (24). By constructing the cost function in the data space, from the difference between the output and
the input, we can be sure the error needed for construction of the weighted least squares cost function is constant.
This is in contrast to kernel PCA which attempts to find an optimal fit within the lower dimensional context (latent
space). Here the non-linear function used to manipulate the data density distribution onto a hyper-plane can have
adverse effects on the weighting of data in the minimised cost function (i.e. initially homogenous independant
random noise can be amplified to generate outliers), so causing over fitting. Also, unlike the maximum likelihood
of PPCA or GPLVM, neural networks minimise the local projection of data onto the manifold, but do not impose
any restrictions on how data is distributed across it. It is therefore a more general approach which may be suitable
for multi-modal textures.

Neural networks do carry a large initial computational overhead. Training involves many iterations, not only to
determine appropriate weights, but also to select an optimal number of hidden nodes. Plus, there is always the
possibility of training into a local minima, therefore many repeat runs may be required from different random
starting points before confidence can be placed in a final network configuration. The popularity of alternative
suboptimal approaches are perhaps due to them being quicker to execute. Such approaches may be of use in
applications where speed takes precedence over accuracy. However, scientific requirements dictate a method be
used which allows consistent and quantitatively accurate results making neural networks a potential solution.
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7 Conclusions

Billions of dollars have been invested in exploring our planetary neighbours providing researchers with enormous
quantities of valuable image data. Unless a reliable, statistically based automated method of analysing this data
is found a valuable resource will remain tragically underutilised. Currently published research into the develop-
ment of automated feature extraction from images has mainly focused on crater counting. Existing algorithms for
surface feature exaction are mainly ad-hoc and do not address scientific requirements such as properly accounting
for measurement errors, correcting output in light of false positive and negative detections, and providing repro-
ducibility of results. Part of the difficulty in analysing planetary images is the inherent complexity, arising from
the vast scope of possible features and terrains. A general solution to analysing such complex scenes may be found
in texture analysis. Published methods of texture analysis also suffer from a lack of statistical rigour, with no
off-the-shelf solutions sufficient for the task in hand. A statistically valid approach is likely to involve probability
density estimates spanning a great number of dimensions. To make a large scale solution computationally tractable
some method of dimensionality reduction is likely necessary. Dimensionality reduction techniques exist that can
attempt to approximate a manifold on which textures can be modelled. The highly variable nature of textures
exclude the use of a-priori knowledge in the modelling of data manifolds and distributions rendering the application
of many dimensionality reduction techniques inappropriate. Locally approximating textures with linear patches or
employing the flexibility of neural networks could provide potential solutions.
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