
A QoS-Aware BPEL Framework for Service
Selection and Composition Using QoS Properties

Chiaen Lin and Krishna Kavi
Department of Computer Science and Engineering

Unitersity of North Texas
Denton, TX 76203 USA

chiaen@unt.edu, kavi@cse.unt.edu

Abstract—The promise of service oriented computing, and
the availability of web services in particular, promote delivery
of services and creation of new services composed of existing
services – service components are assembled to achieve integrated
computational goals. Business organizations strive to utilize the
services and to provide new service solutions and they will need
appropriate tools to achieve these goals. As web and internet
based services grow into clouds, inter-dependency of services
and their complexity increases tremendously. The cloud ontology
depicts service layers from a high-level, such as Application and
Software, to a low-level, such as Infrastructure and Platform.
Each component resides at one layer can be useful to others as a
service. It hints the amount of complexity resulting from not only
horizontal but also vertical integrations in building and deploying
a composite service. Our framework tackles the complexity of
the selection and composition issues with additional qualitative
information to the service descriptions using Business Process
Execution Language (BPEL). Engineers can use BPEL to explore
design options, and have the QoS properties analyzed for the
design. QoS properties of each service are annotated with our
extension to Web Service Description Language (WSDL). In this
paper, we describe our framework and illustrate its application to
one QoS property, performance. We translate BPEL orchestration
and choreography into appropriate queuing networks, and ana-
lyze the resulting model to obtain the performance properties of
the composed service. Our framework is also designed to support
utilizations of other QoS extensions of WSDL, adaptable business
logic languages, and composition models for other QoS properties.

Keywords—WSDL; WS-BPEL; Quality of Services; Non-
functional Properties; Service Composition.

I. INTRODUCTION

Service oriented architecture (SOA) is a flexible and scalable
design methodology to seamlessly integrate and cooperate
services in distributed software and systems. As more services
are on the web and in the cloud, it becomes easier to create
new services dynamically by composing existing services, cus-
tomized to meet the needs of customers [1]. Before invoking
a service, a service requester has to query the functionality as
well as the interaction protocols defined to access the service.
Web Service Description Language (WSDL) [2] is a widely
accepted standard from World Wide Web Consortium (W3C)
for describing functionality of web services. The Universal
Description, Discovery and Integration (UDDI) registry serves
as a repository for the services with WSDL descriptions. Users

can query the UDDI and find services meeting their needs
since the functionality of the services can be obtained from
their WSDL specifications [3].

Once the services are selected, interactions among the ser-
vices are achieved using messaging protocol defined in WSDL.
Even with ever increasing number of services, it may still not
be possible to find the ”right” service, and in such cases, one
has to either create a new service from scratch, or compose
the service using existing services. Tools and frameworks are
becoming available to aid in the dynamic composition of
services [4], [5], [6], [7], [8]. Another issue that needs to
be addressed is related to selecting the appropriate services
that takes part in a composition, particularly when multiple
services with the same functionality are available. In such
cases, non-functional or Quality of Service (QoS) properties,
such as performance, security, reliability become the delimiters
[9], [10], [11], [12].

While standard WSDL describes the functionality of a
service, it does not specify QoS or non-functional properties.
In the previous work [13], we augmented the WSDL to permit
specification of non-functional properties of a service. The
additional information can help distinguish between services
with the same functionality, and these properties can be used
while composing new services to ascertain the QoS properties
of the composed service.

Enterprise software systems or cloud computing often use
business logic to refine their design and regulate the behavior
of services according to business processes [14]. Business
Process Execution Language (BPEL) has become the standard
for describing the architecture of a service process [15]. It
contains control constructs for the orchestration of component
services in a workflow style. While tools and frameworks are
available to use BPEL orchestrations in composing services,
they are not suitable to evaluate the QoS properties of spe-
cific orchestrations [16], [17]. In this paper, we expand our
framework to adapt the notion of BPEL to describe QoS-
aware services for their selection and composition. We argue
that based on our previous QoS-extension framework, BPEL
is compatible for use of QoS extensions. The expansion is
also backward compatible with the SOA in general and web
services in particular. It is suitable for the incorporation of any
tools that facilitate QoS extensions and models for analyzing
QoS properties. We illustrate how to create queuing models
for various BPEL orchestration logic compositions. In the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24067365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

case study, we also demonstrate our framework for composing
performance properties using stochastic models, such as the
Layered Queueing Network (LQN) model.

The main contribution of our work is the framework that per-
mits the description of QoS properties with services (using our
QoS extensions to WSDL, or other suitable QoS extensions),
reasonable composition processes of these services, and the
generation of models for deriving QoS properties of composed
services that use BPEL. While we focus on stochastic models,
our framework can also be used to incorporate models for
reliability, availability, as well as security, provided tools for
deriving these properties for composed services from proper-
ties of component services are available.

The rest of the paper is organized as follows. Section 2
describes our QoS-extension framework and its suitability for
use with BPEL. Section 3 gives details of BPEL service com-
position approaches. Section 4 presents the rules for translating
BPEL logic constructs into queuing network models for use by
the Layered Queuing Network (LQN). Section 5 illustrates our
framework with a case study. Section 6 describes research that
is closely related to ours. And, Section 7 contains conclusions
about our work and what we propose to do in the near future.

II. QOS-AWARE FRAMEWORK IN SOA
In this section, we present the QoS-aware framework in the

SOA environment which is an extension to our previous work
[13]. We first describe essential components of the framework,
and its operational processes. Then, we consider the quality
awareness extension to the business processes, specifically
using WS-BPEL [18] to enable the performance evaluation
result in service design, selection, and composition which
include operational logic choices.

A. Framework Description
In our previous work, we extended WSDL to permit spec-

ification of non-functional property elements with services.
Each web service can optionally describe QoS properties along
with functional properties, in order to distinguish itself from
other services providing similar functionality. QoS properties
can include performance, reliability, security or other quality
metrics. The framework is compatible with traditional SOA for
either standard or quality-aware service publication, selection
and interaction. The infrastructure of the framework augments
the SOA with three elements:

• QoS-Aware WSDL Extension (QoS WSDL): These are
new WSDL elements for specifying QoS properties with
services.

• Ontological QoS Modeling (QoS Ontology): QoS prop-
erties and categories are classified by our ontology
model allowing different classes of QoS properties and
relationships among these categories.

• Testing and Composition QoS Modeling
(QoS TestCompose): QoS properties can be used
for selecting services and evaluating QoS properties
of composed services using component properties.
The composition properties can be evaluated based on
different ontological classes and relationships.

Figure. 1. QoS-Aware Service Oriented Architecture Modeling.

The QoS-aware framework for SOA is depicted in Figure 1.
For a QoS-aware service to work, QoS WSDL has to be
prepared by instantiation of the QoS Ontology model of the
service. The value of the QoS properties can be obtained by
using QoS-TestCompose as a testbed for analytical modeling
or testing (P1). Once the Service Provider equips the service
with the QoS extension, the provider can register the service
specification on the Service Registry (P2). A Service Requester
can query the Service Registry to discover qualified candidates
by examining both functional and non-functional properties
(D1). Functional properties are interpreted by reading WSDL,
while non-functional properties are referenced by the QoS
extensions. In case multiple services are selected with the same
functional properties, the requester can use QoS properties to
differentiate between the services. The selected services can be
used to create new composed services and the QoS properties
of the new services be obtained using the QoS-TestCompose
Modeling(D2).

For those services that have not used our QoS extensions,
our framework uses conventional selection and composition
processes (P2 and D1).

B. QoS-Aware Framework with WS-BPEL Extension
Using our previous work, we now extended the QoS-Aware

framework to use business processes. We discern service decla-
ration types with atomic and process descriptions. An atomic
service (AS) is the one whose provider offers functionality
with design details but implementations hidden. Access to the
service is achieved with required message exchange pattern
(MEP) and binding of ports as shown in WSDL. In other
words, an atomic service is opaque and represents the standard
web services. We illustrated service selection and compositions
with respect to service performance in [13]. However, at that
time, we did not use any specific logic for the composition.

A process service (PS) is a service that facilitates collabora-
tions between services controlled by business logic. A PS may
be composed by multiple AS and/or PS. PSes can be nested.
At the lowest layer of the hierarchy, a PS should only consist
of ASes. We will show that both AS and PS can be modeled
and analyzed in our QoS-aware framework.

There are many well-known business process modeling lan-
guages available to formally describe the interactions among
different service components with business logic [19]. These
languages rely on well-defined workflow formats. In some
cases they use meta-data that can be used for management
purposes. In this paper we use WS-BPEL or BPEL for short, to
demonstrate the service selection and composition capabilities
of our framework.

In the web service context, BPEL can be treated as a
layer on top of WSDL [20]. BPEL provides the description
of behavior and interactions of a process instance with its
partners and resources through Web Service interfaces. Both
the process and its partners are exposed as WSDL services
[18]. Furthermore, BPEL follows WSDL model of separation
between abstract information, such as message and port type,
and concrete information, such as binding and endpoint. The
two use cases for modeling BPEL processes are abstract and
executable. Abstract processes describe the protocol that spec-
ifies the message exchange between parties without revealing
their underlining implementations. While abstract processes
may hide some of the required operational details, executable
processes are fully specified and can be executed. Both abstract
and executable processes share all the BPEL constructs, except
that the former has additional opaque mechanisms for hiding
operational details [18].

To include a PS in our framework, we assume that WSDL
descriptions for all services are available. WSDL files describe
how to use services, while BPEL describe collaborations
among the services or tasks. In accordance to our previous
design of the framework, only concrete WSDL is relied upon in
our QoS-aware framework. Quality of Services with concrete
bindings provides more specific range of values, derived from
actual tests or analyses. The service that is extended for use
in our framework can be viewed as an AS with a concrete
WSDL. Or an abstract AS can be included in our framework,
provided the QoS properties are derived through a concrete
binding (as shown by process P1 in Figure 1).

Now we consider if the assumptions can be applied to the
cases of acquiring a PS in the framework. For an executable
PS, it is natural to assume that the services involved in the PS
have concrete WSDLs, since an executable process is assumed
to be concrete. For an abstract PS to be included in the
framework, it must first be transformed into an executable PS.
The transformation is called Executable Completion [18] in the
web services context of WS-BPEL. The main algorithm of the
transformation and related issues concerning QoS properties
will be addressed in later sections.

With the adaptation of PS into the framework, we now
consider the process of publishing and discovery operations
for processes. Once again, an executable PS can be observed
as services with concrete WSDL in the framework. To publish
a PS service, it applies the same process P1 and P2, shown in

Figure 1; for service registration of ASes, additional service
meta data is added to the QoS Ontology compartment for
describing management related information. Since the frame-
work differentiates a PS from an AS, the ontology model notes
the service identification and service type classification when
a service is instantiated. The additional information includes
identification of a PS, the business process structure, and
its sub-components. Note that the additional information of
a PS is stored in the framework and is independent of the
data minted in a Service Register of the SOA triangle. To
discover a PS service, it makes no difference as to discovering
any AS with QoS annotations in its registered WSDL (D1).
Re-discovery of a PS service is required to first discover
its sub-services as ASes, and submit the business process to
QoS TestCompose for updating QoS values (D2).

Although only concrete AS and executable PS are allowed
in the framework, abstract processes can still be included. An
abstract process can be viewed as embedding multiple use
cases. The use cases are differentiated by their usage profiles.
From the abstract processes, one can analyze the profiles to
obtain specific values for QoS properties of the processes.
To this end, we suggest that records of abstract processes be
kept so as to facilitate QoS-aware compositions using different
business process operations. We will discuss how PSes can be
used in our framework in Section III.

III. SERVICE COMPOSITIONS WITH WS-BPEL IN THE
QOS-AWARE FRAMEWORK

SOA enables a flexible and adaptable web service discovery
and service composition. To allow for selection and compo-
sition based on QoS properties within our framework, we
need to devise processes to guide QoS-aware business process
selection and compositions. Since WS-BPEL is an established
standard to describe business processes in the web services
context, we will use BPEL to describe business processes in
our framework.

Orchestration and choreography are two aspects of creating
businesses from composite web services [20]. Orchestration
refers to an executable process that interacts with internal
and external web services. Since the executable process may
include business logic and task execution order, it represents
the control flow among the participating services. On the other
hand, choreography refers to the interactions (or data flow)
among participants who cooperate to achieve the objectives
of the composed services. Choreography coordinates message
exchanges occurring among services. For our purpose, we
adapted BPEL4Chor [21], an extension of BPEL to address
service composition, as the choreography framework. Engi-
neers can use the language and available tools to readily model
service interactions. We will show how this BPEL choreogra-
phy can be used within our QoS-aware service composition
framework.

The following subsections include discussions of the ap-
plicability of quality awareness to both orchestration and
choreography compositions, and their operational processes.
Note that the focus of the service composition here concerns
non-functional properties while assuming the functional se-
mantics in the selection and composition has already been

completed. We use the term service candidates to refer to the
services already selected for composition based on functional
requirements.

Our framework is designed to permit the use of many
different approaches for specifying QoS properties, provided
appropriate tools for selecting services meeting specific non-
functional properties are also available.

A. Business Process Service Orchestration
A service orchestration is to organize the sub-services of a

PS, and the message exchange with other services to achieve
its service purposes. The PSes considered here are executable
with their sub-services are also executable. Since the PS and
its component services are all executable, they are eligible
to apply the QoS extension when registering the service in
the framework. Service composition from the perspective of
orchestration involves sub-services selection. The PS selection
for orchestration comes down to two scenarios: a fixed process
organization, and process candidates of the same functionality
with alternative design.

A PS may consist of m sub-services whose organization is
based on the business process logic and how the tasks are
ordered. Candidates for the m component sub-services are
selected based on both functional and non-functional (QoS)
properties. Since candidate services are assumed to use QoS
extended WSDL, QoS references can be obtained for services
and appropriate service components can be selected based on
QoS properties.

In the case of multiple candidates of the same services with
alternative business processes, they can be further classified as
fixed or non-fixed sub-services. If the sub-services are fixed,
the whole PS can be treated as AS. Then, the service selection
only involves comparing the QoS values of the targeted non-
functional attributes.

If the sub-services can be changed dynamically, each of the
process candidates may be evaluated using multiple use cases.
Each use case that belongs to a process candidate must be re-
discovered for its QoS values. The result of QoS criteria for
each candidate can be obtained, which can be used to match
the requirements in order to make the decision.

B. Business Process Service Choreography
As stated perviously, choreography describes the interaction

protocols (or data flows) among component services of a busi-
ness process. While orchestration utilizes executable processes
for modeling, choreography uses abstract process to describe
the collaboration among service partners.

Since our QoS-aware framework requires concrete services
with binding so that non-functional properties can be mea-
sured, the abstract nature of choreography in describing service
interactions is not a direct fit for our framework. Thus, we need
to extend the abstract interactions with appropriate concrete
annotations of QoS attributes. Since our framework adapts
BPEL as the descriptive language for business processes, we
adapt BPEL4Chor [21] to model service choreography. We
further annotate the interactions to make the choreography
QoS-aware.

BPEL4Chor consists of three artifact types:
• Participant behavior description (PBD): It defines control

flow dependencies between activities. It uses the Ab-
stract Process Profile to describe requirements on the
behavior of a participant. The profile inherits from Ab-
stract Process Profile for Observable Behavior specified
in BPEL, with the addition of identifying activities with
unique identifiers. The PBD is essentially an abstract
process with the additional attributes kept in the profile.

• Participant topology: It defines the collaboration struc-
ture of participant types, participants, and message links.
The topology describes the communication structure of
the service interactions among participants.

• Participant grounding: It defines the actual configuration
of the choreography, and shows the connections to the
concrete WSDL of the service participants. For each
message link defined in the participant topology, a port
type and its operation are specified. After the grounding,
every PBD of the service can be transformed to an
executable BPEL process based on their profiles.

An initial high level mapping from the modules of
BPEL4Chor to our framework is straightforward. Although our
framework requires concrete service data, abstract process is
included in the framework. And, it is feasible to use abstract
processes during the composition process before the new
grounding of composition is admitted in the framework. The
processes of adapting the composition to our QoS framework
are presented below. We will refer to the processes shown in
Figure 1 in our discussions below.
• From BPEL4Chor to QoS-Aware Extension

The main product of a service choreography is an
executable process. The new service can be included
in the QoS-extension framework by first submitting
to the QoS TestComposite for QoS evaluation (D2).
Corresponding process data is established with addi-
tional specific records for a choreography including PBD
for all the participants and the composition topology.
Recording a PBD is compatible with storing an abstract
process, which is supported in the QoS-Aware extension.

• From QoS-Aware Extension to BPEL4Chor
The main activity of BPEL4Chor is to identify a set
of service participants to create a new service. The
process involves selecting the service participants, ex-
tracting the PDB, and applying BPEL4Chor processes to
compose the new service. The participants are restricted
to only PSes since we have to identify the names of
the operations. The QoS-aware framework facilitates
the selection process by providing QoS values during
discovery (D1). The selection process is similar to the
selection process of a PS as introduced in Section III-A.
Once we select the participants for composition, we will
need the PDB for each participant. Since each participant
selected is executable PS, there always exits one and
only one abstract PS in the framework that belongs to
the PS. Transforming a PS to a PDB is straightforward
with adding the unique name to the message exchange
operations. With the named message links, practitioners

then put together the required participant topology with
the design. The grounding information for each linked
operation is already available with an executable PS.
Then BPEL4Chor composition process is complete, and
the new composite service is created. To accommodate
the created PS in the framework, the same processes
mentioned in Section II-B is followed.

IV. FROM WS-BPEL TO LQN
In this section, we explain the QoS TestCompose module

in our framework to illustrate how QoS properties of services
that are composed using BPEL are calculated. Modeling non-
functional properties for services and their composition is not
always straightforward, since combining QoS properties of dif-
ferent services are based on underlying mathematical models.
For example, given a process with the service components
executed in sequential order, one may assume that the response
time of the combined process is the sum of the response times
of the component services. However, this will not be accurate
because combining performance properties rely on stochastic
processes. In other words, for obtaining performance attributes
of a composed process we must use stochastic models. In our
case, we use the layered queueing network (LQN) for modeling
performance. However, other stochastic models and tools can
be used to compute QoS properties of processes using BPEL.

The following subsections give a brief introduction to the
essential elements of BPEL and LQN. Then we derive the
transformation rules for mapping from BPEL compositions to
models in LQN, and discuss how LQN can be used to compute
performance attributes.

A. WS-BPEL constructs
WS-BPEL [18] is a standard language intended to describe

business processes for web services. The idea is to represent
collaborations among services or tasks described in the WSDL
language. As a descriptive language using XML format to
describe workflow of business process, BPEL consists of two
types of activities: Basic and Structured.

Basic activities are atomic activities mainly describing ser-
vice interactions. They include <receive> and <reply> ,
which represent waiting for a message, and response to a mes-
sage respectively; <invoke> enables a web service operations
offered by a service partner. The invocation enables either a
one-way or request-response message exchanges. Other basic
activities include <assign> to update a value of a variable,
<exit> to end the process, <wait> to delay the execution,
and <empty> to express no-op operation. Still others include
<scope> , <throw> ,<compensate> , and <validate> that
handle from the execution scopes to fault handling operations.
New activity creation is also possible through <extensionAc-
tivity> .

Structured activities control the process order of activities.
They can be nested in other structured activities as well.
The constructs include <sequence> and <flow> to express
sequential and parallel order of the enclosed tasks. The control
flow constructs include <if> that sets a boolean condition for
activities, <while> and <repeatUntil> that iterate through

their enclosed processes until the condition becomes false;
<forEach> controls the number of times the set of enclosed
tasks can repeat, either running in sequential or parallel, while
<pick> chooses among tasks to be executed depending on the
occurrence of the event.

B. Layered Queueing Networks
Layered queueing network [22] is an extended queueing

model with the layered structure representing servers at higher
levels making requests to servers at lower levels. Each task
in the model involves sharing and consuming processing
resources. An entry of a task can be modeled as the service
operation stub receiving requests and responding with a reply
to higher level systems. The entry can be further refined with
activities representing the workflow of its sub-components
which are organized with precedence operators, such as fork
and join. For each task and activities, there are resource
requirements specified, as service demand in time. The interac-
tions between different servers and their tasks can be modeled
with phases representing message receipt and response in
different time slots. The nature of the communication can
be defined as synchronous and asynchronous, which model
blocking and non-blocking interactions respectively.

As modelers put together the service architecture and infor-
mation needed for the system integration, a queueing network
is created. The system modeling can be subjected to either
open or close networks during performance analysis. LQN
comes with an analytic solver (lqns) and a simulator (lqsim)
to generate the performance indexes such as response time,
utilization, and throughput.

LQN models can also be expressed in XML format. A
further analysis to explore the design space with different
combination of system configuration is also possible with its
LQX tool. LQX is a general purpose programming language
used for the control of input parameters to the LQN solver
system. The language allows a user to put together a wide
range of different set of input parameters, and solve the model
accordingly.

C. Transition Rules from BPEL to LQN
A structure of business process in BPEL largely consists of

activities and their corresponding fault handlers, in addition to
variables, correlation sets, and partner links. Since performance
evaluation of the business processes is the focus here, the
derivation of the transformation rules only focuse on the
process activities. For the performance analysis purpose, the
activities in the event and fault handlers can follow the same
set of rules, and integrated with the activities in the main
processes.

The main process activities usually begins with a list of
sequential activities. The behavior of the activities, both basic
and structured, are described by the control constructs. The
main task of the transformation is to maintain the same
activity orders as in BPEL when creating the LQN model.
For basic activities, the order of the behavior relates to mainly
communication protocols. For structured activities, the order
can be focused on the mapping of business logic.

TABLE I. MAPPING BPEL BASIC ACTIVITY TO LQN ELEMENTS.

BPEL Basic Activity LQN Description

<receive> Pre-precedence (or a join-list) Getting a message from a service partner.

<reply> Request (send-no-reply) : direct reply
Request (forwarded) : indirect reply

Sending a message to a service partner.

<invoke> Request (send-no-reply) : one-way
Request (rendezvous) :request-response

Invocation of a service offered by a service partner. It can be one-way or request-response
interactions.

<wait> Activity with a think time A delay for a timer.

<empty> Activity with zero service time A no-op holder which does nothing.

<exit> N/A Immediate termination

<assign> N/A Assign a value to a variable.

<validate> N/A Validate the value of variable defined in WSDL.

<throw> N/A Generate a fault from business process. Fault handler needs to be specifically modeled.

<rethrow> N/A Regenerate a fault from fault handler. Fault handler needs to be specifically modeled.

<compensate> N/A Compensate actions can not be completed. Fault handler needs to be specifically modeled.

<compensateScope> N/A Compensate actions can not be completed in a specified scope. Fault handler needs to be specifically
modeled.

TABLE II. MAPPING BPEL STRUCTURED ACTIVITY TO LQN ELEMENTS.

BPEL Structure Activity LQN Description

<sequence> Precedence: Sequence A list of service activities executed in the specific order.

<flow> Precedence: And-Fork & And-Join A bag of service activities executed in concurrent and finished in synchronization.

<if> N/A [Use Or-Fork & Or-Join to emulate the
condition with a probability 1 or 0.]

Take different actions depends on the Boolean condition.

<pick> N/A [Use Or-Fork & Or-Join to emulate the
condition with a probability p.]

Activity is chosen depending on the kind of message or timeout events.

<while> N/A [Precedence: Loop to emulate the num-
ber of iteration.]

Iteration on the Boolean condition evaluated to true.

<repeatUntil> N/A [Precedence: Loop to emulate the num-
ber of iteration.]

Iteration will stop on the Boolean condition evaluated to true.

<forEach> N/A [Precedence:Loop to emulate the num-
ber of iteration]

Repeat activities multiple times, activities in each iteration can be modeled with <sequence>or
<flow>

The order of the control flow in the transformation is
realized using precedence of activity connections in LQN
tasks. The precedence can be sub-classed into Join and Fork
for modeling synchronization and concurrency of activities. To
connect one activity to another, the source activity connects to
a pre-precedence (or Join). A pre-precedence in turn connects
to a post-precedence (or Fork), and then to the destination
activity. More details on precedence types can be found in the
LQN User manual [22].

Service requests in LQN can be of three types: rendezvous,
send-no-reply, and forwarded. Rendezvous is a blocking syn-
chronous request, while the send-no-reply is an asynchronous
request. Forwarded requests are redirected to a subsequent
server, which may forward the requests again, or reply to the
original client. In the translation, we consider the message
exchange pattern to match either blocking or non-blocking,
and either one-way or two-way for service invocation.

The summary of mapping of basic constructs are listed
in Table I, while the mapping of structured constructs are
listed in Table II. For each mapping entry, a brief description
is included. For those elements that have no direct LQN
semantic counterparts, we use (N/A) with explanation. Since
the focus of the transformation is on performance analysis, the
corresponding performance models for fault handling activities
should be obtained by following the error handling mech-
anisms designated in the processes. The handling processes

can then be subjected to the transformation rules to obtain
appropriate performance models. The part of fault handling
of the transformation and its performance evaluation is not
included in this paper.

D. Data Dependency in Transformation

There is no direct equivalent LQN transformation for the
BPEL conditional construct such as if-else. However, an Or-
Fork representing a branching point with a given probability
p to a selected process path can emulate the semantics of if
construct. The probability is set to 1.0 for the if-clause, if
the condition should be evaluated to true. On the other hand,
the else-clause will be taken with the probability of the if-
clause set to zero, if the condition should be evaluated to
false. The transformation from <if>in BPEL to LQN can
thus be expressed using the semantic of Or-Fork and Or-Join
with appropriate probability p. The probability depends on the
variables involved in the condition. The frequency of which
path is taken depends on the statistical or empirical evaluations.
Each sample represents a specific service system configuration
that is invoked in a specific use case.

The conditional variables can be related to either service
workload or the frequency of the variable assignments. For
example, in a sorting algorithm, workload as the size of input
list can impact the service time. The business process may

consider splitting the input into smaller sizes, and merging the
result later. The condition may also depend on a multivariate
function when multiple outcomes are possible. Data profiling
and other empirical evaluations can be used to assign proba-
bility values with each outcome [23]. Similar approach can be
applied to <pick>where the Boolean condition becomes the
frequency of the message variable. The sum of the probabilities
of each case in the Or-Fork is to be 1.

For the loop control statements, such as <while>and <re-
peatUntil>, the Boolean condition should be analyzed using
the number of times the iteration will be executed. The
counterpart in the LQN is a loop (for a service) which is
executed desired number of times. <forEach>is similar to
these iterative controls with the addition of specifying the
execution type, in sequence or parallel, of activities in the loop
clause.

V. CASE STUDIES

A. Facial Detection and Recognition Example
A building security monitoring system, which uses facial

detection and recognition technique, is used as the example
to demonstrate how to use our framework. The purpose of
the system is to detect intruders, and raise an alarm when
intruders are detected, as well as recognizing the intruders
using facial recognition software to compare with existing
database of stored images.

A general computation of facial detection and recognition is
split into multiple tasks – signal processing, image analysis of
machine learning algorithms and processes. In our example,
the service is divided into three modules: Facial Detection
(FD), Image Converter (IC), and Facial Recognition (FR).
• FD receives video frame input and detects if there are

faces appearing in the image. If no face is detected,
no action will be taken. However, if faces are detected,
alarm messages will be sent and image frame will be
the output for further processing.

• IC receives image frames with faces detected, and pre-
pare the normalized file formats for each face. The
output consists of the images that can be compared
against images stored in the databases.

• FR receives the normalized face images as input, and
sets the connections to databases containing images of
faces for identification. Once there is a match, a report
is sent to human operators with information about the
persons identified.

The three modules will be considered as web services, and
our goal is to create a new web service that will combine
these component services, using sequential composition in the
order of FD, IC, and FR. The process sequence of the three
services in BPEL is shown in Listing 1, Listing 2, and Listing 3
respectively.

Each BPEL is transformed into a LQN model for analysis.
To submit the service into the framework, the LQN model is
analyzed with the result of the performance indexes obtained
from QoS values of individual services. The transformation of
the LQN models are shown in Figure 2, Figure 3, and Figure 4
respectively.

Listing 1. Facial Detection BPEL (FD).
<s e q u e n c e>

<o p a q u e A c t i v i t y name=” D e t e c t F a c i a l P r o c e s s ” />
< i f>

<c o n d i t i o n opaque=” yes ” />
<f low>

<i n vo ke w s u : i d =” SubmitICReq ” />
<o p a q u e A c t i v i t y name=” SubmitAlarm ” />

< / f low>
<e l s e>

<o p a q u e A c t i v i t y name=” Submi tNoResu l t ” />
< / e l s e>
< / i f>

< / s e q u e n c e>

Listing 2. Image Converter BPEL (IC).
<s e q u e n c e>

<r e c e i v e w s u : i d =” ReceiveICReq ” c r e a t e I n s t a n c e =” yes
” />

< i f>
<o p a q u e A c t i v i t y name=” S p l i t I m a g e F r a m e ” />
<f o r E a c h name=” s p l i t F i l e ” w s u : i d =”

Norma l i zeFrameSize ” p a r a l l e l =” yes ”>
<s t a r t C o u n t e r V a l u e>1< / s t a r t C o u n t e r V a l u e>
<f i n a l C o u n t e r V a l u e>2< / f i n a l C o u n t e r V a l u e>
<scope>

<o p a q u e A c t i v i t y name=” N o r m a l i z e M u l t i p l e I m a g e
” />

< / s cope>
< / f o r E a c h>

<e l s e>
<o p a q u e A c t i v i t y name=” Normal izeNormalImage ” />

< / e l s e>
< / i f>
<i n vo ke w s d : i d =” SubmitFRReq ” />

< / s e q u e n c e>

Listing 3. Facial Recognition BPEL (FR).
<s e q u e n c e>

<r e c e i v e w s u : i d =” ReceiveFRReq ” c r e a t e I n s t a n c e =” yes
” />

<f o r E a c h w s u : i d =” q u e r y D a t a b a s e ” p a r a l l e l =” yes ”
opaque=” yes ”>

<s t a r t C o u n t e r V a l u e>1< / s t a r t C o u n t e r V a l u e>
<f i n a l C o u n t e r V a l u e>3< / f i n a l C o u n t e r V a l u e>
<scope>

<o p a q u e A c t i v i t y w s u : i d =”
F a c i a l R e c o g n i t i o n P r o c e s s ” />

< / s cope>
< / f o r E a c h>

< / s e q u e n c e>

User_T

User_E
[100]

(1)

FD_T

facialDetect_E
[0.9]

(0.8) (0.2)

FacesDetected_T

facesDetected_E

a1
[0]

(1)

b1
[0]

(1)

c1
[0]

(1)

d1
[0]

SubmitNoResult_T

submitNoResult_E
[0.09]

(1)

SubmitICReq_T

submitICReq_E
[0.02]

InteralFinal_T

internalFinal_E
[0]

SubmitAlarm_T

submitAlarm_E
[0.01]

&

&

Figure. 2. Facial Detection LQN Model.

User_T

User_E
[100]

(1)

IC_T

receiveICReq_E
[0.9]

(1)

MultiGrid_T

multiGrid_E

a1
[0]

m1
[0]

0.7 0.3

(1)

mp
[0.1]

(1)

mp1
[0]

(1)

mp2
[0]

(1)

s1
[0]

ConverterM_T

multiConv_E
[1.3]

ConverterS_T

singleConv_E
[1.3]

(1)

InternalFinal_T

internalFinal_E
[0]

+

&

&

Figure. 3. Image Converter LQN Model.

User_T

User_E
[100]

(1)

FR_T

receiveFRReq_E
[0.9]

(1)

MultiData_T

multiData_E

a1
[0]

(1)

d1
[0]

(1)

d2
[0]

(1)

d3
[0]

(1)

f1
[0]

DB1_T

db1_E
[1]

DB2_T

db2_E
[2]

IdReport_T

idReport_E
[1]

DB3_T

db3_E
[2.8]

+

&

Figure. 4. Facial Recognition LQN Model.

User_T

User_E
[100]

(1)

FD_T

FD_E
[3.2]

(0.4)

IC_T

IC_E
[0.8]

(1)

FR_T

FR_E
[5.8]

Figure. 5. FD IC FR Sequential Composition LQN Model.

The entire composition for the building security application
can be sought in different ways depending on the approaches
the engineers use. We demonstrate two example scenarios
to show how the framework facilitates compositions. In a
simplified scenario, all services can be considered as atomic
services, while in a more flexible scenario, the composition
utilizes the workflow processes to leverage the service choices
in order to gain a better performance.

To compose the the system in the simplest case, service
discovery process (D1, shown in Figure 1) is applied. For FD,

IC, and FR, QoS values such as service execution time are ob-
tained from their QoS extended WSDL files. A simple version
of the sequential BPEL expression is created in Listing 4.

Listing 4. Atomic Composition of FD.

<s e q u e n c e>
<o p a q u e A c t i v i t y name=” FD Process ” />
<o p a q u e A c t i v i t y name=” I C P r o c e s s ” />
<o p a q u e A c t i v i t y name=” FR Process ” />

< / s e q u e n c e>

The transformation steps along with the quality attributes
obtained from the WSDL extension of each services, together
create the LQN model of the composition. The LQN model
is depicted in Figure 5. The new composition along with the
performance indexes resulting from analyzing LQN models
can be published using service publish process (P2, shown in
Figure 1).

A more flexible way to consider the composition is to
observe the web services components as processes. We first
retrieve web services along with their processes. Applying
BPEL4Chor processes, a topology file is created to build the
service interactions. A snapshot of the topology configuration
is shown in Listing 5. The result of the composition along with
the derived BPEL and corresponding LQN model is shown in
Figure 6.

Listing 5. Choreography Topology for Process Service Composition of FD

<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
<t o p o l o g y name=”

e x a m p l e f a c i a l D e t e c t R e c o g n i z e t o p o l o g y ”
t a r g e t N a m e s p a c e =” h t t p : / / agentmode . com / c h o r e o g r a p h y

/ f a c i a l / t o p o l o g y ”
x m l n s : f d =” h t t p : / / agentmode . com / c h o r e o g r a p h y / f a c i a l

/ d e t e c t e r ”
x m l n s : i c =” h t t p : / / agentmode . com / c h o r e o g r a p h y / f a c i a l

/ c o n v e r t e r ”
x m l n s : f r =” h t t p : / / agentmode . com / c h o r e o g r a p h y / f a c i a l

/ r e c o g n i z e r ”
x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema−

i n s t a n c e ”>

<p a r t i c i p a n t T y p e s>
<p a r t i c i p a n t T y p e name=”FD”

p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =” f d : d e t e c t e r ”
/>

<p a r t i c i p a n t T y p e name=” IC ”
p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =” i c : c o n v e r t e r
” />

<p a r t i c i p a n t T y p e name=”FR”
p a r t i c i p a n t B e h a v i o r D e s c r i p t i o n =”
f r : r e c o g n i z e r ” />

< / p a r t i c i p a n t T y p e s>

<p a r t i c i p a n t s>
<p a r t i c i p a n t name=” d e t e c t e r ” t y p e =”FD” s e l e c t s =”

c o n v e r t e r ” />
<p a r t i c i p a n t name=” c o n v e r t e r ” t y p e =” IC ” s e l e c t s =

” r e c o g n i z e r ” />
<p a r t i c i p a n t name=” r e c o g n i z e r ” t y p e =”FR” />

< / p a r t i c i p a n t s>

<messageLinks>
<messageLink name=” i c R e q u e s t ” s e n d e r =” d e t e c t e r ”

s e n d A c t i v i t y =” SubmitICReq ” r e c e i v e r =”
c o n v e r t e r ” r e c e i v e A c t i v i t y =” ReceiveICReq ”
messageName=” i c R e q u e s t ” />

<messageLink name=” f r R e q u e s t ” s e n d e r =” c o n v e r t e r ”
s e n d A c t i v i t y =” SubmitFRReq ” r e c e i v e r =”

r e c o g n i z e r ” r e c e i v e A c t i v i t y =” ReceiveFRReq ”
messageName=” f r R e q u e s t ” />

< / messageLinks>
< / t o p o l o g y>

User_T

User_E
[100]

(1)

FD_T

facialDetect_E
[0.9]

(0.8) (0.2)

FacesDetected_T

facesDetected_E

a1
[0]

(1)

b1
[0]

(1)

c1
[0]

(1)

d1
[0]

SubmitNoResult_T

submitNoResult_E
[0.09]

(1)

SubmitICReq_T

submitICReq_E
[0.02]

IC_T

receiveICReq_E
[0.9]

(0.6)

(0.4)

SubmitAlarm_T

submitAlarm_E
[0.01]

InteralFinal_FD_T

internalFinal_FD_E
[0]

MultiGrid_T

multiGrid_E

a1
[0]

(1)

b1
[0]

(1)

c1
[0]

Converter_T

singleConv_E multiConv_E

m1
[0.33]

s1
[0.33]

(1)

submitFRReq_E
[0.25]

FR_T

receiveFRReq_E
[0.9]

(1)

MultiData_T

multiData_E

a1
[0]

(1)

d1
[0]

(1)

d2
[0]

(1)

d3
[0]

(1)

f1
[0]

DB1_T

db1_E
[1]

DB2_T

db2_E
[2]

IdReport_T

idReport_E
[1]

DB3_T

db3_E
[2.8]

&

&

&

+

+

&

Figure. 6. FD IC FR Choreography Model.

B. Data Dependency Considerations

In the Image Converter (IC) BPEL process, the if-clause
distinguishes between single and multiple faces that need to
converted, since converting multiple faces increases workload
on the processing systems. If the image contains multiple
faces, it may be desirable to use multiple processes executing
concurrently to improve the speed of IC process. Here we
model two identical servers executing the same job by splitting
the conversion tasks into two assuming two faces are detected.
Each server, which either processes the single task or two
tasks, has the same execution performance and same capacity.
The service time depends on the probabilities associated with
detecting one or two faces. In this example, we vary the if-
clause probability from 0.01 to 0.99, and estimate the effective

Figure. 7. IC Service Execution Time vs if-clause Probability. Figure. 8. IC Utilization vs if-clause Probability.

Figure. 9. FR Service Execution Time vs Database Probability. Figure. 10. FR Utilization vs Database Probability.

performance. Figure 7 shows the execution time ranges while
the probability with the if-clause is changed. Figure 8 shows
the utilization of the image conversion servers.

Similar method is also be used with Facial Recognition
(FR) BPEL process, using either a single or multiple tasks
to compare the faces with those in the database. To further
speedup the process, the database may be organized into
frequently accessed faces and less frequently accessed faces.
In this example, we separated the facial detabases into three
separate databases, d1, d2, and d3. Rather than concurrently
querying all three databases, modelers can select just one
representative database based on the likelihood of finding a

match. Figure 9 shows the execution time of the FR service
while adjusting the probability of success with d1. In Figure 10
shows the utilization versus the probabilities.

C. Performance Space Considerations

Various design topologies that yield different service per-
formances can also be considered. In this example, system
structure and server capacity are explored. Consider the IC
example for multiple image conversion. Instead of running
two converters concurrently, suppose we want to explore
the alternatives that execute them sequentially as a two-step

Figure. 11. IC Service Execution Time vs if-clause Probability
on Service Design Alternatives.

Figure. 12. IC Utilization vs if-clause Probability on Service Design Alterna-
tives.

pipeline, where the execution time of each step is only one
forth compared to the parallel ones. There are also options that
the server can be equipped with single or multiple processors
(e.g., multicore systems) to speed up the service. Together
these options can be analyzed by the LQN. Figure 11 shows
the service times of the converter compared to the previously
shown split workflow; we use S to represent the sequential flow
and P to represent parallel workflow and the suffix indicates
the number of processors.

VI. RELATED WORKS

The promise of service oriented computing, and the avail-
ability of web services in particular, promote delivery of
services and creation of new services composed of existing
services [24] – service components are assembled to achieve
integrated computational goals. Business organizations strive
to utilize the services and provide new service solutions
and they will need appropriate tools to achieve these goals
[25]. As webs and internet based services grow into clouds,
inter-dependency of services and their complexity increases
tremendously. The cloud ontology suggested in [26] depicts
service layers from a high-level, such as Application and
Software, to a low-level, such as Infrastructure and Platform.
Each component resides at one layer can be useful to others
as a service. It hints the amount of complexity resulting from
not only horizontal but also vertical integrations in building
and deploying a composite service. Our framework tackles
the complexity of the selection and composition issues with
additional qualitative information to the service descriptions
in BPEL. Engineers can use BPEL to explore design options,
and have the QoS properties analyzed for the design. QoS
properties of each service are annotated with our WSDL
extension for future references.

There have been several works on QoS-awareness for BPEL
services. In [27], a service broker offers composite service
with multiple QoS classes to the users. The selection scheme
optimizes aggregated QoS of incoming request flows using
linear programming. In [28], business workflow is parsed into
a tree structure, where heuristic algorithms are applied for
selecting service candidates based on QoS properties. In [29],
QoS is acquired by constructing activity graph and reason-
ing the dependencies among them for the QoS parameters,
including response time and cost. A declarative approach
is proposed in [30] by creating the policy-based language
QoSL4BP to specify QoS constraints and logic over scopes
of the orchestration. QoS planning, monitoring, and adaptation
of the BPEL can be expressed to model the service behavior.
An extension to BPEL for specifying QoS and non-functional
requirements is proposed in [31]. The extension point is at the
service invocation of a partner web service. Our framework
is able to provide compatible SOA infrastructure to test on
different approaches surveyed above and others, however, the
foundation to address QoS properties for BPEL relies on the
WSDL extension at the service level [13]. The benefit is
that modeling business services to annotate QoS properties
is compatible with standard WS-BPEL without the need to
introduce other artifacts.

Performance evaluation on BPEL often involves analytical
model construction by transforming the business logic into
appropriate model logic. In [32] and [33], BPEL processes
are translated into stochastic petri nets by a set of rules to
model waiting queues and their performance distributions. In
[34], a formalism for the SYNTHESys framework [35] is
generated by the translation from BPEL to PerfBPEL models.
The PerfBPEL serves as the performance annotation to the
BPEL workflow, and a Markov chain for the model can be
generated. Then multi-formalism modeling technique enables

the use of other tools for analysis. In [36], BPEL is annotated
with a performance metadata for operations and resources. A
queueing model can be derived from these annotations to gen-
erate the bounds of throughput and response times. While the
translation is similar to ours, our framework uses an ontology
for QoS data management, and use LQN to keep the original
mapping of service architecture. In [37], support from abstract
to executable processes for service orchestration is proposed
according to three levels: needed functionality, expected QoS,
and composition flow. Process realization, discovery, classifica-
tion, and selection steps lead to the composition. The expected
QoS is reasoned by a classification method to select services
for composition. While our framework can also rank services
using ontology models and plug in different selection filters,
the QoS prediction for service composition is based on the
result of modeling analysis.

A feature-completed Petri net semantic counterpart for
BPEL has been established in [17]. As mapping from BPEL
is easily obtained, Petri net can be subjected to formal model
checking [38] and workflow performance analysis [39].

VII. CONCLUSION

In this paper, we described our framework for web service
QoS-aware selection and composition of web services using
BPEL. With the foundation of WSDL extension to annotate
non-functional properties, web services can be selected based
on both functional and non-functional (QoS) properties. We
described the process for publishing and discovering services
which meet requirements in the standard service oriented
architecture. We show that services in BPEL description can
be seamlessly accommodated in the framework. By adapting
BPEL and BPEL4Chor for service composition, we reason
about the feasibility of service orchestration and choreogra-
phy in our framework. To illustrate the applicability of our
framework to derive QoS properties of composed services, we
use performance properties such as throughput, response times
and utilization. To this end, we described transformation rules
for converting BPEL into appropriate queuing networks which
can be used by the LQN (Layered Queuing Network) tool that
can compute throughput, utilization, and response times. We
used a case study to demonstrate this process. Although we
focused on performance in the paper, our framework can also
be used to compute other QoS properties such as reliability,
security, availability, with appropriate rules for converting
BPEL logic into corresponding models and tools for obtaining
QoS properties from these models.

VIII. ACKNOWLEDGEMENTS

This work is supported in part by the NSF Net-Centric
IURCRC and a grant #1128344. The authors acknowledge help
given by Sagarika Adepu.

REFERENCES

[1] T. Erl, Soa: principles of service design. Prentice Hall Upper Saddle
River, 2008, vol. 1.

[2] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web
services description language (wsdl) version 2.0 part 1: Core language,”
W3C Recommendation, vol. 26, 2007.

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to soap,
wsdl, and uddi,” Internet Computing, IEEE, vol. 6, no. 2, pp. 86–93,
2002.

[4] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “Qos-aware middleware for web services composition,”
Software Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311–
327, 2004.

[5] R. Mietzner, C. Fehling, D. Karastoyanova, and F. Leymann, “Combin-
ing horizontal and vertical composition of services,” in Service-Oriented
Computing and Applications (SOCA), 2010 IEEE International Confer-
ence on. IEEE, 2010, pp. 1–8.

[6] A. Mukhija, A. Dingwall-Smith, and D. S. Rosenblum, “Qos-aware
service composition in dino,” in Web Services, 2007. ECOWS’07. Fifth
European Conference on. IEEE, 2007, pp. 3–12.

[7] R. Hamadi and B. Benatallah, “A petri net-based model for web
service composition,” in Proceedings of the 14th Australasian database
conference-Volume 17. Australian Computer Society, Inc., 2003, pp.
191–200.

[8] D. Bonetta, A. Peternier, C. Pautasso, and W. Binder, “A multicore-
aware runtime architecture for scalable service composition,” in Services
Computing Conference (APSCC), 2010 IEEE Asia-Pacific. IEEE, 2010,
pp. 83–90.

[9] Y. Liu, A. H. Ngu, and L. Z. Zeng, “Qos computation and policing in
dynamic web service selection,” in Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters. ACM,
2004, pp. 66–73.

[10] N. Limam and R. Boutaba, “Assessing software service quality and
trustworthiness at selection time,” Software Engineering, IEEE Trans-
actions on, vol. 36, no. 4, pp. 559–574, 2010.

[11] S. Reiff-Marganiec, H. Q. Yu, and M. Tilly, “Service selection based
on non-functional properties,” in Service-Oriented Computing-ICSOC
2007 Workshops. Springer, 2009, pp. 128–138.

[12] H.-C. Wang, C.-S. Lee, and T.-H. Ho, “Combining subjective and
objective qos factors for personalized web service selection,” Expert
Systems with Applications, vol. 32, no. 2, pp. 571–584, 2007.

[13] C. Lin, K. Kavi, and S. Adepu, “A description language for qos proper-
ties and a framework for service composition using qos properties,”
in ICSEA 2012, The Seventh International Conference on Software
Engineering Advances, 2012, pp. 90–97.

[14] T. Anstett, F. Leymann, R. Mietzner, and S. Strauch, “Towards bpel
in the cloud: Exploiting different delivery models for the execution of
business processes,” in Services-I, 2009 World Conference on. IEEE,
2009, pp. 670–677.

[15] F. Curbera, F. Leymann, T. Storey, D. Ferguson, and S. Weerawarana,
Web services platform architecture: SOAP, WSDL, WS-policy, WS-
addressing, WS-BPEL, WS-reliable messaging and more. Prentice Hall
PTR Englewood Cliffs, 2005.

[16] C. Ouyang, E. Verbeek, W. M. van der Aalst, S. Breutel, M. Dumas, and
A. H. ter Hofstede, “Wofbpel: A tool for automated analysis of bpel
processes,” in Service-Oriented Computing-ICSOC 2005. Springer,
2005, pp. 484–489.

[17] N. Lohmann, “A feature-complete petri net semantics for ws-bpel 2.0
and its compiler bpel2owfn,” Techn. report, vol. 212, 2007.

[18] D. Jordan, J. Evdemon, A. Alves, A. Arkin, S. Askary, C. Barreto,
B. Bloch, F. Curbera, M. Ford, Y. Goland et al., “Web services business
process execution language version 2.0,” OASIS Standard, vol. 11, 2007.

[19] H. Mili, G. Tremblay, G. B. Jaoude, E. Lefebvre, L. Elabed, and G. E.
Boussaidi, “Business process modeling languages: Sorting through the
alphabet soup,” ACM Computing Surveys (CSUR), vol. 43, no. 1, p. 4,
2010.

[20] C. Peltz, “Web services orchestration and choreography,” Computer,
vol. 36, no. 10, pp. 46–52, 2003.

[21] G. Decker, O. Kopp, F. Leymann, and M. Weske, “Bpel4chor: Extend-
ing bpel for modeling choreographies,” in Web Services, 2007. ICWS
2007. IEEE International Conference on. IEEE, 2007, pp. 296–303.

[22] G. Franks, P. Maly, M. Woodside, D. C. Petriu, and A. Hubbard,
“Layered queueing network solver and simulator user manual,” Real-
time and Distributed Systems Lab, Carleton University, Ottawa, 2005.

[23] D. Ivanovic, M. Carro, and M. Hermenegildo, “Towards data-aware qos-
driven adaptation for service orchestrations,” in Web Services (ICWS),
2010 IEEE International Conference on. IEEE, 2010, pp. 107–114.

[24] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” Computer,
vol. 40, no. 11, pp. 38–45, 2007.

[25] M. B. Blake, W. Tan, and F. Rosenberg, “Composition as a service
[web-scale workflow],” Internet Computing, IEEE, vol. 14, no. 1, pp.
78–82, 2010.

[26] L. Youseff, M. Butrico, and D. Da Silva, “Toward a unified ontology of
cloud computing,” in Grid Computing Environments Workshop, 2008.
GCE’08. IEEE, 2008, pp. 1–10.

[27] V. Cardellini, E. Casalicchio, V. Grassi, and F. Lo Presti, “Flow-
based service selection forweb service composition supporting multiple
qos classes,” in Web Services, 2007. ICWS 2007. IEEE International
Conference on. IEEE, 2007, pp. 743–750.

[28] D. Comes, H. Baraki, R. Reichle, M. Zapf, and K. Geihs, “Heuristic ap-
proaches for qos-based service selection,” Service-Oriented Computing,
pp. 441–455, 2010.

[29] D. Mukherjee, P. Jalote, and M. Gowri Nanda, “Determining qos of
ws-bpel compositions,” Service-Oriented Computing–ICSOC 2008, pp.
378–393, 2008.

[30] F. Baligand, N. Rivierre, and T. Ledoux, “A declarative approach for
qos-aware web service compositions,” Service-Oriented Computing–
ICSOC 2007, pp. 422–428, 2007.

[31] V. Agarwal and P. Jalote, “From specification to adaptation: an in-
tegrated qos-driven approach for dynamic adaptation of web service
compositions,” in Web Services (ICWS), 2010 IEEE International Con-
ference on. IEEE, 2010, pp. 275–282.

[32] M. Teixeira, R. Lima, C. Oliveira, and P. Maciel, “Performance evalu-
ation of service-oriented architecture through stochastic petri nets,” in
Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International
Conference on. IEEE, 2009, pp. 2831–2836.

[33] D. Bruneo, S. Distefano, F. Longo, and M. Scarpa, “Qos assessment
of ws-bpel processes through non-markovian stochastic petri nets,” in
Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 1–12.

[34] E. Barbierato, M. Iacono, and S. Marrone, “Perfbpel: A graph-based
approach for the performance analysis of bpel soa applications,” in
Performance Evaluation Methodologies and Tools (VALUETOOLS),
2012 6th International Conference on. IEEE, 2012, pp. 64–73.

[35] M. Iacono and M. Gribaudo, “Element based semantics in multi
formalism performance models,” in Proceedings of the 2010 IEEE
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems. IEEE Computer Society,
2010, pp. 413–416.

[36] M. Marzolla and R. Mirandola, “Performance prediction of web service
workflows,” Software Architectures, Components, and Applications, pp.
127–144, 2007.

[37] Z. Azmeh, M. Huchard, F. Hamoui, and N. Moha, “From abstract to
executable bpel processes with continuity support,” in Web Services
(ICWS), 2012 IEEE 19th International Conference on. IEEE, 2012,
pp. 368–375.

[38] F. Van Breugel and M. Koshkina, “Models and verification of bpel,”
Unpublished Draft (January 1, 2006), 2006.

[39] W. M. van der Aalst, “The application of petri nets to workflow

management,” Journal of circuits, systems, and computers, vol. 8,
no. 01, pp. 21–66, 1998.

