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1 Introduction

In 1978, László Lovász proved the Kneser Conjecture [8]. His proof involves associating to
a graph G its neighborhood complex N (G) and using its topological properties to locate
obstructions to graph colorings. This proof illustrates the fruitful interaction between graph
theory, combinatorics and topology. The hom complex Hom (G,K) is another graph com-
plex, introduced by Lovász to study chromatic numbers of graphs. For any graph G there
is a homotopy equivalence N (G) ' Hom (K2, G), so this suggests studying the topology of
Hom (G,K) in general to locate obstructions to graph homomorphisms.

Not much is known about Hom (G,K) in general. The main cases studied so far are
G = Km, the complete graph with m vertices, and G = Cm, the cycle with m vertices.
Babson and Kozlov prove in [2] that Hom (Km, Kn) is homotopy equivalent to a wedge of
spheres while �uki¢ and Kozlov proved in [6] that the components of Hom (Cm, Cn) are points
or homotopy equivalent to a circle. In either case, the hom complex is not contractible. In
general, if a �nite dimensional CW complex X is freely acted upon by Z/nZ, then the Euler
characteristic χ (X) is divisible by n. In particular, if G has a Z/2Z action that �ips an
edge and K has no loops, then Z/2Z acts freely on Hom (G,K). It follows that Hom (G,K)
is not contractible in this case since χ (Hom (G,K)) is even. The graphs Km and Cm have
this property, so with much less work we can at least conclude that these hom complexes
have an interesting geometric structure. In this paper, we shall approach hom complexes by
way of homology theory and give conditions under which Hom (G,K) has nonzero homology
groups in su�ciently high dimensions.

This paper is organized as follows. In Section 2, we introduce the category of graphs
and multihomomorphisms and record the relevant results about simplicial complexes and
simplicial homology. In Section 3, we give two di�erent quotient graph constructions, and
in Section 4, we derive a lower bound on the ranks of homology on Hom (G,K) and provide
examples of hom complexes in which this lower bound is non-trivial.

2 Preliminaries

2.1 Graphs and Multihomomorphisms

A graph G is a pair
G = (V (G) , E (G))

where V is set of points and E is a set of edges connecting points in V . We allow our graphs
to contain loops. A multihomomorphism G −→ K is a function

ϕ : V (G) −→ P (V (K)) \∅

with the property that if (x, y) ∈ E (G), then ϕ (x) × ϕ (y) ∈ E (K). Here P denotes the
power set. In other words, if ϕ : G −→ K is a multihomomorphism, then if (x, y) ∈ E (G),
there is a complete bipartite graph between ϕ (x) and ϕ (y) in K. If ϕ : G −→ K and
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ψ : K −→ L are graph multihomomorphisms, then there is a multihomomorphism ψ ◦ ϕ :
G −→ L de�ned by

ψ ◦ ϕ (x) =
⋃

y∈ϕ(x)

ψ (y) .

Moreover, each graph G has an identity map 1G de�ned by 1G (x) = {x} that satis�es
ϕ ◦ 1G = ϕ and 1G ◦ ψ = ψ whenever either of the compositions is de�ned. We therefore
obtain the category G of graphs and multihomomorphisms.

An important subcategory of G is the category G0 of graphs and graph homomorphisms,
where a graph homomorphism G −→ K is a multihomomorphism in which |ϕ (x)| = 1 for
all x. We denote by Hom0 (G,K) ⊆ Hom (G,K) the set of all graph homomorphisms from
G to H. Observe that Hom0 (G,K) is just the set of minimal elements in Hom (G,K).

Proposition 1. If ϕ : G −→ K is an isomorphism in G, then ϕ ∈ Hom0 (G,K).

Proof. Let ψ be an inverse for ϕ. Let v ∈ V (G) and let ϕ (v) = {u1, . . . , uk}, say. Then
{v} = ψ ◦ ϕ (x) =

⋃
i ψ (ui). Consequently, ψ (ui) = {v} for all i. Then

{ui} = ϕ ◦ ψ (ui)

=
⋃

y∈ψ(ui)

ϕ (y)

= ϕ (v) .

Therefore |ϕ (v)| = 1 and ϕ ∈ Hom0 (G,K) as claimed.

Finally, notice that if ϕ : G ∼= K, then |V (G)| = |V (K)| and (x, y) ∈ E (G) if and only
if (ϕ (x) , ϕ (y)) ∈ E (K). Thus, isomorphic graphs are essentially the same.

2.2 Hom Complexes

A �nite oriented abstract simplicial complex K is an ordered set

V (K) = {v0, . . . , vn}

of vertices and a collection of subsets of V (K) called simplices such that

1. Each {vi} is a simplex,

2. If F is a simplex and E ⊆ F , then E is a simplex.

The simplex G is called an n-simplex if |G| = n + 1 and the greatest n for which there is
an n-simplex in K is called its dimension. An abstract simplicial complex is also called a
vertex scheme because every abstract simplicial complex is the vertex scheme for a triangu-
lated polyhedron, called its geometric realization. Observe that a graph with out loops is a
simplicial complex of dimension at most 1.



Page 214 RHIT Undergrad. Math. J., Vol. 13, No. 1

If P is a partially ordered set, there is a simplicial complex ∆P , called the order complex
of P , whose vertices are the elements of P and whose simplices are those subsets that are
linearly ordered. The set Hom (G,H) of all graph multihomomorphisms is an ordered set
where ϕ ≤ ψ if and only if always

ϕ (x) ⊆ ψ (x) .

The geometric realization of ∆Hom (G,K) is called the hom complex and is our main ob-
ject of study. We will use the notation Hom (G,K) for both the poset and the geometric
realization of its order complex, since it is convenient to confuse these two objects.

Remark. The hom complex was originally de�ned slightly di�erently as follows. LetH (G,K)
be the CW complex with H (G,K)0 = Hom0 (G,K) and with one cell for each graph mul-
tihomomorphism ϕ. The dimension and attach maps for H (G,K) are determined by the
requirement that the closure of the cell corresponding to ϕ consist of all cells corresponding
to the multihomomorphisms ψ for which ψ ≤ ϕ. Then Hom (G,K) as de�ned here is a
barycentric subdivision of H (G,K).

The topology of Hom (G,K) often re�ects some combinatorial information about G and
K. The following results which can be found in [8, 3] illustrate this idea. Recall that a
topological space X is k-connected if X is path connected and πi (X) = 0 for all i ≤ k
where πi denotes the ith homotopy group of X. The connectivity of a space, conn (X) is the
greatest k for which X is k-connected. We denote by Γ, the chromatic number of a graph
since we are using the usual notation χ for the Euler characteristic of a space.

Theorem 2 (Lovász [8]). If K is a graph, then

Γ (K)− Γ (K2) ≥ conn (Hom (K2, K))

Theorem 3 (Babson, Kozlov [3]). If K is a graph, then

Γ (K)− Γ (C2r+1) ≥ conn (Hom (C2r+1, K)) .

Remark. Lovász originally proved Theorem 2 for the neighborhood complex N (G).

The connectivity of Hom (G,K) is therefore bounded above if G = K2 or G = C2r+1, and
K is �nite with no loops. Consequently, Hom (G,K) has interesting homotopy groups in suf-
�ciently high dimensions. We are investigating when Hom (G,K) has interesting homology
for general graphs G and K.

2.3 Homology

The following exposition of homology with complex coe�cients is adapted from the algebraic
topology books [1, 9]. A graded vector space V is a doubly in�nite sequence of vector spaces
(Vi), and a morphism of graded vector spaces α : V −→ W of degree m is a sequence of
linear transformations αi : Vi −→ Wi+m. A chain complex (V, d) is a graded vector space
and a morphism d : V −→ V of degree −1 such that d ◦ d = 0. The map d is called the
di�erential of the complex. Visually, a chain complex is a sequence of the form



RHIT Undergrad. Math. J., Vol. 13, No. 1 Page 215

· · · di+2
// Vi+1

di+1
// Vi

di // Vi−1
di−1

// . . .

in which di ◦ di+1 = 0 for all i. Let Bi (V ) = im di+1 and Zi (V ) = ker di. Then elements of
Bi (V ) and Zi (V ) are called the i-dimensional boundaries and i-dimensional cycles, respec-
tively. The requirement di ◦ di+1 = 0 is equivalent to the condition Bi (V ) ⊆ Zi (V ). We
de�ne the homology of the chain complex to be the graded vector space

H∗ (V ) = (Hi (V ))

where Hi (V ) is the quotient space Zi (V ) /Bi (V ), called the ith homology group of the
complex. Our next objective is to de�ne the homology of a simplicial complex and use it
study the hom complex, Hom (G,K).

Let X be a �nite oriented simplicial complex. To form a chain complex, let S∗ (X) =
(Si (X)) be the graded complex vector space where Si (X) is the free complex vector space
generated by the set of all i-simplices in X for 0 ≤ i ≤ dimX, and Si (X) = 0 for all
i > dimX and all i < 0. If F is a simplex in X, then F inherits an order from the vertices of
X and F becomes an oriented simplex. If F is an i-simplex, then F contains i+ 1 oriented
i-simplices, obtained by removing a vertex from the simplex. Explicitly, if we let

F = [v0 . . . vi]

denote an oriented i-simplex, then we obtain i+ 1 oriented i− 1 simplices of the form

dijF = [v0 . . . v̂j . . . vi] .

We thus have j boundary operators dij : Si (X) −→ Si−1 (X) de�ned by

dij

(∑
ckFk

)
=
∑

ckd
i
jFk

and we de�ne the di�erential d : S∗ (X) −→ S∗ (X) to be the alternating sum

di =
i∑

j=0

(−1)j dij.

Then (S∗ (X) , d) is a chain complex; in fact, for an i-simplex F , we have

di−1diF =
i∑

j=0

i−1∑
k=0

(−1)j+k di−1
k dijF (1)

and for k < j we have di−1
k dij = di−1

j−1d
i
k. Therefore, the (k, j) and (j − 1, k) terms in (3.1)

cancel. We de�ne the homology of the simplicial complex to be the homology of this chain
complex,

H∗ (X) = H∗ (S∗ (X)) .
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If (V, d) and (W,d′) are chain complexes, then a chain map is a morphism α : V −→ W
of degree 0 for which

αi−1 ◦ di = d′i ◦ αi
for all i. Consequently, if α : V −→ W is a chain map, then αi (Bi (V )) ⊆ Bi (W ) and
αi (Zi (V )) ⊆ Zi (W ); therefore, α induces a morphism H∗ (α) : H∗ (V ) −→ H∗ (W ) on ho-
mology (of degree 0). Thus H∗ (α) is a sequence of linear transformations Hi (α) : Hi (V ) −→
Hi (W ). If f : X −→ Y is a simplicial map, that is, a map that takes simplices to simplices,
then f induces a chain map S∗ (f) : S∗ (X) −→ S∗ (Y ) de�ned by

Si (f)
(∑

ckσk

)
=
∑

ckf (σk) .

Therefore H∗ is a functor from the category of simplicial complexes to graded vector spaces.
It is well known that homology of simplicial complexes satis�es the axioms for a homology
theory. The functors Hq from simplicial complexes to complex vector spaces therefore satisfy
the following axioms (along with others that we will not be needing).

1. IfX is contractible (has the homotopy type of a point), thenH0 (X) ∼= C andHn (X) ∼=
0 for all n 6= 0.

2. If X =
∐
Xi, then Hn (X) =

⊕
iHn (Xi).

3. If f, g : X −→ Y satisfy f ' g, then H∗ (f) = H∗ (g).

Given a simplicial map f : X −→ X, each Hi (f) : Hi (X) −→ Hi (X) is a linear transfor-
mation. The Lefshetz number of f is the number

Λf =
dimX∑
i=0

(−1)i tr (Hi (f))

and the Euler characteristic of a simplicial complex is the number

χ (X) =
n∑
i=0

(−1)i βi (X) .

where βi (X) = dimHi (X) is the ith Betti number of X. Here we record a result from [7,
Exercise 3, pg. 181] that we shall rely on throughout this paper.

Theorem 4 (Lefshetz Fixed Point Theorem). Let f : X −→ X be a simplicial isomorphism

and let Fixed (f) be the set of points �xed by f . Then

χ (Fixed (f)) = Λf .

By axiom (2) for homology, H∗ (∅) = {0} and thus χ (∅) = 0. It follows that if Λf 6= 0,
then f has a �xed point. Often times, Hom (G,K) = ∅; for example, if χ (H) < χ (G),
then a graph homomorphism G −→ H composed with an inclusion map H −→ Kχ(H)

provides a coloring of G with χ (H) colors, and this is impossible. Our main concern is when
Hom (G,K) is non-empty.



RHIT Undergrad. Math. J., Vol. 13, No. 1 Page 217

Lemma 5. If X is a non-empty simplicial complex and X is path-connected, then trH0 (f) =
1.

Proof. Let v0 ∈ X. Since X is path-connected, there is a path from v0 to f (v0) that we can
view as a 1 chain

∑
ckFk ∈ S1 (X) such that f (v0)− v0 = d1 (

∑
ckFk). Therefore,

[f (v0)]− [v0] = [f (v0)− v0]

=
[
d1
(∑

ckFk

)]
= [0]

since d1 (
∑
ckFk) ∈ B1 (X) . Therefore H0 (f) = 1H0(X) and trH0 (f) = 1.

The next result from [4] due to Bjorner and Baclawski insures that the �xed points of
an order preserving map P −→ P correspond to the �xed points of the induced map on the
realization of ∆P .

Theorem 6 (Bjorner and Baclawski). If P is an ordered set and f : P −→ P is order

preserving and �xed point free, then the induced map ∆f on the order complex ∆P is �xed

point free.

Corollary 7. If f : Hom (G,K) −→ Hom (G,K) is an order preserving map that is �xed

point free, then the realization of Hom (G,K) is not contractible.

Proof. If Hom (G,K) is empty or disconnected, then Hom (G,K) is not contractible. Oth-
erwise, Λf = 0 and by Lemma 4, we have trH0 (f) = 1. Therefore, trHn (f) 6= 0 for some
n > 0 and Hn (Hom (G,K)) 6= 0. By the axioms for homology, we conclude that Hom (G,K)
is not contractible.

3 Quotient Graphs

In this section, we construct order preserving maps Hom (G,K) −→ Hom (G,K) and charac-
terize their �xed point sets. Let C be any category. Then the functor Hom (a, b) is a bifunc-
tor C×Cop −→ Set, covariant in b and contravariant in a. The map induced by an arrow
ϕ : b −→ b′ is the function ϕ∗ : Hom (a, b) −→ Hom (a, b′) de�ned by ϕ∗ (ψ) = ϕ ◦ ψ. Simi-
larly, the map induced by an arrow ϕ : a −→ a′ is the function ϕ∗ : Hom (a′, b) −→ Hom (a, b)
de�ned by ϕ∗ (ψ) = ψ ◦ ϕ. In the case of G, it is well known that the maps ϕ∗ and ϕ∗ are
order preserving. The proof is included here for completeness. Let P denote the category of
partially ordered sets and order preserving maps.

Theorem 8. The hom complex Hom (G,K) is a bifunctor Gop ×G −→ P, covariant in K
and contravariant in G.
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Proof. We shall show that ϕ∗ is order preserving. The proof that ϕ∗ is order preserving is
similar. Let G be a graph and suppose that ϕ : K −→ K ′ is a graph multihomomorphism.
Let ψ, ψ′ : G −→ K be multihomomorphisms and suppose that ψ ≤ ψ′. Then

y ∈ ϕ∗ (ψ) (x) =⇒ y ∈ ϕ ◦ ψ (x)

=⇒ there is a z ∈ ψ (x) such that y ∈ ϕ (z)

=⇒ there is a z ∈ ψ′ (x) such that y ∈ ϕ (z)

=⇒ y ∈ ϕ ◦ ψ′ (x) .

Thus ϕ∗ (ψ) (x) ⊆ ϕ∗ (ψ′) (x) for all x ∈ V (G) and ϕ∗ is order preserving, as required.

In particular, an isomorphism σ : G −→ G (which is just an ordinary graph isomorphism
by Proposition 1) in G induces order isomorphisms σ∗ : Hom (G,K) −→ Hom (G,K) and
σ∗ : Hom (K,G) −→ Hom (K,G).

Let G be a graph and ∼ an equivalence relation on V (G). A quotient graph G∼ is de�ned
by

V (G∼) = V (G) / ∼

and ([x] , [y]) ∈ E (G′) if and only if (u, v) ∈ E (G) for some u ∈ [x] and v ∈ [y]. We now
arrive at our �rst main result.

Theorem 9. Let A be the set of all ϕ ∈ Hom (G,K) for which x ∼ y implies that ϕ (x) =
ϕ (y). Then

Hom (G∼, K) ∼= A.

Proof. The projection map π : V (G) −→ V (G∼) is a graph homomorphism and induces an
order preserving map

π∗ : Hom (G∼, K) −→ Hom (G,K) .

We claim that π∗ is an isomorphism onto A. De�ne ρ : A −→ Hom (G∼, K) by letting
ρ (ϕ) be the unique map ϕ̄ : V (G∼) −→ P (V (K)) for which ϕ̄ ◦ π = ϕ. Then ϕ̄ is a
multihomomorphism since π is surjective and π and ϕ are multihomomorphisms. To see
that ρ is order preserving, let ϕ ≤ ψ and let [x] ∈ V (G∼). Then if u ∈ ϕ̄ ([x]), we have
u ∈ (ϕ̄ ◦ π) (x) = ϕ (x). Therefore, u ∈ ψ (x) and u ∈ ψ̄ ([x]). Clearly π∗ factors as π∗ = iA◦q
where iA : A −→ Hom (G,K) is the inclusion map and q : Hom (G∼, K) −→ A is the map
ϕ

q7→ ϕ ◦ π. Thus q is an order preserving map, and q = ρ−1.

Corollary 10. Let σ : G −→ G be an isomorphism. De�ne x ∼ y if and only if x = σn (y)
for some n. Then

Fixed (σ∗) ∼= Hom (G∼, K) .

Proof. We observe that σ∗ (ϕ) = ϕ if and only if ϕ (σn (x)) = ϕ (x) for all x and for all n,
that is, if and only if x ∼ y implies ϕ (x) = ϕ (y). The corollary then follows from Theorem
9.
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Corollary 11. Under the hypotheses of Corollary 9, if σ∗ (ϕ) = ϕ for some ϕ ∈ Hom (G,K)
and K has no loops, then for each v ∈ G, the equivalence class [v] is an independent set in

G.

Proof. Let v ∈ V (G) and suppose that u ∈ [v]. If (u, v) ∈ E (G), then ([v] , [v]) ∈ E (G∼).
Consequently, Hom (G∼, K) = ∅ since K is assumed to not have loops. But this is impossible
by Corollary 9.

In particular, if there is an automorphism σ of G that maps a vertex to one of its
neighbors, then σ∗ is �xed point free. Notice that the graphs K2 and C2r+1 from Theorem
2 have such automorphisms and we have found another proof that for any �nite loop free
graph K the hom complexes, Hom (K2, K) and Hom (C2r+1, K) are not contractible.

Now let ∼ be an equivalence relation on V (K) and let K∼ be the graph with vertices
V (K∼) = V (K) / ∼ and ([x] , [y]) ∈ E (G′) if and only if (u, v) ∈ E (G) for all u ∈ [x] and
v ∈ [u].

Theorem 12. Let A be the set of all those ϕ ∈ Hom (G,K) for which each ϕ (x) is a union

of equivalence classes in K. Then

A ∼= Hom (G,K∼) .

Proof. Let π∨ : K∼ −→ K be the multihomomorphism

[v]
π∨−→ [v]

where we view [v] as a vertex in K∼ on the left and as a set of vertices in K on the right.
Then π∨ induces an order preserving map π∨∗ : Hom (G,K∼) −→ Hom (G,K). We claim
that π∨∗ is an isomorphism onto A. De�ne ρ : A −→ Hom (G,K∼) by letting ρ (ϕ) be the
multihomomorphism

ρ (ϕ) (x) = {[u1] , . . . , [un]}
where ϕ (x) =

⋃n
i=1 [ui]. Since there is a complete bipartite graph in K between [ui] and

[uj] whenever (ui, uj) ∈ E (K∼), it follows that ρ (ϕ) is a multihomomorphism. To see that
ρ is order preserving, let ϕ ≤ ψ in A. Let x ∈ V (G) and suppose that [u] ∈ ρ (ϕ) (x) .
Then [u] ⊆ ϕ (x). Thus [u] ⊆ ψ (x) and [u] ∈ ρ (ψ) (x). Therefore ρ (ϕ) ⊆ ρ (ψ). Finally π∨∗
factors as π∨∗ = iA ◦ q for an order preserving q : Hom (G,K∼) −→ A, and one checks that
q = ρ−1.

Corollary 13. Let σ : K −→ K be an isomorphism and de�ne x ∼ y if and only if x = σn (y)
for some n. Then

Fixed (σ∗) ∼= Hom (G,K∼) .

Proof. We show that σG (ϕ) = ϕ if and only if each ϕ (x) is a union of equivalence classes.
Observe that for each n and for each x, we have σn (ϕ (x)) = ϕ (x). Therefore the group
〈σ〉 acts on ϕ (x) and ϕ (x) is a union of equivalence classes in K. The result follows from
Theorem 12.
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Corollary 14. Let σ be an automorphism of K and let k be the number of orbits of σ.
If Γ (G) > Γ (K∼), then σG : Hom (G,K) −→ Hom (G,K) does not have a �xed point.

In particular, if G is not k colorable, then σ∗ does not have a �xed point, and therefore

Hom (G,K) is not contractible.

Proof. Suppose that σG has a �xed point, ϕ. Recall that a k coloring of G corresponds
to a graph homomorphism G −→ Kk. For each x ∈ V (G) there is an equivalence class

Ox ⊆ ϕ (x). By construction, the map x
ψ7→ Ox is a homomorphism G → K∼. Choose a

homomorphism ρ : K∼ −→ KΓ(K∼). Then ρ ◦ ψ is a homomorphism G −→ KΓ(K∼). Thus
Γ (G) ≤ Γ (K∼).

Remark. The main utility of the quotient graphs is to show that the �xed points of the
induced maps σ∗ and σ∗ are actually new hom complexes. Since the constructions G∼

and K∼ are sort of dual to one another, it is not surprising that the �xed points of σ∗

correspond to multihomomorphisms out of G∼, while the �xed points of σ∗ correspond to
multihomomorphisms in to K∼.

4 Lower Bound on the Dimensions of Homology Groups

In this section, we derive a lower bound on the dimensions of the homology groups of
Hom (G,K) and provide the promised examples of Hom (G,K) where this bound is non-
trivial.

Lemma 15. Let T : V −→ V be a linear transformation where V is a complex vector space.

If λ is an eigenvalue of T , then for all k > 0, λk is an eigenvalue of T k.

Proof. We have T (v) = λv for some vector v. Inductively, if T k (v) = λkv, then T k+1 (v) =
T
(
λkv
)

= λkT (v) = λk+1v.

Theorem 16. Let σ : G −→ G be an isomorphism and G∼ be the quotient graph induced by

σ. Then

|χ (Hom (G∼, K))| ≤
dim(Hom(G,K))∑

i=0

βi (Hom (G,K)) .

Proof. Since G is �nite, we have σk = 1G for some k and therefore, (σ∗)k = 1Hom(G,K). Thus,
for 0 ≤ i ≤ dim (Hom (G,K)), we have Hi (σ

∗)k = 1Hi(Hom(G,K)). By Lemma 11, if λ is an
eigenvalue of Hi (σ

∗), then λk is an eigenvalue of 1Hi(Hom(G,K)). Thus, λk = 1 and |λ| = 1.
Recall that the trace of a linear transformation is the sum of its eigenvalues. Then

|tr (Hi (σ
∗))| =

∣∣∣∑λj

∣∣∣
where the λj are the eigenvalues of Hi (σ

∗). Consequently
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|tr (Hi (σ
∗))| ≤

∑
|λj|

= βi (Hom (G,K)) .

By the Lefshetz Fixed Point Theorem and Theorem 10, we have

|χ (Hom (G∼, K))| = |χ (Fixed (σ∗))|
= |Λσ∗|
≤

∑
|tr (Hi (σ

∗))|

≤
dim(Hom(G,K))∑

i=0

βi (Hom (G,K)) .

The arguments in Theorem 16 only rely on the properties of homology. Similar reasoning
therefore applies mutatis mutandis for the hom complex Hom (G,K∼) where K∼ is the
quotient graph induced by an automorphism.

Theorem 16 allows us to produce examples of hom complexes with non-zero homology.
For example, if Hom (G,K) is connected, has |χ (Hom (G,K))| ≥ 2 and G′ is a graph with
G′∼ ∼= G, then Hom (G′, K) has non zero homology in some dimension other than dimension
0. To illustrate this idea we record the following result from [6].

Theorem 17. Let Cr denote a cycle with r vertices. Then

χ (Hom (Cm, Cn)) =


2 if n = 4 and m is even,

2n if n | m and n 6= 4,

0 otherwise.

(2)

If G1, . . . , Gn are based graphs, let ∨
Gi

denote the wedge of the graphs Gi. In particular, for each based graph G we have the wedge∨
G, for which an automorphism is speci�ed by cycling through the copies of G. In this

case, we see that (∨
G
)′ ∼= G.

Then if either of the �rst two conditions in (5.1) is satis�ed, we conclude that Hom (
∨
Cm, Cn)

has interesting homology in some dimension.
For an example where Hom (G′, K) is connected and not contractible, we record several

known results. The following is from [2].

Theorem 18. The hom complex Hom (Km, Kn) has the homotopy type of a wedge of f (m,n)
spheres of dimension n−m, where the number f (m,n) is given by the formula

f (m,n) =
m−1∑
k=1

(−1)m+k+1

(
m

k + 1

)
kn.
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The next result is taken from [5].

Theorem 19. Let max val (G) denote the highest degree of a vertex in G. Then

conn (Hom (G,Kn)) ≥ (n−max val (G))− 2.

Next, observe that max val
(∨h

i=1 Km

)
= h (m− 1). Therefore if n ≥ hm + 2, then

Hom
(∨h

i=1Km, Kn

)
is path connected and πi

(
Hom

(∨h
i=1 Km, Kn

))
= 0 for all i ≤ n −

(hm+ 2). By the Hurewicz theorem and axiom 1 for homology, we haveH0

(
Hom

(∨h
i=1Km, Kn

))
∼=

C and Hi

(
Hom

(∨h
i=1Km, Kn

))
∼= 0 for all 1 ≤ i ≤ n− (hm+ 2). Next, we calculate

|χ (Hom (Km, Kn))| =
∣∣1 + (−1)n−m f (m,n)

∣∣
≥ |1− f (m,n)|

and observe that by Theorem 16, we have

|1− f (m,n)| ≤
dim(Hom(

∨h
i=1Km,Kn))∑
i=0

βi

(
Hom

(
h∨
i=1

Km, Kn

))

= 1 +

dim(Hom(
∨h

i=1Km,Kn))∑
i=n−(hm+2)+1

βi

(
Hom

(
h∨
i=1

Km, Kn

))
.

Thus, we can make Hom
(∨h

i=1 Km, Kn

)
path connected with non-zero homology in dimen-

sion as high we please by choosing n su�ciently large. Moreover, this calculation shows that
the non-zero (reduced) homology groups appear only in dimensions at least n−(hm+ 2)+1.

5 Conclusion

The main result of this paper is Theorem 16 which relates the homology of a hom complex
Hom (G,K) to the Euler characteristic of another hom complex, obtained by replacing either
G or K with a quotient graph. This result allows one to build new hom complexes with
desired properties by recognizing symmetries of certain graphs, as illustrated in Section 4.
These quotient graphs are also of independent interest as illustrated by Theorems 10 and
13. The fact that

Fixed (σ∗) ∼= Hom (G∼, K)

and
Fixed (σ∗) ∼= Hom (G,K∼)

suggests that the two quotient constructions G∼ are K∼ are sort of dual.
For future research, one could look for more examples of graphs for which these results

apply. The original motivation for the neighborhood complex was to locate obstructions to
graph homomorphisms. It would be interesting if these results could also be used to locate
such obstructions and, in particular, obtain information about chromatic numbers.
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