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ABSTRACT
Mobile networking researchers have long searched for large-
scale, fine-grained traces of human movement, which have
remained elusive for both privacy and logistical reasons. Re-
cently, researchers have begun to focus on geosocial mobil-
ity traces,e.g. Foursquare checkin traces, because of their
availability and scale. But are we conceding correctness in
our zeal for data? In this paper, we take initial steps to-
wards quantifying the value of geosocial datasets using a
large ground truth dataset gathered from a user study. By
comparing GPS traces against Foursquare checkins, we find
that a large portion of visited locations is missing from check-
ins, and most checkin events are either forged or superfluous
events. We characterize extraneous checkins, describe possi-
ble techniques for their detection, and show that both extra-
neous and missing checkins introduce significant errors into
applications driven by these traces.

Categories and Subject Descriptors
H.1.2 [Information Systems]: Human factors

General Terms
Human Factors, Measurement

Keywords
Location based social networks, Measurement, Mobility

1. INTRODUCTION
For quite some time, the holy grail quest of mobile net-

working research has been the search for large-scale, fine-
grained mobility traces of human movement. Such traces
can provide the basis for a large range of applications, rang-
ing from practical applications like traffic prediction andur-
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ban planning, to research applications like guiding the de-
sign of cellular network protocols and smartphone energy
management systems.

Unfortunately, for both privacy and logistical reasons, ac-
cess to such mobility traces has been elusive. This in turn led
to the rise of numerous alternatives, including synthetic mo-
bility models ranging from random waypoint [14] to obstacle-
based models [13], to adoption of unconventional sources of
mobility datasets,e.g. movement traces from the SecondLife
virtual reality platform [16].

Most recently, attention has turned towards geosocial mo-
bility traces, traces of “check-in” events gathered from lo-
cation based social networks (LBSN) such as Foursquare,
Gowalla and Brightkite [8, 19, 21]. These datasets are at-
tractive as mobility traces, because they are relatively easy
to obtain, and provide data for relatively large user popu-
lations (Foursquare has 30 million users with more than 4
billion checkins, and Facebook Places could provide data
on all of its 1 billion users). In fact, researchers are al-
ready relying on geosocial mobility traces to predict human
movement [9,20,25], infer friendships based on visited loca-
tions [4, 26], and improve the efficiency of content delivery
networks [24].

So is this it? Have we solved our long running quest for
realistic mobility traces, or are we overlooking potentially
misleading data in our zealous pursuit of mobility? Just how
reflective are “check-in” traces of our true mobility patterns,
and how significantly would any potential discrepancies im-
pact applications and systems that rely on these datasets?

In this paper, we take concrete steps towards answering
these questions, by performing a large user mobility study,
and comparing a ground-truth of user mobility (via GPS
data) to a Foursquare dataset for the same users. We com-
pare “checkin” events from Foursquare to stationary events
in the GPS trace, and make several surprising findings:
• First, we find that there is only a small subset of common

events in the two traces. Foursquare checkins only cover
roughly 10% of all locations a user visits. In addition to
these missing locations, roughly 75% of all checkins are
extraneous events that do not match real mobility.

• Second, we analyze and breakdown extraneous checkins
into 3 types of user actions, multiple checkins at a sin-
gle location, checking in at remote locations, or driveby
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checkins while moving at high speed. We find strong sta-
tistical correlations between each type of action and in-
dividual incentives in Foursquare, which hint at the mo-
tivation behind these actions.

• Third, we characterize extraneous checkins to identify
potential features for use in automated detection.

• Finally, we use both datasets to drive a simulation of a
mobile ad hoc network, and show that both missing and
extraneous checkins have a significant impact on appli-
cation outcomes.

To the best of our knowledge, our study is the first to
quantitatively evaluate the accuracy and validity of geoso-
cial mobility traces. In addition to identifying significant
deviations from true mobility, we offer potential techniques
to detect and filter extraneous checkins. We also outline the
challenge of recovering “missing” checkins via data extrap-
olation, a necessary step towards making geosocial mobility
traces useful to real applications.

2. BACKGROUND AND RELATED WORK
As background, we briefly describe today’s location-based

social networks, followed by existing work on tracking hu-
man mobility.

Location-based Social Networks (LBSN). Today’s LB-
SNs allow users to embed current locations into social ac-
tivities, e.g. checking in their nearby Point-of-Interest (POI)
via mobile devices. Foursquare is one of the largest LBSNs,
with over 30M registered users and 3 billion “checkins” (as
of January 2013). Other popular sites include US-based Yelp
and Gowalla (now part of Facebook), and China-based Sina
Weibo and JiePang.

LBSNs incentivize user checkins using (virtual) rewards.
In Foursquare for example, the user who checks in to a lo-
cation most frequently in the last 60 days is awarded with
the “Mayor” designation. In addition, “badges” are given to
users for achieving certain checkin requirements,e.g. five
different coffeeshops. Other LBSNs have similar incentives.

Human Mobility Tracking. Recently, researchers have
been working on novel ways to gather detailed, timestamped
user mobility traces. While this used to require GPS de-
vices, recent efforts leverage the rich collection of sensors
on smartphones to improve location accuracy [11,12,15,18].
But obtaining detailed traces requires significant overhead,
thus existing efforts still remain very limited in scale [32,33].

To obtain large-scale human movement traces, others pro-
posed relying on registration data from cellular or WiFi net-
works [6, 7, 27, 28, 30]. Such data approximates a user’s lo-
cation as the coverage area of her registered cellular basesta-
tion or WiFi AP. Unfortunately, these introduce large errors
(several Kms for cellular and 100s of meters for WiFi) [31],
and are limited in geographical coverage. Since they rely on
call registrations, they also sample locations unevenly (e.g.
centered on home and work locations), leading to biased rep-
resentations of human mobility [22].

Datasets # of Avg days # of # of GPS
users per user checkins visits points

Primary 244 14.2 14K 31K 2.6M
Baseline 47 20.8 665 6.3K 558K

Table 1: Statistics of our primary and baseline datasets.

Geosocial Mobility Traces. An increasing number of
researchers are using large-scale geosocial data in place of
human mobility traces [8, 19, 21]. Researchers have used
checkin traces from Gowalla, Brightkite and Foursquare to
predict human movement [9,20,25], infer friendships [4,26],
and improve content delivery networks [24].

3. DATASETS
To empirically validate geosocial mobility traces, we per-

form a user study and gather matching GPS traces and Foursquare
checkin traces for an identical set of users. In the following,
we describe our data collection process and the two datasets
used for our study.

Data Collection. Our goal is to collect matching phys-
ical mobility (GPS) traces and Foursquare checkin traces1

for the same set of users. We built a smartphone application
(for both Android and iOS platforms), which generates two
matching traces: a per-minute GPS trace of the user’s loca-
tion, and a trace of the user’s checkin events polled using
Foursquare’s open API. We process the GPS trace to detect
“visits” to points of interest (POI), and define a visit as the
user staying at one location for longer than some period of
time, e.g. 6 minutes. When GPS signals are not available,
e.g. indoors inside a POI, the app uses the phone’s WiFi ra-
dio and accelerometer to determine if the user is stationary
or moving, similar to [15]. We obtained human subject IRB
approval for our study.

Primary Dataset. Our main dataset came from ordinary
Foursquare users who installed our application from Google
Play and Amazon App stores. We advertised our applica-
tion specifically to Foursquare users. Between January 2013
and July 2013, we received data from 244 users worldwide,
where each user’s measurement data covered an average of
14 days. This produced two mobility traces (see Table 1):

• Checkin Tracecontains 14,297 Foursquare checkins events.
Each event includes a timestamp, the name of a POI, its
category and GPS coordinates.

• GPS Tracecontains 2,600,000 sets of GPS coordinates.
It captures each user’s GPS location on a per-minute ba-
sis, and a list of 30,835 POI “visits.” Each visit is a pe-
riod of 6+ minutes when the user remains in one location.

We compared our checkin trace with existing Foursquare
checkin traces collected by prior work [3, 21]. They share
the same statistical properties, including the distribution of
checkin count, inter-checkin time, number of badges, num-
ber of friends, and user nationality. This lends support to our
belief that our dataset is representative.
1We focus on Foursquare checkins due to its popularity.
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Baseline Dataset. We collected a smaller dataset (also 2
traces) by recruiting 47 undergraduate volunteers from our
university. These students installed our smartphone appli-
cation and participated as normal users. Later, we will use
this dataset as a control group to validate the results of our
checkin filtering mechanisms.

4. VALIDATING CHECKINS
To understand how well Foursquare checkins correspond

to each user’s physical mobility patterns, the first step in our
validation process is to “match up” visits to points of interest
in both the GPS and Foursquare traces.

4.1 Matching Checkins to Visits
Here, we first introduce our algorithm for matching Foursquare

checkin events to visits in our GPS trace, then describe the
matching results and findings.

Matching Algorithm. Our algorithm matches a user’s
Foursquare checkins to her GPS visits based on their associ-
ated GPS coordinates and timestamps.

• Step1: For each checkin eventci in a user’s Foursquare
trace, we identify from the same user’s GPS trace a set of
visits{V } whose physical locations are withinα meters
from ci’s location. Here{V } can contain one or multiple
visits, or the null set.

• Step2: If {V } is non-null, find the visitvj from {V }
whose timestamp is closest to that of checkinci. If the
difference between the two timestamps2 is less thanβ,
thenvj matchesci.

Ideally, there would be a one-to-one mapping between
checkin events and GPS visits. Our algorithm ensures that
each checkin event has at most one matching visit. If mul-
tiple checkins are matched to the same visitvj , (i.e. a user
checks in at multiple POIs when visiting one), we matchvj
to the geographically closest checkin event.

We have experimented with a range ofα andβ values,
and found that the matching results are most consistent for
valuesα = 500m andβ = 30min. Thus we select these
values for our analysis. Both thresholds are relatively loose
to lower the bar for matching checkins to visits. Therefore,
our results likely represent an upper limit on event matches.

Matching Results. We first ran the matching algorithm
on the Primary dataset with ordinary Foursquare users. Its
checkin trace contains 14297 checkins while the GPS trace
includes 30835 visits. Figure 1 presents the matching result
as a Venn diagram, where we partition the data into three
categories.

• Honest Checkins– 3525 checkins events match up with
GPS visits. These checkins events correspond to GPS
readings that show the user was indeed at the physical

2Each visit has a start timeTs and an end timeTe. We calculate∆t,
the timestamp difference betweenv and a checkin with timestamp
(Tc) as follows: if Ts ≤ Tc ≤ Te, ∆t = 0; Otherwise,∆t =
min(|Tc − Ts|, |Tc − Te|).

location matching her Foursquare checkin event. This
represents a shockingly small portion of both checkins
and GPS visits.

• Extraneous Checkins– 10772 checkin events (75% of
total checkins) do not match up with any matching visit
in the GPS trace.

• Missing Checkins (or Unmatched Visits)– These 27310
visits in the GPS trace (89% of all visits) do not match
any Foursquare checkin events.

We wish to validate that our set of “honest checkins” are
an accurate representation of real checkin activity. For this,
we compare it against our Baseline dataset of undergradu-
ate volunteers. Since these volunteers were participatingto
satisfy a research requirement, they were much less likely to
be influenced by Foursquare rewards. We use several com-
mon mobility metrics to compare the two datasets, includ-
ing inter-arrival time distribution, movement distance dis-
tribution, event frequency, speed distribution and POI en-
tropy [8,9,19].

Figure 2 plots the inter-arrival time distribution resultsus-
ing the GPS and checkin traces from both datasets, as well
as the honest checkins from the Primary dataset. We see that
GPS traces from both datasets match up near perfectly. In
addition, the entire set of checkin events from the baseline
match up perfectly with the honest checkin set from the pri-
mary dataset, while the set of all checkins from the primary
data shows significant differences. The other metrics led to
the same conclusions (results omitted due to space limits),
thus validating that our matching algorithm did accurately
identify the set of honest Foursquare checkin events.

4.2 Missing Checkins
The large number of missing and extraneous checkins raises

serious concerns on whether checkins truly match human
mobility. We briefly discuss missing checkins here, and an-
alyze extraneous checkins later in Section 5.

The obvious question is, which locations are users not
checking in at, and why? Our intuition is that users typi-
cally forget to check in at specific (perhaps boring or rou-
tine) places that they visit frequently,e.g. home, office, gas
stations. If so, then a small number of places will account
for the large majority of missing checkins. To validate this,
we identify for each user the top-n most visited POIs, and
examine the portion of her missing checkins attributable to
these top POIs. Figure 3 plots the CDF of this ratio across
all users for their top-5 visits. The results confirm our hy-
pothesis, for roughly 60% of all users, 5 locations account
for more than half of their missing checkins. For 20% of
users, just a single location accounts for more than 40% of
their missing checkins.

We also looked at the types of POIs responsible for those
missing checkins. Figure 4 shows the break down of missing
checkins locations into 9 categories based on Foursquare’s
POI classification. The three POI categories with the most
missing checkins areProfessional, Shop and Food. Intu-
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Figure 1: Matching results of the Pri-
mary dataset.
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Figure 2: CDF of inter-arrival time.
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Figure 3: CDF of the portion of missing
checkins at top-n most visited POIs.

itively, these places are related to people’s routine activities:
going to work, grocery shopping and eating. According to
existing survey [10, 17], users typically do not checkin at
places that they think are “boring” or “private.” However,
these frequently visited places are critical parts of a user’s
mobility pattern.

In summary, our analysis shows that missing checkins of-
ten cover frequently visited locations in a user’s daily life,
and are therefore critical components in a human mobility
trace. Their absence means geosocial traces are missing a
large majority of each user’s mobile history.

5. EXTRANEOUS CHECKIN ANALYSIS
While missing checkins are often results of carelessness,

extraneous checkins (or checkins without a matching visit)
occur when users intentionally misrepresent their physical
location. In this section, we study the behaviors and reasons
behind extraneous checkins. We first categorize observed
extraneous checkins based on user behaviors, and then try to
infer possible motivating incentives behind them. We then
identify characteristics that can potentially serve to distin-
guish extraneous checkins.

5.1 Types of Extraneous Checkins
We manually inspected our pool of 10772 extraneous check-

ins, and found that 90% could be classified into one of three
types of user behavior. The remaining 10% do not display
any distinctive features.
• Superfluous Checkins. When visiting and checking in

to one POI, some users also check in to multiple nearby
POIs from the same physical location. We found 2176
superfluous checkins in our dataset (15% of all checkins
and 20% of extraneous checkins).

• Remote Checkins. These are checkins to POIs more
than 500 meters away from a user’s actual GPS location.
500m is beyond any reasonable GPS or POI location er-
rors, and the user is clearly falsifying her location. Our
dataset has 5715 remote checkins (40% of all checkins
and 53% of extraneous checkins ).

• Driveby Checkins. These occur when users checkin to
nearby POIs while moving at a moderate speed. Com-
puting speed from our GPS trace, we treat a checkin as

Checkin Type
Correlation

#Friends #Badges #Mayors #Checkins/Day
Superfluous 0.22 0.07 0.34 0.15

Remote 0.18 0.49 0.16 0.15
Driveby -0.10 -0.21 -0.08 0.21
Honest -0.09 -0.42 -0.23 -0.40

Table 2: Correlation between the ratio of each type of
checkin and user’s profile features.

driveby if its speed exceeds 4mph. This produces 1782
driveby checkins (13% of all checkins).

5.2 Incentives for Extraneous Checkins
There could be many potential causes for extraneous check-

ins, from collecting mayorships/badges to attracting more
friends. To infer the key causes, we measure the correlation
between a user’s extraneous checkins and her user features,
i.e. number of friends, number of badges, number of mayor-
ships, and number of checkins per day. Table 2 lists the Pear-
son’s correlation score between each user’s four features and
the ratios of her checkins (superfluous, remote, driveby and
honest). The correlation score is between -1 and 1, where
-1 means perfect negative correlation and 1 means perfect
positive correlation.

We make two interesting observations. First, both remote
and superfluous checkins correlate strongly with Foursquare’s
reward mechanisms (badge and mayorship). This suggests
that social rewards are key incentives for these extraneous
checkins. For example, to collect badges, Foursquare users
need to check in at various new POIs that could be far from
their usual locations. Thus they are motivated to submit fake
checkins remotely. Similarly, to become mayor of a POI, one
must check in more than all other users. This motivates her
to check in even when not physically visiting the POI. How-
ever, Foursquare does not allow remote checkins to count
for mayorships, only badges. Finally, since badges require
checkins at specific POIs, superfluous checkins do not help.

Second, honest checkins have negative correlation with all
four user features. This indicates that “honest” users tendto
be less active (i.e. less checkins per day, less badges). Also,
driveby checkins look similar to honest ones: all negative
correlations except with number of checkins per day. Es-
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sentially, driveby checkins did not lie; they just did not stay
long enough to make a qualified visit. These users seem to
be distinct from users who cheat for mayorships and badges.

Our results show that superfluous and remote checkins
dominate extraneous checkins, and are likely motivated by
Foursquare’s user badges and mayorships. Since these re-
wards play a large role in encouraging user engagement in
Foursquare and other LBSNs, these superfluous and remote
checkins will likely remain a key component of geosocial
mobility traces.

5.3 Distinguishing Characteristics
Finally, we characterize extraneous checkins to identify

distinguishing characteristics that may serve to guide detec-
tors or filters. Our initial analysis focuses onper-user preva-
lence andtemporal burstiness properties.

Per-user prevalence. First, we want to see if extraneous
checkins are endemic to specific portions of the user popu-
lation. If so, then we can focus our attention on removing
those users. We compute for each user the portion of her
checkins which are extraneous. To our surprise, the CDF
in Figure 5 shows that extraneous checkins are widespread.
Nearly all users produced extraneous checkins, and for 20%
of users, extraneous checkins accounted for up to 80% of
their checkin events.

These results raise serious concerns about the prevalence
of unreliable checkins in the user population. They also
mean we cannot target specific users in an effort to filter ex-
traneous checkins, unless we are willing to sacrifice a signif-
icant number of honest checkins. For example, filtering out
users who generate 80% of all extraneous checkins would
also filter out 53% of honest checkins!

Burstiness. We observe from the dataset that each user’s
honest checkins are evenly distributed in time, while her ex-
traneous checkins tend to be bursty. Figure 6 plots the CDF
of the inter-arrival time for the three types of extraneous
checkins as well as that of the honest checkins. The results
show that the majority of extraneous checkins arrive within
a small interval (less than 10 minutes), and 35% of them ar-
rive within 1 minute! In contrast, the interarrival time for
honest checkins is more than 10 minutes. This suggests that
we can possibly identify extraneous checkins by looking at
their arrival characteristics.

6. APPLICATION-LEVEL IMPACT
Having quantified some of the differences between Four-

square checkins and physical mobility, we now seek to quan-
tify the impact on applications that rely on geosocial mobil-
ity traces as mobility datasets. We use GPS and Foursquare
traces to drive a simulation of a mobile ad hoc network,
and show that both missing and extraneous checkins signifi-
cantly impact application outcomes.

6.1 Mobility Model Training
Simulations of mobile ad hoc networks rely on a mobility

model to generate movement patterns for arbitrary sized net-
works [5]. In our experiments, we use our GPS and Foursquare
checkin traces to drive a mobility model, and evaluate the
net impact on mobile ad hoc network performance. For
our model, we choose Levy Walk [23, 29], the most pop-
ular model able to generate mobility predictions by fitting
to GPS data. To understand the impact of extraneous and
missing checkins, we use three traces to train the mobility
model: all-checkins (honest+extraneous), honest-checkins,
and GPS visits.

The Levy Walk model captures human movements as a
sequence of trips with pauses in between. It has three in-
puts: distributions of movement distance, movement time
and pause time. Following prior work [23], we fit the move-
ment distance and pause time to the Pareto distribution, and
the movement time distribution tot = ke(1−ρ), wheret is
the movement time,d is the movement distance, andk andρ
are constants. For the two checkin datasets that do not pro-
vide pause time, we take a conservative approach and use
the distribution from GPS in their model training.

Fitting Results. Figure 7 shows the fitting results. We ob-
serve large differences among the three datasets. Comparing
GPS with honest-checkin, we see that missing checkins are
responsible for lowering both moving distance (Figure 7(a))
and moving time (Figure 7(b)). This is not surprising. be-
cause missing checkins offer a more detailed sample of user
mobility. Next, we can observe the impact of extraneous
checkins by comparing all-checkin to honest-checkin: they
lower the movement distance and produce many more fast
moving segments. Next, we will examine how these model
differences translate into application performance results.
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Figure 8: MANET performance.

6.2 MANET Simulation Results
We use the three fitted models in simulations of a mobile

ad hoc network (MANET). We generate synthetic mobile
movement traces using the fitted models and feed them into
a NS-2 AODV simulator [2]. We place 200 mobile nodes in
a 100km×100km area, each with an 1km communication
range. They form 100 random node pairs and each node pair
communicates using constant bit rate (CBR) streams. The
simulation outputs three application metrics: route change
frequency, route availability ratio, and routing overhead.

Figure 8 compares the resulting application metrics for
traces generated based on the three mobility traces. We can
clearly see the difference. First, compared to the groundtruth
results using the GPS trace, routes in all-checkin have higher
update frequency, availability and lower routing overhead.
This is because the all-checkin mobility model produces much
lower moving speeds. As users move faster, routes are less
stable, incurring more overhead. This demonstrates the com-
pound effect of both missing and extraneous checkins.

We also look at the results after removing extraneous check-
ins, which are shown by the honest-checkins line. We see
that it still has significant deviations from the groundtruth
GPS results. Compared to GPS, routes in honest-checkin
are updated less frequently, incur much less overhead, and
yet have almost 2x higher availability.

Summary. The key takeaway result is that our MANET
experiment shows significant deviations when relying on geoso-
cial mobility traces (all-checkin traces). Once we remove all
extraneous checkins, the resulting trace still produces sig-
nificant errors. This means that to achieve accurate results,
we need to both remove extraneous checkins and add data
points to account for the missing checkin events. Finally, we

believe the same issues apply to a variety of applications. For
example, city planning applications [1] will under-estimate
traffic on routes between residential areas and offices, due to
fewer checkins in these places. Similarly, friendship recom-
mendation applications [4, 26] leverage user physical prox-
imity to suggest social connections. Using data including
fake checkins will lead to wrong inferences on user proxim-
ity, and lead to incorrect suggestions.

7. CONCLUSION & OPEN PROBLEMS
In this paper, we used ground-truth GPS traces from a user

study to validate the ability of geosocial traces to capture
human mobility. We find that 75% of events in Foursquare
checkin traces are extraneous checkins generated by users
to achieve in-system rewards, and checkin events only cap-
ture 10% of actual visited locations from real physical mo-
bility traces. We also show that these discrepancies translate
to significan deviations in results of applications relyingon
these traces. Looking forward, we see two major challenges.
Detecting Extraneous Checkins. Identifying extraneous
checkins is the first step towards a trace that more accurately
captures real mobility patterns. Our preliminary work iden-
tified temporal burstiness as one potential feature for detec-
tion, but a more thorough analysis (perhaps applying ma-
chine learning techniques) is necessary.
Recovering Missing Locations. A more difficult chal-
lenge is to fill in the missing locations visited by but not re-
ported by users. Our work shows that even approximations
of 1 or more key locations (home, work) will go a long way
towards improving accuracy. One approach is up-sampling
observed checkins to based on statistical models of real user
mobility. Another is to fill in locations based on models of
user checkin rates for different POI categories.
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