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Abstract. The results on characterization of orthogonal polynomials and Szegö polynomials via tridiagonal
matrices and unitary Hessenberg matrices, resp., are classical. In a recent paper we observed that tridiago-
nal matrices and unitary Hessenberg matrices both belong to a wide class of (H, 1)–quasiseparable matrices
and derived a complete characterization of the latter class via polynomials satisfying certain EGO–type re-
currence relations. We also established a characterization of polynomials satisfying three–term recurrence
relations via (H, 1)–well–free matrices and of polynomials satisfying the Szegö–type two-term recurrence
relations via (H, 1)–semiseparable matrices.

In this paper we generalize all of these results from scalar (H,1) to the block (H,m) case. Specifi-
cally, we provide a complete characterization of (H, m)–quasiseparable matrices via polynomials satisfying
block EGO–type two–term recurrence relations. Further, (H, m)–semiseparable matrices are completely
characterized by the polynomials obeying block Szegö–type recurrence relations. Finally, we completely
characterize polynomials satisfying m–term recurrence relations via a new class of matrices called (H, m)–
well–free matrices.

1. Introduction.

1.1. Classical three–term and two–term recurrence relations and their generalizations

It is well–known that real–orthogonal polynomials {rk(x)} satisfy three–term recurrence relations of the
form

rk(x) = (αkx− δk)rk−1(x)− γk · rk−2(x), αk 6= 0, γk > 0. (1.1)

It is also well–known that Szegö polynomials {φ#
k (x)}, or polynomials orthogonal not on a real interval but

orthogonal on the unit circle, satisfy slightly different three–term recurrence relations of the form

φ#
k (x) =

[
1
µk

· x +
ρk

ρk−1

1
µk

]
φ#

k−1(x)− ρk

ρk−1

µk−1

µk
· x · φ#

k−2(x). (1.2)

Noting that the essential difference between these two sets of recurrence relations is the presence or absence
of the x dependence in the (k − 2)–th polynomial, it is natural to consider the more general three–term
recurrence relations of the form

rk(x) = (αkx− δk) · rk−1(x)− (βkx + γk) · rk−2(x), (1.3)

containing both (1.1) and (1.2) as special cases, and to classify the polynomials satisfying such three–term
recurrence relations.

Also, in addition to the three–term recurrence relations (1.2), Szegö polynomials satisfy two–term
recurrence relations of the form[

φk(x)
φ#

k (x)

]
=

1
µk

[
1 −ρ∗k
−ρk 1

] [
φk−1(x)

xφ#
k−1(x)

]
(1.4)
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for some auxiliary polynomials {φ(x)} (see, for instance, [GS58], [G48]). By relaxing these relations to the
more general two–term recurrence relations[

Gk(x)
rk(x)

]
=

[
αk βk

γk 1

] [
Gk−1(x)

(δkx + θk)rk−1(x)

]
, (1.5)

it is again of interest to classify the polynomials satisfying these two–term recurrence relations.
In [BEGO08], these questions were answered, and the desired classifications were given in terms of the

classes of matrices A = [ai,j ]
n
i,j=1 related to the polynomials {rk(x)} via

rk(x) =
1

a1,0a2,1 · · · ak+1,k
det (xI −A)(k×k) , k = 0, . . . , n. (1.6)

Note that this relation involves the entries of the matrix A and two additional parameters a1,0 and an+1,n

outside the range of parameters of A. In the context of this paper, these parameters not specified by the
matrix A can be any nonzero arbitrary numbers1. These classifications generalized the well–known facts
that real–orthogonal polynomials and Szegö polynomials were related to irreducible tridiagonal matrices
and almost unitary Hessenberg matrices, respectively, via (1.6). These facts as well as the classifications of
polynomials satisfying (1.3), (1.5), and a third set to be introduced later, respectively, are given in Table 1.

Table 1. Correspondence between recurrence relations satisfied by polynomials and related
subclasses of quasiseparable matrices, from [BEGO08].

Recurrence relations Matrices

real–orthogonal three–term (1.1) irreducible tridiagonal matrices
Szegö two–term (1.4)/three–term (1.2) almost unitary Hessenberg matrices
general three–term (1.3) (H, 1)–well–free (Definition 5.1)
Szegö–type two–term (1.5) (H, 1)–semiseparable (Definition 4.1)
EGO–type two–term (3.2) (H, 1)–quasiseparable (Definition 1.1)

Furthermore, the classes of matrices listed in Table 1 (and formally defined below) were shown in
[BEGO08] to be related as is shown in Figure 1.
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Figure 1. Relations between subclasses of (H, 1)–quasiseparable matrices, from [BEGOT07].

While it is likely the reader is familiar with tridiagonal and unitary Hessenberg matrices, and perhaps
quasiseparable and semiseparable matrices, the class of well–free matrices is newer and less well–known.
We take a moment to give a brief description of this class (a more rigorous description is provided below
in Section 5.1). A matrix is well–free provided it has no columns that consist of all zeros above (but not
including) the main diagonal, unless that column of zeros lies to the left of a block of all zeros. That is, no
columns of the form shown in Figure 2 appear in the matrix.

1More details on the meaning of these numbers will be provided in Section 2.1 below.
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Figure 2. Illustration of a well.

As stated in Table 1, it was shown in [BEGO08] that the matrices related to polynomials satisfying
recurrence relations of the form (1.3) are not just well–free, but (H, 1)–well–free; i.e., they are well–free and
also have a (H, 1)–quasiseparable structure, which is defined next.

1.2. Main tool: quasiseparable structure

In this section we give a definition of the structure central to the results of this paper, and explain one of
the results shown above in Table 1. We begin with the definition of (H, m)–quasiseparability next.

Definition 1.1 ((H,m)–quasiseparable and weakly (H,m)–quasiseparable matrices). Let A be a strongly
upper Hessenberg matrix (i.e. upper Hessenberg with nonzero subdiagonal elements: ai,j = 0 for i > j + 1,
and ai+1,i 6= 0 for i = 1, . . . , n− 1). Then if over all symmetric partitions of the form

A =
[ ∗ A12

∗ ∗
]

,

(i) max rankA12 = m, then A is (H,m)–quasiseparable, and
(ii) max rankA12 6 m, then A is weakly (H, m)–quasiseparable.

For instance, the rank m blocks (respectively rank at most m blocks) of a 5× 5 (H, m)–quasiseparable
matrix (respectively weakly (H, m)–quasiseparable matrix) would be those shaded below:




? ? ? ? ?
? ? ? ? ?
0 ? ? ? ?
0 0 ? ? ?
0 0 0 ? ?







? ? ? ? ?
? ? ? ? ?
0 ? ? ? ?
0 0 ? ? ?
0 0 0 ? ?







? ? ? ? ?
? ? ? ? ?
0 ? ? ? ?
0 0 ? ? ?
0 0 0 ? ?







? ? ? ? ?
? ? ? ? ?
0 ? ? ? ?
0 0 ? ? ?
0 0 0 ? ?




1.3. Motivation to extend beyond the (H, 1) case

In this paper, we extend the results of these classifications to include more general recurrence relations. Such
generalizations are motivated by several examples for which the results of [BEGO08] are inapplicable as they
are not order (H, 1); one of the simplest of such is presented next.

Consider the three–term recurrence relations (1.1), one could ask what classes of matrices are related
to polynomials satisfying such recurrence relations if more than three terms are included. More specifically,
consider recurrence relations of the form

x · rk−1(x) = −ak,krk(x)− ak−1,krk−1(x)− · · · − ak−(l−1),k · rk−(l−1)(x) (1.7)
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It will be shown that this class of so–called l–recurrent polynomials is related via (1.6) to (1, l − 2)–
banded matrices (i.e., one nonzero subdiagonal and l − 2 nonzero superdiagonals) of the form

A =




a0,1 · · · a0,l−1 0 · · · 0

a1,1 a1,2 · · · a1,l
. . .

...

0 a2,2
. . . 0

...
. . . . . . . . . an−(l−1),n

...
. . . an−2,n−2

...
0 · · · · · · 0 an−1,n−1 an−1,n




. (1.8)

This equivalence cannot follow from the results of [BEGO08] as summarized in Table 1 because those results
are limited to the simplest (H, 1)–quasiseparable case. As we shall see in a moment, the matrix A of (1.8) is
(H, l − 2)–quasiseparable, as defined next.

Considering the motivating example of the matrix A of (1.8), it is easy to see that the structure forces
many zeros into the blocks A12 of Definition 1.1 (the shaded blocks above), and hence the ranks of these
blocks can be small compared to their size. It can be seen that in the case of a (1,m)–banded matrix, the
matrices A12 have rank at most m, and so are (H,m)–quasiseparable.

This example is only one simple example of the need to extend the results listed in Table 1 from the
scalar (H, 1)–quasiseparable case to the block (H, m)–quasiseparable case.

1.4. Main results

The main results of this paper can be summarized next by Table 2 and Figure 3, analogues of Table 1 and
Figure 1 above, for the most general case considered in this paper.

Table 2. Correspondence between polynomial systems and subclasses of (H, m)-
quasiseparable matrices

Recurrence relations Matrices

Classical real–orthogonal three–term (1.1) irreducible tridiagonal matrices
Szegö two–term (1.4)/three–term (1.2) almost unitary Hessenberg matrices

[BEGO08]
general three–term (1.3) (H, 1)–well–free (Definition 5.1)
Szegö–type two–term (1.5) (H, 1)–semiseparable (Definition 4.1)
EGO–type two–term (3.2) (H, 1)–quasiseparable (Definition 1.1)

This paper
general l–term (5.1) (H, m)–well–free (Definition 5.5)
Szegö–type two–term (4.4) (H, m)–semiseparable (Definition 4.1)
EGO–type two–term (3.1) (H, m)–quasiseparable (Definition 1.1)
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Figure 3. Relations between subclasses of (H,m)–quasiseparable matrices.
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Table 2 and Figure 3 both reference (H, m)–well–free matrices, the definition of which is not obvious
how to obtain from the definition of (H, 1)–well–free matrices given above. In Section 5, the details of this
extension are given, but we briefly describe the new definition here. A matrix is (H,m)–well–free if

rankB
(m)
i = rank B

(m+1)
i i = 1, 2, . . . (1.9)

where the matrices B
(m)
i are formed from the columns of the partition A12 of Definition 1.1, as

A12 =

B
(m+1)
1︷ ︸︸ ︷

︸ ︷︷ ︸
B

(m)
1

· · · =

B
(m+1)
2︷ ︸︸ ︷

︸ ︷︷ ︸
B

(m)
2

· · ·

More details on this definition are given below in Section 5. We show in this paper that (H, m)–well–free
matrices and polynomials satisfying

rk(x) = (δk,kx + εk,k)rk−1(x) + · · ·+ (δk+m−2,kx + εk+m−2,k)rk+m−3(x)︸ ︷︷ ︸
m + 1 terms

, (1.10)

provide a complete characterization of each other.
Next, consider briefly the m = 1 case to see that this generalization reduces properly in the (H, 1) case.

For m = 1, this relation implies that no wells form of width m = 1 as illustrated in Figure 2. Similarly,
for m = 1, (1.10) gives the three–term recurrence relations (1.3), which, as stated in Table 1, provide a
characterization of (H, 1)–well–free matrices. Similar classification results are obtained for the other classes
presented in Table 2.

2. Correspondences between Hessenberg matrices and polynomial systems

In this section we give details of the correspondence between (H, m)–quasiseparable matrices and systems
of polynomials defined via (1.6), and explain how this correspondence can be used in classifications of
quasiseparable matrices in terms of recurrence relations and vice versa.

2.1. A bijection between invertible triangular matrices and polynomial systems

Let T be the set of invertible upper triangular matrices and P be the set of polynomial systems {rk} with
deg rk = k. We next demonstrate that there is a bijection between T and P. Indeed, given a polynomial
system R = {r0(x), r1(x), . . . , rn(x)} ∈ P satisfying deg(rk) = k, there exist unique n–term recurrence
relations of the form

r0(x) = a0,0, x·rk−1(x) = ak+1,k ·rk(x)−ak,k ·rk−1(x)−· · ·−a1,k ·r0(x), ak+1,k 6= 0, k = 1, . . . , n (2.1)

because this formula represents x · rk−1 ∈ Pk (Pk being the space of all polynomials of degree at most k) in
terms of rk, rk−1, rk−2, . . . , r0, which form a basis in Pk, and hence these coefficients are unique. Forming a
matrix B ∈ T from these coefficients as B = [ai,j ]

n
i,j=0 (with zeros below the main diagonal), it is clear that

there is a bijection between T and P, as they share the same unique parameters.
It is shown next that this bijection between invertible triangular matrices and polynomials systems

(satisfying deg rk(x) = k) can be viewed as a bijection between strongly Hessenberg matrices together with
two free parameters and polynomial systems (satisfying deg rk(x) = k). Furthermore, the strongly Hessenberg
matrices and polynomial systems of this bijection are related via (1.6). Indeed, it was shown in [MB79] that
the confederate matrix A, the strongly upper Hessenber matrix defined by

A =




a0,1 a0,2 a0,3 · · · a0,n

a1,1 a1,2 a1,3 · · · a1,n

0 a2,2 a2,3
. . .

...
...

. . . . . . . . . an−2,n

0 · · · 0 an−1,n−1 an−1,n




, (2.2)
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or in terms of B as

B =




a0,0 a0,1 a0,2 a0,3 · · · a0,n

0 a1,1 a1,2 a1,3 · · · a1,n

0 0 a2,2 a2,3
. . .

...
...

...
. . . . . . . . . an−2,n

... 0 · · · 0 an−1,n−1 an−1,n

0 0 · · · 0 0 an,n




=




a0,0

0
...
0

A

0 0 · · · 0 an,n




, (2.3)

is related to the polynomial system R via (1.6). This shows the desired bijection, with a0,0 and an,n serving
as the two free parameters.
Remark 2.1. Based on this discussion, if R = {r0, r1, . . . , rn−1, rn} is related to a matrix A via (1.6), then
Ra,b =

{
ar0,

1
ar1, . . . ,

1
arn−1, brn

}
for any nonzero parameters a and b provides a full characterization of all

polynomial systems related to the matrix A.

2.2. Generators of (H,m)–quasiseparable matrices.

It is well known that Definition 2.2, given in terms of ranks is equivalent to another definition in terms of
a sparse representation of the elements of the matrix called generators of the matrix, see, e.g., [EG99a] and
the references therein. Such sparse representations are often used as inputs to fast algorithms involving such
matrices. We give next this equivalent definition.

Definition 2.2 (Generator definition for (H, m)–quasiseparable matrices). A matrix A is called (H,m)–
quasiseparable if (i) it is upper Hessenberg, and (ii) it can be represented in the form

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

d1

. . .

. . .

dn

@
@

@
@

@
@

@

p2q1

. . .

pnqn−1
0

gib
×
ijhj

A =

(2.4)

where b×ij = bi+1 · · · bj−1 for j > i + 1 and b×ij = 1 for j = i + 1. The elements

{pk, qk, dk, gk, bk, hk},
called the generators of the matrix A, are matrices of sizes

pk+1qk dk gk bk hk

sizes 1× 1 1× 1 1× uk uk−1 × uk uk−1 × 1
range k ∈ [1, n− 1] k ∈ [1, n] k ∈ [1, n− 1] k ∈ [2, n− 1] k ∈ [2, n]

subject to maxk uk = m. The numbers uk, k = 1, . . . , n− 1 are called the orders of these upper generators.

Remark 2.3. The generators of a (H,m)–quasiseparable matrix give us an O(nm2) representation of the
elements of the matrix. In the (H, 1)–quasiseparable case, where all generators can be chosen simply as
scalars, this representation is O(n).
Remark 2.4. The subdiagonal elements, despite being determined by a single value, are written as a product
pk+1qk, k = 1, . . . , n− 1 to follow standard notations used in the literature for quasiseparable matrices. We
emphasize that this product acts as a single parameter in the Hessenberg case to which this paper is devoted.
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Remark 2.5. The generators in Definition 2.2 can be always chosen to have sizes uk = m for all k by padding
them with zeros to size m.

Also, the ranks of the submatrices A12 of Definition 1.1 represent the smallest possible sizes of the
corresponding generators. That is, denoting by2 A

(k)
12 = A(1 : k, k + 1 : n) the partition A12 of the k–th

symmetric partition, then

rank A
(k)
12 6 uk, k = 1, . . . , n.

For details on the existence of minimal size generators, see [EG05].

2.3. A relation between generators of quasiseparable matrices and recurrence relations for polynomials.

One way to establish a bijection (up to scaling as described in Remark 2.1) between subclasses of (H,m)–
quasiseparable matrices and polynomial systems specified by recurrence relations is to deduce conversion rules
between generators of the classes of matrices and coefficients of the recurrence relations. In this approach, a
difficulty is encountered which is described by Figure 4.

matrix -¾ polynomial

generators'

&

$

%

¾ ©©©©©©©©¼

HHHHHHHHY

recurrence relations
coefficients'

&

$

%

-HHHHHHHHj

©©©©©©©©*(1)

(2)

(3)

Figure 4. Relations between subclasses of (H, m)–quasiseparable matrices and polynomials.

The difficulty is that the relation (2) shown in the picture is one–to–one correspondence but (1) and (3) are
not. This fact is illustrated in the next two examples.
Example 2.6 (Nonuniqueness of recurrence relation coefficients). In contrast to the n–term recurrence rela-
tions (2.1), other recurrence relations such as the l-term recurrence relations (5.1) corresponding to a given
polynomial system are not unique. As a simple example of a system of polynomials satisfying more than one
set of recurrence relations of the form (5.1), consider the monomials R = {1, x, x2, . . . , xn}, easily seen to
satisfy the recurrence relations

r0(x) = 1, rk(x) = x · rk−1(x), k = 1, . . . , n

as well as the recurrence relations

r0(x) = 1, r1(x) = x · rk−1(x), rk(x) = (x + 1) · rk−1(x)− x · rk−2(x), k = 2, . . . , n.

Hence a given system of polynomials may be expressed using the same recurrence relations but with different
coefficients of those recurrence relations.
Example 2.7 (Nonuniqueness of (H,m)–quasiseparable generators). Similarly, given a (H, m)–quasiseparable
matrix, there is a freedom in choosing the set of generators of Definition 2.2. As a simple example, consider

2The MATLAB notation A(i : j, k : l) denotes the submatrix obtained from rows i, i + 1, . . . , j and columns k, k + 1, . . . , l.
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the matrix 


0 1
2 0 · · · 0

1
2 0 1

2

. . .
...

0 1
2 0

. . . 0
...

. . . . . . . . . 1
2

0 · · · 0 1
2 0




corresponding to a system of Chebyshev polynomials. It is obviously (H, 1)–quasiseparable and can be defined
by different sets of generators, with either gk = 1, hk = 1

2 or gk = 1
2 , hk = 1.

Remark 2.8. To overcome the difficulties of the nonuniqueness demonstrated here, we can define equivalence
classes of generators describing the same matrix and equivalence classes of recurrence relations describing
the same polynomials. Working with representatives of these equivalence classes resolves the difficulty.

We begin classification of recurrence relations of polynomials with considering EGO–type two–term
recurrence relations (3.1) in Section 3 and associating the set of all (H, m)–quasiseparable matrices with
them. Section 4 covers the correspondence between polynomials satisfying (4.4) and (H,m)–semiseparable
matrices. In Section 5 we consider l-term recurrence relations (5.1) and (H,m)–well–free matrices.

3. (H, m)–quasiseparable matrices & EGO–type two–term recurrence relations (3.1)

In order to proceed with the classification of recurrence relations for polynomials corresponding to subclasses
of (H,m)–quasiseparable matrices, a first step is the classification of the recurrence relations corresponding
to the entire class of (H, m)–quasiseparable matrices. That is, in this section we will provide the proof of the
following theorem.

Theorem 3.1. Suppose A is a strongly upper Hessenberg matrix. Then the following are equivalent.
(i) A is (H,m)–quasiseparable.
(ii) There exist auxiliary polynomials {Fk(x)} for some αk, βk, and γk of sizes m×m, m× 1 and 1×m,

respectively, such that the system of polynomials {rk(x)} related to A via (1.6) satisfies the EGO–type
two–term recurrence relations



F0(x)

r0(x)




=




0
...
.
...
0

a0,0




,




Fk(x)

rk(x)




=




αk βk

γk δkx + θk







Fk−1(x)

rk−1(x)




. (3.1)

Remark 3.2. Throughout the paper, we will avoid distinguishing between (H,m)–quasiseparable and weakly
(H, m)–quasiseparable matrices. The difference is technical; for instance, considering an (H, 2)–quasiseparable
matrix as a weakly (H, 3)–quasiseparable matrix corresponds to artificially increasing the size of the vec-
tors Fk(x) in (3.1) by one. This additional entry corresponds to a polynomial system that is identically
zero, or otherwise has no influence on the other polynomial systems. In a similar way, any results stated
for (H,m)–quasiseparable matrices are valid for weakly (H, m)–quasiseparable matrices through such trivial
modifications.

This theorem, whose proof will be provided by the lemma and theorems of this section, is easily seen
as a generalization of the following result for the (H, 1)–quasiseparable case from [BEGO08].

Corollary 3.3. Suppose A is a strongly Hessenberg matrix. Then the following are equivalent.
(i) A is (H, 1)–quasiseparable.
(ii) There exist auxiliary polynomials {Fk(x)} for some scalars αk, βk, and γk such that the system of

polynomials {rk(x)} related to A via (1.6) satisfies the EGO–type two–term recurrence relations[
F0(x)
r0(x)

]
=

[
0

a0,0

]
,

[
Fk(x)
rk(x)

]
=

[
αk βk

γk δkx + θk

] [
Fk−1(x)
rk−1(x)

]
. (3.2)
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In establishing the one–to–one correspondence between the class of polynomials satisfying (3.1) and
the class of (H, m)–quasiseparable matrices, we will use the following lemma which was given in [BEGOT07]
and is a consequence of Definition 2.2 and [MB79].

Lemma 3.4. Let A be an (H, m)–quasiseparable matrix specified by its generators as in Definition 2.2. Then
a system of polynomials {rk(x)} satisfies the recurrence relations

rk(x) =
1

pk+1qk


(x− dk)rk−1(x)−

k−2∑

j=0

gj+1b
×
j+1,khkrj(x)


 , (3.3)

if and only if {rk(x)} is related to A via (1.6).

Note that we have not specified the sizes of matrices gk, bk and hk in (3.3) explicitly but the careful
reader can check that all matrix multiplications are well defined. We will omit explicitly listing the sizes of
generators where it is possible.

Theorem 3.5 (EGO–type two–term recurrence relations ⇒ (H, m)–quasiseparable matrices). Let R be
a system of polynomials satisfying the EGO–type two–term recurrence relations (3.1). Then the (H,m)–
quasiseparable matrix A defined by




− θ1
δ1

− 1
δ2

γ2β1 − 1
δ3

γ3α2β1 − 1
δ4

γ4α3α2β1 · · · − 1
δn

γnαn−1αn−2 · · ·α3α2β1
1
δ1

− θ2
δ2

− 1
δ3

γ3β2 − 1
δ4

γ4α3β2 · · · − 1
δn

γnαn−1αn−2 · · ·α3β2

0 1
δ2

− θ3
δ3

− 1
δ4

γ4β3
. . . − 1

δn
γnαn−1 · · ·α4β3

0 0 1
δ3

− θ4
δ4

. . .
...

...
. . . . . . . . . . . . − 1

δn
γnβn−1

0 · · · 0 0 1
δn−1

− θn

δn




(3.4)

with generators

dk = −θk

δk
, k = 1, . . . , n, pk+1qk =

1
δk

, k = 1, . . . , n− 1,

gk = βT
k , k = 1, . . . , n− 1,

bk = αT
k , k = 2, . . . , n− 1, hk = − 1

δk
γT

k , k = 2, . . . , n

corresponds to the system of polynomials R via (1.6).

Proof. Considering EGO-type recurrence relations (3.1) we begin with

rk(x) = (δkx + θk)rk−1(x) + γkFk−1(x). (3.5)

Using the relation Fk−1(x) = αk−1Fk−2(x) + βk−1rk−2(x), (3.5) becomes

rk(x) = (δkx + θk)rk−1(x) + γkβk−1rk−2(x) + γkαk−1Fk−2(x) (3.6)

The equation (3.6) contains Fk−2(x) which can be eliminated as it was done on the previous step. Using the
relation Fk−2(x) = αk−2Fk−3(x) + βk−2rk−3(x) we get

rk(x) = (δkx + θk)rk−1(x) + γkβk−1rk−2(x) + γkαk−1βk−2rk−3(x) + γkαk−1αk−2Fk−3(x).

Continue this process and noticing that F0 is the vector of zeros we will obtain the n–term recurrence
relations

rk(x) = (δkx + θk)rk−1(x) + γkβk−1rk−2(x) + γkαk−1βk−2rk−3(x) (3.7)
+γkαk−1αk−2βk−3rk−4(x) + · · ·+ γkαk−1 · · ·α2β1r0(x),

which define the matrix (3.4) with the desired generators by using the n–term recurrence relations (3.3). ¤
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Theorem 3.6 ((H,m)–quasiseparable matrices ⇒ EGO–type two–term recurrence relations). Let A be a
(H, m)–quasiseparable matrix specified by the generators {pk, qk, dk, gk, bk, hk}. Then the polynomial system
R corresponding to A satisfies




F0(x)

r0(x)




=




0
...
.
...
0

a0,0




,




Fk(x)

rk(x)




=




αk βk

γk δkx + θk







Fk−1(x)

rk−1(x)




, (3.8)

with

αk =
pk

pk+1
bT
k , βk = − 1

pk+1
gT

k , γk =
pk

pk+1qk
hT

k , δk =
1

pk+1qk
, θk = − dk

pk+1qk
.

Proof. It is easy to see that every system of polynomials satisfying deg rk = k (e.g. the one defined by (3.8))
satisfy also the n–term recurrence relations

rk(x) = (αkx− ak−1,k) · rk−1(x)− ak−2,k · rk−2(x)− . . .− a0,k · r0(x) (3.9)

for some coefficients αk, ak−1,k, . . . , a0,k. The proof is presented by showing that these n–term recurrence
relations in fact coincide exactly with (3.3), so these coefficients coincide with those of the n–term recurrence
relations of the polynomials R. Using relations for rk(x) and Fk−1(x) from (3.8), we have

rk(x) =
1

pk+1qk

[
(x− dk)rk−1(x)− gk−1hkrk−2(x) + pk−1h

T
k bT

k−1Fk−2(x)
]
. (3.10)

Notice that again using (3.8) to eliminate Fk−2(x) from the equation (3.10) will result in an expression
for rk(x) in terms of rk−1(x), rk−2(x), rk−3(x), Fk−3(x), and r0(x) without modifying the coefficients of
rk−1(x), rk−2(x), or r0(x). Again applying (3.8) to eliminate Fk−3(x) results in an expression in terms of
rk−1(x), rk−2(x), rk−3(x), rk−4(x), Fk−4(x), and r0(x) without modifying the coefficients of rk−1(x), rk−2(x),
rk−3(x), or r0(x). Continuing in this way, the n–term recurrence relations of the form (3.9) are obtained
without modifying the coefficients of the previous ones.

Suppose that for some 0 < j < k − 1 the expression for rk(x) is of the form

rk(x) =
1

pk+1qk
[(x− dk)rk−1(x)− gk−1hkrk−2(x)− · · ·

− gj+1b
×
j+1,khkrj(x) + pj+1h

T
k (b×j,k)

T
Fj(x)]. (3.11)

Using (3.8) for Fj(x) gives the relation

Fj(x) =
1

pj+1qj

(
pjqjb

T
j Fj−1(x)− qjg

T
j rj−1(x)

)
(3.12)

Inserting (3.12) into (3.11) gives

rk(x) =
1

pk+1qk

[
(x− dk)rk−1(x)− gk−1hkrk−2(x)− · · · − gjb

×
j,khkrj−1(x) + pjh

T
k (b×j−1,k)

T
Fj−1(x)

]
.

(3.13)
Therefore since (3.10) is the case of (3.11) for j = k − 2, (3.11) is true for each j = k − 2, k − 3, . . . , 0, and
for j = 0, using the fact that F0 = 0 we have

rk(x) =
1

pk+1qk

[
(x− dk)rk−1(x)− gk−1hkrk−2(x)− · · · − g1b

×
1,khkr0(x)

]
(3.14)

Since these coefficients coincide with (3.3) that are satisfied by the polynomial system R, the polynomials
given by (3.8) must coincide with these polynomials. This proves the theorem. ¤

These last two theorems provide the proof for Theorem 3.1, and complete the discussion of the recurrence
relations related to (H,m)–quasiseparable matrices.
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4. (H, m)–semiseparable matrices & Szegö–type two–term recurrence relations (4.4)

In this section we consider a class of (H, m)–semiseparable matrices defined next.

Definition 4.1 ((H, m)–semiseparable matrices). A matrix A is called (H, m)–semiseparable if (i) it is strongly
upper Hessenberg, and (ii) it is of the form

A = B + triu(AU , 1)

with rank(AU ) = m and a lower bidiagonal matrix B, where following the MATLAB command triu,
triu(AU , 1) denotes the strictly upper triangular portion of the matrix AU .

Paraphrased, a (H,m)–semiseparable matrix has arbitrary diagonal entries, arbitrary nonzero subdi-
agonal entries, and the strictly upper triangular part of a rank m matrix. It is obvious from this definition
that a (H, m)–semiseparable matrix is (H, m)–quasiseparable. Indeed, let A be (H, m)–semiseparable and
n× n. Then it is clear that, if A

(k)
12 denotes the matrix A12 of the k–th partition of Definition 1.1, then

rankA
(k)
12 = rank A(1 : k, k + 1 : n) = rank AU (1 : k, k + 1 : n) 6 m, k = 1, . . . , n− 1,

and A is (H, m)–quasiseparable by Definition 1.1.
Example 4.2 (Unitary Hessenberg matrices are (H, 1)–semiseparable). Consider again the unitary Hessen-
berg matrix

H =




−ρ∗0ρ1 −ρ∗0µ1ρ2 −ρ∗0µ1µ2ρ3 · · · −ρ∗0µ1µ2µ3 · · ·µn−1ρn

µ1 −ρ∗1ρ2 −ρ∗1µ2ρ3 · · · −ρ∗1µ2µ3 · · ·µn−1ρn

0 µ2 −ρ∗2ρ3 · · · −ρ∗2µ3 · · ·µn−1ρn

...
. . . . . . . . .

...
0 · · · 0 µn−1 −ρ∗n−1ρn




(4.1)

which corresponds to a system of Szegö polynomials. Its strictly upper triangular part is the same as in the
matrix

B =




−ρ∗0ρ1 −ρ∗0µ1ρ2 −ρ∗0µ1µ2ρ3 · · · −ρ∗0µ1µ2µ3 · · ·µn−1ρn

−ρ1ρ∗1
µ1

−ρ∗1ρ2 −ρ∗1µ2ρ3 · · · −ρ∗1µ2µ3 · · ·µn−1ρn

− ρ1ρ∗2
µ1µ2

−ρ2ρ∗2
µ2

−ρ∗2ρ3 · · · −ρ∗2µ3 · · ·µn−1ρn

...
...

...
. . .

...
− ρ1ρ∗n−1

µ1µ2···µn−1
− ρ2ρ∗n−1

µ2µ3···µn−1
− ρ3ρ∗n−1

µ3µ4···µn−1
· · · −ρ∗n−1ρn




. (4.2)

which can be constructed as, by definition3, µk 6= 0, k = 1, . . . , n − 1. It is easy to check that the rank of
the matrix B is one4. Hence the matrix (4.1) is (H, 1)–semiseparable. Recall that any unitary Hessenberg
matrix (4.1) uniquely corresponds to a system of Szegö polynomials satisfying the recurrence relations

[
φ0(x)
φ#

0 (x)

]
=

1
µ0

[
1
1

]
,

[
φk(x)
φ#

k (x)

]
=

1
µk

[
1 −ρ∗k
−ρk 1

] [
φk−1(x)

xφ#
k−1(x)

]
, k = 1, 2, . . . , n. (4.3)

The next theorem gives a classification of the class of (H, m)–semiseparable matrices in terms of two–
term recurrence relations that naturally generalize the Szegö–type two term recurrence relations. Addition-
ally, it gives a classification in terms of their generators as in Definition 2.2. That is, it summarizes the results
to be proven in this section.

Theorem 4.3. Suppose A is a strongly upper Hessenberg n× n matrix. Then the following are equivalent.

(i) A is (H,m)–semiseparable.
(ii) There exists a set of generators of Definition 2.2 corresponding to A such that bk is invertible for

k = 2, . . . , n.

3The parameters µk associated with the Szegö polynomials are defined by µk =
p

1− |ρk|2 for 0 6 |ρk| < 1 and µk = 1 for

|ρk| = 1, and since |ρk| 6 1 for all k, we always have µk 6= 0.
4Every i-th row of B equals the row number (i− 1) times ρ∗i−1/ρ∗i−2µi−1
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(iii) There exist auxiliary polynomials {Gk(x)} for some αk, βk, and γk of sizes m×m, m× 1 and 1×m,
respectively, such that the system of polynomials {rk(x)} related to A via (1.6) satisfies the Szegö–type
two–term recurrence relations




G0(x)

r0(x)




=




a0,0

...

.

...
a0,0

a0,0




,




Gk(x)

rk(x)




=




αk βk

γk 1







Gk−1(x)

(δkx + θk)rk−1(x)




. (4.4)

This theorem, whose proof follows from the results later in this section, leads to the following corollary,
which summarizes the results for the simpler class of (H, 1)–semiseparable matrices as given in [BEGO08].

Corollary 4.4. Suppose A is an (H, 1)–quasiseparable matrix. Then the following are equivalent.

(i) A is (H, 1)–semiseparable.
(ii) There exists a set of generators of Definition 2.2 corresponding to A such that bk 6= 0 for k = 2, . . . , n.
(iii) There exist auxiliary polynomials {Gk(x)} for some scalars αk, βk, and γk such that the system of

polynomials {rk(x)} related to A via (1.6) satisfies the Szegö–type two–term recurrence relations
[

G0(x)
r0(x)

]
=

[
a0,0

a0,0

]
,

[
Gk(x)
rk(x)

]
=

[
αk βk

γk 1

] [
Gk−1(x)

(δkx + θk)rk−1(x)

]
. (4.5)

4.1. (H, m)–semiseparable matrices. Generator classification.

We next give a lemma that provides a classification of (H, m)–semiseparable matrices in terms of a condition
on the generators of an (H, m)–quasiseparable matrix.

Lemma 4.5. An (H,m)–quasiseparable matrix is (H,m)–semiseparable if and only if there exists a choice of
generators {pk, qk, dk, gk, bk, hk} of the matrix such that matrices bk are nonsingular5 for all k = 2, . . . , n−1.

Proof. Let A be (H,m)–semiseparable with triu(A, 1) = triu(AU , 1), where rank(AU ) = m. The latter
statement implies that there exist row vectors gi and column vectors hj of sizes m such that AU (i, j) = gihj

for all i, j, and therefore we have Aij = gihj , i < j or Aij = gib
×
ijhj , i < j with bk = Im .

Conversely, suppose the generators of A are such that bk are invertible matrices for k = 2, . . . , n − 1.
Then the matrices

AU =





gib
×
i,jhj if 1 6 i < j 6 n

gib
−1
i hi if 1 < i = j < n

gi(b×j−1,i+1)
−1hj if 1 < j < i < n

0 if j = 1 or i = n

B =





di if 1 6 i = j 6 n
piqj if 1 6 i + 1 = j 6 n
0 otherwise

are well defined, rank(AU ) = m, B is lower bidiagonal, and A = B + triu(AU , 1). ¤

Remark 4.6. We emphasize that the previous lemma guarantees the existence of a set of generators of a
(H, m)–semiseparable matrix with invertible matrices bk, and that this condition need not be satisfied by all
such generator representations. For example, the following matrix




1 1 1 1 1 0
1 1 2 2 2 0

1 1 3 3 0
1 1 4 0

1 1 0
1 1




is (H, 1)–semiseparable, however it is obviously possible to choose a set of generators for it with b5 = 0.

5The invertibility of bk implies that all bk are square m×m matrices.
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4.2. (H, m)–semiseparable matrices. Recurrence relations classification.

In this section we present theorems giving the classification of (H, m)–semiseparable matrices as those
corresponding to systems of polynomials satisfying the Szegö–type two–term recurrence relations (4.4).

Theorem 4.7 (Szegö-type 2-term recurrence relations⇒ (H,m)–semiseparable matrices). Let R = {r0(x), . . .,
rn−1(x)} be a system of polynomials satisfying the recurrence relations (4.4) with rank(αT

k − βkγk) = m.
Then the (H,m)–semiseparable matrix A defined by




− θ1+γ1β0
δ1

− 1
δ2

γ2(α1 − β1γ1)β0 · · · − 1
δn

γn(αn−1 − βn−1γn−1) · · · (α1 − β1γ1)β0

1
δ1

− θ2+γ2β1
δ2

. . . − 1
δn

γn(αn−1 − βn−1γn−1) · · · (α2 − β2γ2)β1

0 1
δ2

. . .
...

...
. . . . . . − θn+γnβn−1

δn

0 · · · 0 1
δn




(4.6)

with generators

dk = −θk + γkβk−1

δk
, k = 1, . . . , n, pk+1qk =

1
δk

, k = 1, . . . , n− 1,

gk = βT
k−1 , k = 1, . . . , n− 1,

bT
k = αk−1 − βk−1 γk−1 , k = 2, . . . , n− 1,

β0 =




1
...
...
1




, hk = − 1
δk

bk γT
k , k = 2, . . . , n,

corresponds to the R via (1.6).

Proof. Let us show that the polynomial system satisfying the Szegö–type two–term recurrence relations (4.4)
also satisfies EGO–type two–term recurrence relations (3.1). By applying the given two–term recursion, we
have [

Gk(x)
rk(x)

]
=

[
αkGk−1(x) + βk(δk + θk)rk−1(x)
γkGk−1(x) + (δk + θk)rk−1(x)

]
(4.7)

Multiplying the second equation in (4.7) by βk and subtracting from the first equation we obtain

Gk(x)− βkrk(x) = (αk − βkγk)Gk−1(x) (4.8)

Denoting in (4.8) Gk−1 by Fk and shifting indices from k to k − 1 we can get the recurrence relation

Fk(x) = (αk−1 − βk−1γk−1)Fk−1(x) + βk−1rk−1(x) (4.9)

In the same manner substituting (4.8) in the second equation of (4.7) and shifting indices one can be seen
that

rk(x) = γk(αk−1 − βk−1γk−1)Fk−1(x) + (δkx + θk + γkβk−1)rk−1(x) (4.10)

Equations (4.9) and (4.10) together give necessary EGO–type two–term recurrence relations for the system
of polynomials:

[
Fk(x)
rk(x)

]
=

[
αk−1 − βk−1γk−1 βk−1

γk(αk−1 − βk−1γk−1) δkx + θk + γkβk−1

] [
Fk−1(x)
rk−1(x)

]
(4.11)

Theorem 3.5 together with the recurrence relations (4.11) implies that the (H,m)–semiseparable (4.6) and
the special choice of generators are valid. ¤
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Theorem 4.8 ((H, m)–semiseparable matrices ⇒ Szegö–type 2–term recurrence relations). Let A be a
(H, m)–semiseparable matrix. Then for a set of generators {pk, qk, dk, gk, bk, hk} of A such that each bk

is invertible, the polynomial system R corresponding to A satisfies (4.4); specifically,



Gk(x)

rk(x)




=
1

pk+1qk




vk −gT
k+1

hT
k (bT

k )−1 1







Gk−1(x)

uk(x)rk−1(x)




with uk(x) = x− dk + gkb−1
k hk, vk = pk+1qkbT

k+1 − gT
k+1h

T
k (bT

k )−1.

(4.12)

Proof. According to the definition of (H,m)–semiseparable matrices the given polynomial system R must
satisfy EGO–type two–term recurrence relations (3.1) with bk invertible for all k. Let us consider these
recurrence relations: [

Fk(x)
rk(x)

]
=

1
pk+1qk

[
pkqkbT

k −qkgT
k

pkhT
k x− dk

] [
Fk−1(x)
rk−1(x)

]
. (4.13)

Let us denote pk+1Fk(x) in the (4.13) as Gk(x) then we can rewrite these equations as

Gk−1(x) = bT
k Gk−2(x)− gT

k rk−1(x),

rk(x) =
1

pk+1qk

[
hT

k Gk−2(x) + (x− dk)rk−1(x)
]
.

(4.14)

Using the invertibility of bk we are able to derive the Gk−2(x) from the first equation of (4.14) and inserting
it in the second equation we obtain new recurrence relation

rk(x) =
1

pk+1qk

[
hT

k (bT
k )−1Gk−1(x) + (x− dk + gkb−1

k hk)rk−1(x)
]
. (4.15)

The second necessary recurrence relation can be obtained by substituting (4.15) in the first equation of
(4.14) and shifting indices from k − 1 to k.

Gk(x) =
1

pk+1qk

[
(pk+1qkbT

k+1 − gT
k+1h

T
k (bT

k )−1)Gk−1(x)− gT
k+1(x− dk + gkb−1

k hk)rk−1(x)
]

(4.16)

This completes the proof. ¤

This completes the justification of Theorem 4.3.

5. (H, m)–well–free matrices & recurrence relations (5.1).

In this section, we begin by considering the l–term recurrence relations of the form

r0(x) = a0,0, rk(x) =
k∑

i=1

(δikx + εik)ri−1(x), k = 1, 2, . . . , l − 2

rk(x) =
k∑

i=k−l+2

(δikx + εik)ri−1(x), k = l − 1, l, . . . , n

. (5.1)

As we shall see below, the matrices that correspond to (5.1) via (1.6) form a new subclass of (H,m)–
quasiseparable matrices. As such, we then can also give a generator classification of the resulting class. This
problem was addressed in [BEGO08] for the l = 3 case; that is, for (1.3)),

r0(x) = a0,0, r1(x) = (α1x− δ1) · r0(x), rk(x) = (αkx− δk) · rk−1(x)− (βkx + γk) · rk−2(x), (5.2)

and was already an involved problem. To explain the results in the general case more clearly, we begin by
recalling the results for the special case when l = 3.
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5.1. General three–term recurrence relations (1.3) & (H, 1)–well–free matrices

In [BEGO08], it was proved that polynomials that satisfy the general three–term recurrence relations (5.2)
were related to a subclassf (H, 1)–quasiseparable matrices denoted (H, 1)–well–free matrices. A definition of
this class is given next.

Definition 5.1 ((H, 1)–well–free matrices).

• An n × n matrix A = (Ai,j) is said to have a well of size one in column 1 < k < n if Ai,k = 0 for
1 6 i < k and there exists a pair (i, j) with 1 6 i < k and k < j 6 n such that Ai,j 6= 0.

• A (H, 1)–quasiseparable matrix is said to be (H, 1)–well–free if none of its columns k = 2, . . . , n − 1
contain wells of size one.

In words, a matrix has a well in column k if all entries above the main diagonal in the k–th column are
zero, except if all entries in the upper-right block to the right of these zeros are also zeros, as shown in the
following illustration.

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@ 0

...

0

dk

something
nonzero

The following theorem summarizes the results of [BEGO08] that will be generalized in this section.

Theorem 5.2. Suppose A is a strongly upper Hessenberg n× n matrix. Then the following are equivalent.

(i) A is (H, 1)–well–free.
(ii) There exists a set of generators of Definition 2.2 corresponding to A such that hk 6= 0 for k = 2, . . . , n.
(iii) The system of polynomials related to A via (1.6) satisfies the general three–term recurrence relations

(5.2).

Having provided these results, the next goal is, given the l–term recurrence relations (5.1), to provide
an analogous classification. A step in this direction can be taken using a formula given by Barnett in [B81]
that gives for such recurrence relations a formula for the entries of the related matrix. For the convenience
of the reader, a proof of this lemma is given at the end of this section (no proof was given in [B81]).

Lemma 5.3. Let R = {r0(x), . . ., rn−1(x)} be a system of polynomials satisfying the recurrence relations
(5.1). Then the strongly Hessenberg matrix

A =




a11 a12 a13 · · · a1n
1

δ11
a22 a23 · · · a2n

0 1
δ22

a33 · · · a3n

...
. . . . . . . . .

...
0 · · · 0 1

δn−1,n−1
ann




(5.3)

with entries

aij = − 1
δjj

(
δi−1,j

δi−1,i−1
+ εij +

j−1∑

s=i

aisδsj

)

δ0j

δ00
= 0, ∀j; δij = εij = 0, i < j − l + 2

(5.4)

corresponds to R via (1.6).
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Remark 5.4. While Lemma 5.3 describes the entries of the matrix A corresponding to polynomials satisfying
the l–term recurrence relations (5.1), the structure of A is not explicitly specified by (5.4). Indeed, as surveyed
this section, even in the simplest case of generalized three–term recurrence relations (1.3), the latter do not
transparently lead to the characteristic quasiseparable and well–free properties of the associated matrices.

5.2. (H, m)–well–free matrices.

It was recalled in Section 5.1 that in the simplest case of three–term recurrence relations the corresponding
matrix was (H, 1)–quasiseparable, and moreover, (H, 1)–well–free. So , one might expect that in the case of
l–term recurrence relations (5.1), the associated matrix might turn out to be (H, l − 2)–quasiseparable, but
how does one generalize the concept of (H, 1)–well–free? The answer to this is given in the next definition.

Definition 5.5 ((H,m)–well–free matrices).

• Let A be an n× n matrix, and fix constants k, m ∈ [1, n− 1]. Define the matrices

B
(k,m)
j = A(1 : k, j + k : j + k + (m− 1)), j = 1, . . . , n− k −m.

Then if for some j,
rank(B(k,m+1)

j ) > rank(B(k,m)
j ),

the matrix A is said to have a well of size m in partition k.
• A (H, m)–quasiseparable matrix is said to be (H,m)–well–free if it contains no wells of size m.

One can understand the matrices B
(k,m)
j of the previous definition as, for constant k and m and as

j increases, a sliding window consisting of m consecutive columns. Essentially, the definition states that as
this window is slid through the partition A12 of Definition 1.1, if the ranks of the submatrices increase at
any point by adding the next column, this constitutes a well. So a (H, m)–well–free matrix is such that each
column of all partitions A12 is the linear combination of the m previous columns of A12.

B
(k,m+1)
1︷ ︸︸ ︷

︸ ︷︷ ︸
B

(k,m)
1

· · · ,

B
(k,m+1)
2︷ ︸︸ ︷

︸ ︷︷ ︸
B

(k,m)
2

· · ·

Notice that Definition 5.5 reduces to Definition 5.1 in the case when m = 1. Indeed, if m = 1, then the
sliding windows are single columns, and an increase in rank is the result of adding a nonzero column to a
single column of all zeros. This is shown next in (5.5).

Bj−1 Bj Bj+1

∗ 0 ∗
∗ 0 ∗
...

...
...

∗ 0 ∗

(5.5)

In order for a matrix to be (H, 1)–quasiseparable, any column of zeros in A12 must be the first column of
A12; that is, in (5.5), j = 1. Thus a well of size one is exactly a column of zeros above the diagonal, and
some nonzero entry to the right of that column, exactly as in Definition 5.1.

With the class of (H, m)–well–free matrices defined, we next present a theorem containing the classifi-
cations to be proved in this section.

Theorem 5.6. Suppose A is a strongly upper Hessenberg n× n matrix. Then the following are equivalent.
(i) A is (H,m)–well–free.
(ii) There exists a set of generators of Definition 2.2 corresponding to A such that bk are companion matrices

for k = 2, . . . , n − 1, and hk = e1 for k = 2, . . . , n, where e1 is the first column of the identity matrix
of appropriate size.

(iii) The system of polynomials related to A via (1.6) satisfies the general three–term recurrence relations
(5.1).

This theorem is an immediate corollary of Theorems 5.7, 5.8, and 5.9.
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5.3. (H, m)–well–free matrices. Generator classification.

Theorem 5.7. An (H, m)–quasiseparable matrix is (H, m)–well–free if and only if there exists a choice of
generators {pk, qk, dk, gk, bk, hk} of the matrix that are of the form

bk =




0 0 · · · 0 ξk,1

1 0
. . .

...
...

0 1
. . .

...
...

...
. . . . . . 0 ξk,m−1

0 · · · 0 1 ξk,m




, k = 2, . . . , n− 1, hk =




1
0
...
...
0




, k = 2, . . . , n. (5.6)

Proof. Let A = (aij) be an (H, m)–well–free matrix. Then due to the low rank property of off–diagonal
blocks, its entries satisfy

aij =
j−1∑

s=j−m

aisαsj , if i < j −m. (5.7)

It is easy to see that an (H,m)–well–free matrix B with

dk = akk, k = 1, . . . , n, pk+1qk = ak+1,k, k = 1, . . . , n− 1,

gk = [ak,k+1 · · · ak,k+m] , k = 1, . . . , n− 1, hk = [1 0 · · · 0]T , k = 2, . . . , n,

bk =




0 0 · · · 0 αk−m+1,k+1

1 0
. . .

...
...

0 1
. . .

...
...

...
. . . . . . 0 αk−1,k+1

0 · · · 0 1 αk,k+1




, k = 2, . . . , n− 1.

(5.8)

coincides with A.
Conversely, suppose A is an (H,m)–quasiseparable matrix whose generators satisfy (5.6). Applying

(2.4) from Definition 2.2 it follows that

aij = gib
×
i,jhj =

{
νi,j−i i = 1, . . . , n j = i, . . . i + m,∑j−1

s=j−m aisξj−m,s−j+m+1 i = 1, . . . , n j = i + m + 1, . . . n.
(5.9)

This is equivalent to a summation of the form (5.7), demonstrating the low–rank property, and hence the
matrix A is (H, m)–well–free according to Definition 5.5. ¤

This result generalizes the generator classification of (H, 1)–well–free matrices as given in [BEGO08],
stated as a part of Theorem 5.2.

5.4. (H, m)–well–free matrices. Recurrence relation classification.

In this section, we will prove that it is exactly the class of (H, m)–well–free matrices that correspond to
systems of polynomials satisfying l–term recurrence relations of the form (5.1).

Theorem 5.8 (l–term recurrence relations ⇒ (H, l − 2)–well–free matrices). Let A = (aij)n
i,j=1 be a matrix

corresponding to a system of polynomials R = {r0(x), . . ., rn−1(x)} satisfying (5.1). Then A is (H,m)–well–
free.



18 T. Bella∗, V. Olshevsky∗ and P. Zhlobich∗

Proof. The proof is presented by demonstrating that A has a set of generators of the form (5.6), and hence
is (H,m)–well–free. In particular, we show that

dk = akk, k = 1, . . . , n, pk+1qk =
1

δkk
, k = 1, . . . , n− 1,

gk = [ak,k+1 · · · ak,k+l−2] , k = 1, . . . , n− 1, hk = [1 0 · · · 0 0︸ ︷︷ ︸
l−2

]T , k = 2, . . . , n,

bk =




0 0 · · · 0 − δk,k+l−2
δk+l−2,k+l−2

1 0
. . .

...
...

0 1
. . .

...
...

...
. . . . . . 0 − δk+l−4,k+l−2

δk+l−2,k+l−2

0 · · · 0 1 − δk+l−3,k+l−2
δk+l−2,k+l−2




, k = 2, . . . , n− 1,

with
δij

δjj
= 0 if i > n− l + 2.

(5.10)

forms a set of generators of A. We show that with this choice, the entries of the matrix A coincide with those
of (5.4). From Definition 2.2, the choice of dk as the diagonal of A and choice of pk+1qk as the subdiagonal
entries of (5.3) produces the desired result in these locations. We next show that the generators gk, bk and
hk define the upper triangular part of the matrix A correctly.

Consider first the product gibi+1bi+2 · · · bi+t, and note that

gibi+1bi+2 · · · bi+t = [ai,i+t+1 · · · ai,i+t+l−2] . (5.11)

Indeed, for t = 0, (5.11) becomes
gi = [ai,i+1 · · · ai,i+l−2] ,

which coincides with the choice in (5.10) for each i, and hence the relation is true for t = 0. Suppose next
that the relation is true for some t. Then using the lower shift structure of the choice of each bk of (5.10)
and the formula (5.4), we have

gibi+1bi+2 · · · bi+t+1 = [ai,i+t+1 · · · ai,i+t+l−2] bi+t+1 =

=


ai,i+t+2 · · · ai,i+t+l−2

i+t+l−2∑

p=i+t+1

−aipδp,i+t+l−1

δi+t+l−1,i+t+l−1


 = [ai,i+t+2 · · · ai,i+t+l−1] . (5.12)

And therefore
gib

×
ijhj = [aij · · · ai,j+s−1] hj = aij , j > i

so (5.10) are in fact generators of the matrix A as desired. ¤

Theorem 5.9 ((H, m)–well–free matrices⇒ (m+2)-term recurrence relations). Let A be an (H,m)–well–free
matrix. Then the polynomials system related to A via (1.6) satisfies the l–term recurrence relations (5.1).

Proof. By Theorem 5.7, there exists a choice of generators of A of the form

dk = νk,0, k = 1, . . . , n, pk+1qk = µk, k = 1, . . . , n− 1,

gk = [νk,1 · · · νk,m] , k = 1, . . . , n− 1, hk = [1 0 · · · 0 0︸ ︷︷ ︸
m

]T , k = 2, . . . , n,

bk =




0 0 · · · 0 ξk,1

1 0
. . .

...
...

0 1
. . .

...
...

...
. . . . . . 0 ξk,m−1

0 · · · 0 1 ξk,m




, k = 2, . . . , n− 1.

(5.13)

We present a procedure to compute from these values the coefficients of (5.1).
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1. Take

δij =

{
1
µj

i = j,

− ξj−m,i−j+m+1
µjj

j = m + 2, . . . , n i = j −m, . . . , j − 1.
(5.14)

2. Calculate εij and δij for j = 2, . . . , m + 1, i = 1, . . . , j − 1 as any solution of the following system of
equations:



νi,j−i = −µj

(
εij +

∑j−1
s=1 νi,s−iδsj

)
i = 1, j = 2, . . . ,m + 1,

νi,j−i = −µj

(
δi−1,jµi−1 + εij +

∑j−1
s=1 νi,s−iδsj

)
i = 2, . . . ,m, j = i + 1, . . . ,m + 1.

(5.15)

3. Find the remaining εij-coefficients using

εij =





−ν1,0
µ1

i = j = 1,

−νj,0
µj

− δj−1,jµj−1 i = j > 1,

−νi,j−i

µj
− δi−1,jµi−1 −

∑j−1
s=i νi,s−iδsj j = m + 2, . . . , n i = j −m, . . . , j − 1.

(5.16)

The proof immediately follows by comparing (5.10), (5.13) and using (5.4). Note that the coefficients of the
l–term recurrence relations depend on the solution of the system of equations (5.15), which consists of

m∑

i=1

i =
m(m + 1)

2

equations and defines m(m + 1) variables. So for the generators (5.13) of an (H,m)–well–free matrix there
is a freedom in choosing coefficients of the recurrence relations (5.1) for the corresponding polynomials. ¤

This completes the justification of Theorem 5.6 stated above. In the m = 1 case, this coincides with
the result given in [BEGO08], stated as Theorem 5.2.

5.5. Proof of Lemma 5.3
In this section we present a proof of Lemma 5.3, stated without proof by Barnett in [B81].

Proof of Lemma 5.3. The results of [MB79] allow us to observe the bijection between systems of polynomials
and dilated strongly Hessenberg matrices. Indeed, given a polynomial system R = {r0(x), . . ., rn−1(x)}, there
exist unique n–term recurrence relations of the form

x · rj−1(x) = aj+1,j · rj(x) + aj,j · rj−1(x) + · · ·+ a1,j · r0(x), aj+1,j 6= 0, j = 1, . . . , n− 1. (5.17)

and a1,j , . . . , aj+1,j are coefficients of the j-th column of the correspondent strongly Hessenberg matrix A.
Using δij = εij = 0, i < j − l + 2, we can assume that the given system of polynomials R = {r0(x), . . .,

rn−1(x)} satisfies full recurrence relations:

rj(x) =
j∑

i=1

(δijx + εij)ri−1(x), j = 1, . . . , n− 1 (5.18)

The proof of (5.4) is given by induction on j. For any i, if j = 1, it is true that a11 = − ε11
δ11

. Next, assuming
that (5.4) is true for all j = 1, . . . , k − 1. Taking j = k in (5.18) we can write that

xrk−1(x) =
1

δk,k
rk(x)− εkk

δk,k
rk−1(x)− 1

δk,k

k−1∑

i=1

(δikx + εik)ri−1(x). (5.19)

From the induction hypothesis and equation (5.17) we can substitute the expression for xri−1 into (5.19) to
obtain

xrk−1(x) =
1

δk,k
rk(x)− εkk

δk,k
rk−1(x)− 1

δk,k

k−1∑

i=1

[
δik

i+1∑
s=1

asi · rs−1(x) + εikri−1(x)

]
. (5.20)

After grouping coefficients in (5.20) we obtain

xrk−1(x) =
1

δk,k
rk(x)− 1

δk,k

k∑

i=1

[
δi−1,k

δi−1,i−1
+ εik +

k−1∑

s=i

aisδsk

]
ri−1(x). (5.21)

Comparing (5.17) and (5.21) we get (5.4) by induction. ¤
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6. Relationship between these subclasses of (H, m)–quasiseparable matrices

Thus far it has been proved that the classes of (H, m)–semiseparable and (H, m)–well–free matrices are
subclasses of the class of (H, m)–quasiseparable matrices. The only unanswered questions to understand the
interplay between these classes is whether these two subclasses have common elements or not, and whether
either class properly contains the other or not.

It was demonstrated in [BEGO08] that there is indeed a nontrivial intersection of the classes of (H, 1)–
semiseparable and (H, 1)–well–free matrices, and so there is at least some intersection of the (weakly) (H,m)
versions of these classes. In the next example it will be shown that such a nontrivial intersection exists in
the rank m case; that is, there exist matrices that are both (H, m)–semiseparable and (H,m)–well–free.
Example 6.1. Let A be an (H, m)–quasiseparable matrix whose generators satisfy

bk =




0 0 · · · 0 1

1 0
. . .

... 1

0 1
. . . 0

...
...

. . . . . . 0 1
0 · · · 0 1 1



∈ Cm×m, k = 2, . . . , n− 1, hk =




1
0
...
...
0



∈ Cm, k = 2, . . . , n.

Regardless of the other choices of generators, one can see that these generators satisfy both Lemma 4.5 and
Theorem 5.7, and hence the matrix A is both (H, m)–well–free and (H, m)–semiseparable.

The next example demonstrates that a (H, m)–semiseparable matrix need not be (H, m)–well–free.
Example 6.2. Consider the (H,m)–quasiseparable matrix

A =




1 1 0 0 1 · · · 1
1 0 0 0 1 · · · 1
0 1 1 1 1 · · · 1

0 0 1 1 1
. . .

...

0 0 0 1 1
. . . 1

...
. . . . . . . . . . . . . . . 1

0 · · · 0 0 0 1 1




.

Because of the shaded block of zeros, it can be seen that the matrix is not (H, m)–well–free for any m
(provided the matrix is at least 5× 5). However, one can observe that rank(triu(A, 1)) = 2, and hence A is
(H, 2)–semiseparable. Furthermore, by modifying the 1 elements of the second superdiagonal, this example
can be modified to produce an (H, m)–semiseparable matrix for m = 2, . . . , n− 3. Thus the class of (H,m)–
semiseparable matrices does not contain the class of (H,m)–well–free matrices.

To see that a (H, m)–well–free matrix need not be (H, m)–semiseparable, consider the banded matrix
(1.8) from the introduction. It is easily verified to not be (H, m)–semiseparable (for m < n− l), however it
is (H, l − 2)–well–free.

This completes the discussion on the interplay of the subclasses of (H, m)–quasiseparable matrices, as
it has been shown that there is an intersection, but neither subclass contains the other. Thus the proof of
Figure 3 is completed.

7. Conclusion

To conclude, appropriate generalizations of real orthogonal polynomials and Szegö polynomials, as well as
several subclasses of (H, 1)–quasiseparable polynomials, were used to classify the larger class of (H,m)–
quasiseparable matrices for arbitrary m. Classifications were given in terms of recurrence relations satisfied
by related polynomial systems, and in terms of special restrictions on the quasiseparable generators.
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