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1 Introduction 

What is the interaction between the goods market and the stock market? This relationship has 

attracted considerable empirical research over the last thirty years. Early contributions, 

beginning with the work by Goldsmith (1969), assessed the positive relationship between 

stock returns and economic growth with the prevalent explanation being that an efficient asset 

market will immediately reflect ‘news’ about the macroeconomy, like productivity and policy 

shocks. In contrast, these developments will appear with some delay in the product markets, 

due for instance to menu costs and other frictions, and will thus generate a positive correlation 

of stock returns with future output growth in the data. This conclusion reflects in turn the 

view, put forward by Morck et al. (1990), that the stock market is largely a ‘sideshow’, which 

simply mirrors ‘news’ about anticipated developments in firms’ future payouts and output 

growth. In this vein, a series of empirical studies by, among others, Bosworth (1975), Hall 

(1978), Fama (1981, 1990), Schwert (1990) and Estrella and Mishkin (1998), have focused on 

the US and strongly indicate that the stock market index can serve as a reliable leading 

indicator in the US economy. Moreover, some spotty evidence in the relevant literature 

suggests that there is also a negative -though weak- relationship between current output and 

future stock prices in the US.1 

In general, the empirical studies on the relationship between output growth and stock 

price changes have relied almost exclusively on single-equation or multivariate vector 

autoregressive (VAR) and panel models. However, parametric models may be too restrictive 

to represent the true autocovariance structure of the growth-returns nexus. The work by Fama 

and French (1988) and Poterba and Summers (1988) suggests the presence of transitory 

components in stock prices with returns showing positive autocorrelation over short periods 

(reflecting e.g. the well-known momentum effect, as in Jegadeesh 1990), but negative 

autocorrelation over longer periods (due e.g. to mean reversion to fundamentals). This long-

range dependence may call for a dynamic model with an unusually long lag-structure and, 

therefore, the usual practice of using parsimonious models may prove costly in terms of the 

desirable properties of estimators and related test-statistics.2 

                                                 
1A possible explanation for this pattern may be that it reflects countercyclical monetary policy through the 
reaction function of authorities. For instance, in a period of unanticipated recession the central bank may react by 
reducing interest rates, thus triggering a rise in stock prices, as investors find the stock market more profitable. 
On the other hand, a rise in output growth is usually considered as a sign of future inflation, which affects 
negatively future growth and returns, and policymakers may respond by raising interest rates, which in turn 
reduces the future cash flows of firms. 
2Luetkepohl and Poskitt (1996) discuss the problems that arise in causality testing by fitting finite VAR models 
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The purpose of this study is to reinvestigate systematically this bivariate relationship 

by using non-parametric tests of long-run correlation between growth and stock returns for the 

G-7 countries. To remedy potential caveats associated with the use of standard parametric 

techniques in the empirical investigation of the growth-returns nexus, we estimate the long-

run covariance matrix of the two series via kernel-based estimation techniques, which involve 

only the choice of a kernel and a bandwidth parameter to estimate the covariance matrix of 

the process that equals the spectral density of the process at frequency zero.3 Based on a 

normal asymptotic approximation of the spectral density matrix of the process, we are able to 

derive the asymptotic distribution of the long-run correlation coefficient between the series at 

hand and test for its significance. The aggregate correlation coefficient can be further 

decomposed into the contemporaneous and temporal cross correlation, in order to facilitate 

the analysis of the covariance pattern between growth and returns. We use the non-parametric 

methodology proposed by Hong (2001) to perform hypothesis testing. The test is based on the 

residual cross-correlation function of the series and is robust to distributional assumptions, 

which are likely to be important here since the variables at hand typically exhibit both 

autocorrelation and/or conditional volatility effects. 

We utilize monthly data from the G-7 countries to investigate the bivariate relationship 

between stock price changes and industrial output growth in the context of these non-

parametric methodologies. Until now, existing studies (including, among others, Barro 1990; 

Fama 1990; Schwert 1990), have focused on the impact of current and lagged stock prices on 

future output in the US, whereas fewer studies have investigated this pattern in other 

developed economies, like Canada (Barro 1990), Japan, Germany and the UK (Mullins and 

Wadhwani 1989), and the G-7 countries (Choi et al. 1999; Binswanger 2004). In line with the 

empirical literature on the issue, our objective is not to test alternative theories on the 

determination of the growth-returns nexus, but rather to employ a recently developed general 

econometric framework to reinvestigate the direction of causality and the strength of the 

correlation patterns between real stock price changes and output growth for the G-7 

countries.4 

                                                                                                                                                         
to infinite-order processes. The authors prove that the use of standard Wald tests for Granger-causality can 
indeed be justified under more general regularity conditions, but in small samples these tests tend to reject the 
null hypothesis of no causality more often than indicated by asymptotic significance levels. 
3These methods were first proposed by Parzen (1957) and Priestley (1962). Contributions to the covariance 
estimation literature include among others White (1984), Newey and West (1987, 1994), Andrews (1991), 
Robinson (1991) and Hansen (1992). 
4There are several reasons why this relationship might be different between developed countries (Mauro 2003; 
Binswanger 2004). First, the size of some G-7 economies is relatively small compared to the US and the 
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In contrast to the bulk of the literature that has established that the major feedbacks 

emerge from stock returns to growth within the first six to twelve months, our findings 

indicate that the linkages may last for up to two or three years. In particular, our results 

indicate a positive correlation between stock returns and growth in the G-7 countries (with the 

exception of Italy). Decomposing this long-run correlation to allow for contemporaneous and 

temporal feedbacks, we find that the long-run correlation is mainly triggered by the feedbacks 

from stock price changes to future output growth with the strongest feedbacks occurring for 

US, Japan, Germany, and the UK. The most interesting finding is that when the number of 

autocovariances that are included in the estimation of the long-run covariance matrix 

increases, the feedback from stock price changes to output growth also increases, reaching a 

peak at a range between eighteen to twenty-four months, whereas weaker effects may last up 

to thirty-six months. We also establish that these linkages can improve in-sample and out-of-

sample forecasting in the context of parametric models. On the other hand, with the exception 

of the UK we do not find any evidence of substantial correlation running from output growth 

to stock returns. As regards the correlation patterns from sectoral indices we establish that 

there are large variations across sectors and countries with substantial information 

encountered in distant lags as well. A by-product of our approach is that the finding of a 

negative correlation between output growth and future stock price changes is mainly driven 

by the negative association of US output growth with future changes in the Basic Industries 

and the Consumer Goods share indices. However, with few exceptions this association is not 

broadly supported by aggregate or sectoral data from other developed economies. 

The studies closest in spirit to ours are the papers by Choi et al. (1999) and Hassapis 

(2003). In particular, Choi et al. (1999) examine the growth-returns relationship for the G-7 

countries using in-sample cointegration techniques and establish that there is strong evidence 

of short-run causality running from stock returns to growth in the cases of US, UK, Japan, 

Germany, and Canada, whereas weaker evidence is found for France and no causality is 

detected for Italy. Their findings complement and extend those reported by Fama (1990), 

Schwert (1990), Barro (1990), and other authors who have reported that there is a strong 

                                                                                                                                                         
production of several large firms that are listed in domestic stock markets takes place abroad, which renders 
them less sensitive to anticipated developments in domestic real activity. Also, the degree of openess in 
European economies and in Canada is a lot higher than in Japan and the U.S. and, consequently, foreign 
disturbances may have weakened the association between domestic stock returns and the real sector of the 
economy. Moreover, in countries where the stock market regulations are of English origin the growth-returns 
link should be higher because managers are less protected from shareholders and, hence, less able to pursue e.g. 
investment strategies in the case of a negative market sentiment. In addition, these economies share some 
common characteristics, such as greater possibility of takeovers, lower gearing ratios, and smaller role of 
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positive link between stock returns and future industrial production that reaches its maximum 

at a forecast interval of approximately 6 to 12 months, depending on the horizon of returns. 

Our approach suggests that stock prices are correlated with upward movements in industrial 

production at longer intervals as well, while useful information is also contained in the 

sectoral stock price indices. Hence, the non-parametric methodologies utilized here seem to 

provide additional information about the links between the financial and the real sector of the 

economy compare with those obtained by examining the past behavior of the stock price 

changes at horizons based on parametric single-equation or multivariate regressions. Using a 

similar approach as the one adopted here, Hassapis (2003) estimates the long-run covariance 

matrix between Canadian and U.S. financial market variables and Canadian growth, and finds 

that as the number of autocovariances that are assigned a non-zero weight increases the 

feedback from selected Canadian or U.S. financial variables (including stock prices) to future 

Canadian output growth increases. Our paper corroborates and extends these findings by 

employing a richer dataset by covering the G-7 countries in order to analyze and compare 

both aggregate and sectoral stock market indices. Moreover, we are able to test the 

significance of the long-run correlation coefficient by deriving its asymptotic distribution and 

also the significance of the temporal feedbacks calculated from the long-run correlation 

coefficient through appropriate bivariate non-parametric causality tests. 

 The rest of the paper is structured as follows. Section 2 outlines the non-parametric 

procedures used for the empirical estimation of the growth-returns relationship and section 3 

describes the data at hand. Sections 4 and 5 present and comment the empirical results for the 

G-7 countries. Section 6 concludes the paper. 

2 Non-parametric tests for the growth-returns correlation 

We are interested in estimating the ‘long-run’ correlation coefficient, ,xyρ  between output 

growth, ,ty  and real stock returns, tx . The long-run covariance matrix Ω  of the process 

T
ttt xyZ ],[=  is defined as: 
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For a given sample size, ,T  the estimand TΩ  of Ω  can be written as the sum of the sample 

                                                                                                                                                         
employees in decision making. 
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estimates of the variances of output growth and stock returns and the respective cross-

covariances between these series, i.e. 
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 In practice, only a fraction of the 

sample autocovariances is used to estimate the asymptotic variance ,Ω  by employing a class 

of kernel estimators and the selection of a bandwidth parameter, M , with the estimator of 

Ω given by: 

               )(ˆ)/(ˆ jMjk T
T

Tj
T Γ∑=Ω

−=
                                        (2) 

where )(⋅k  is a real-valued kernel.5 The kernel is a function that determines the scheme with 

which past cross covariances enter the estimation of the long-run covariance matrix, while the 

bandwidth determines the number of lags employed in the estimation. The estimator ,Ω̂  is a 

consistent estimator of Ω  for unconditionally fourth- or eighth-order stationary random 

variables, and for any given bandwidth { M }, such that ∞→M  and ./ / 021 →TM  More 

importantly, this long-run covariance matrix given by (2) is equal to π2  times the spectral 

density matrix evaluated at zero, an analogy which enables us to utilize the relevant 

asymptotic theory for spectral density estimation. Specifically, under certain regularity 

conditions, these nonparametric spectral density estimators have been shown to approximate 

the normal distribution.6 The elements of Ω̂  are jointly normally distributed and this joint 

                                                 
5Here, we employ the Quadratic Spectral ( QS  ) kernel that gives a non-zero weight to all the sample cross 
correlations and is best with respect to an Asymptotic Truncated Mean Square Error (ATMSE) criterion in the 
class  K   as proved by Andrews (1991). The author, in an extensive Monte Carlo study, reports cases where the 
kernel estimators of  Ω   yield confidence intervals whose coverage probabilities are too low. This problem is 
not associated with a poor choice of a specific kernel or bandwidth parameter and is particularly severe when 
there is considerable temporal dependence in the data. In such a case, data filtering before estimating  Ω  may 
yield more accurately sized test statistics than standard kernel estimators; see Andrews and Monahan (1992). In 
the context of the present study, however, such a data prewhitening is unecessary since both stock price changes 
and output growth exhibit strong mean reverting properties. 
6See Grenander and Rosenblatt (1953), Anderson (1971), and Priestley (1981). Sufficient regularity conditions 
for obtaining such a result is that  =tZ  ,∑∞

= −0j jtjεψ   where  tε   is an i.i.d. process with  
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distribution enables us to derive the asymptotic distribution for the long-run correlation 

coefficient estimate between the two series of interest, ty  and tx , defined as ,ˆ
ˆˆ

ˆ

yyxx

xy
xy ωω

ω
ρ ≡  

with xyρ̂  normally distributed as follows (see the Appendix for the detailed derivation)7: 
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An advantage of this methodology is that the long-run covariance matrix can be decomposed 
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Relationship (4) expresses the long-run coefficient, ,xyρ  as the sum of the contemporaneous 

correlation coefficient, xyc , the temporal correlation coefficient, yxr , describing feedbacks 

from past output growth to current real stock returns ( )tt xy → , and the temporal correlation 

coefficient xyr  that describes feedbacks of the opposite direction )( tt yx → . Since our aim is 

to decompose the long-run coefficient into its constituents, the common denominator 

employed, i.e. the square root of the product of the long-run variances of the series at hand, 

reflects our goal to measure the contribution of each of the three components to the long-run 

correlation coefficient. In this respect, these three components add to the long-run coefficient 

value.8 

While we are able to exploit the asymptotic normality of the estimator of the two-sided 

                                                                                                                                                         

,)(,)(,)( ∞<∞<= 420 ttt EEE εεε  and  ∑ ∞<∞
=0j jψ . 

7Before calculating the long-run correlation coefficient, the data are demeaned so as to avoid inducing bias to our 
estimates through the means of the series. 
8 This modification does not affect the properties of the three components that can be interpreted as correlation 
coefficients since they always lie in the interval [-1,1].   
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long-run covariance matrix and derive the relevant distribution for the long-run correlation 

coefficient, ,xyρ  formal hypothesis testing on the basis of the contemporaneous correlation 

coefficient, xyc , and the temporal correlation coefficients, xyr  and yxr  is not feasible. The 

main reason is that asymptotic normal approximations for the respective components of the 

spectral density matrix are not available, since the off-diagonal elements of the one-sided 

long-run covariance matrix can not be expressed in terms of periodograms. 

To circumvent the lack of formal hypothesis testing on the decomposed correlation 

coefficients, we indirectly investigate their significance by testing for the existence of causal 

relations in the mean of two series in the context of the non-parametric method put forward by 

Hong (2001).9 In particular, consider again the bivariate stationary and ergodic stochastic 

process T
ttt xyZ ],[= . The test is based on the sample cross-correlations function of the 

standardized residuals and involves two stages. In the first stage, we estimate univariate time-

series models for both the series under scrutiny so as to avoid detecting a significant 

relationship due to autocorrelation or heteroskedasticity and in the second stage, we calculate 

the sample cross-correlations of the standardized residuals of output growth and real stock 

returns, ytû  and xtû  respectively.10 The sample cross-correlation function of ytu  and xtu  

( )(ˆ , kyxτ ) is given by:  
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)(ˆ ,   is the sample cross-covariance, 

)(ˆ),(ˆ ,, 00 yyxx CC  are the sample variances of the stock returns and output growth, 

respectively and T is the sample size. The test statistic, ,Q  proposed by Hong (2001) is given 

by the following formula: 

                                                 
9The methodology developed by Hong (2001) accommodates testing for causality in mean although it was 
primarily aimed at detecting volatility spillovers, i.e. causality in variance. 
10In our study, we employ the typical ARMA ),( qp  -GARCH ),( nm   models, the correct order of which is 
determined by means of the Akaike information criterion. 
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= .11 Under the null hypothesis of no causality and 

some appropriate regularity conditions, the Q -test follows asymptotically a ),( 10N  

distribution.12 This methodology allows for bivariate conditional mean specification and 

includes the case of infinite unconditional variance, which is often encountered in empirical 

studies on stock returns. Testing for the significance of the contemporaneous correlation 

coefficient between two series is performed by employing the typical sample correlation 

coefficient, which is also asymptotically normal (Anderson 1971); assuming that the true 

value of the correlation coefficient is q , the correlation coefficient estimator is then 

distributed as 
T
qqNq yx

221 )(,(~ˆ ,
− . 

3 Data 

To gauge this empirical relationship between output growth and stock returns, we use existing 

measures of output and real composite and sectoral stock price changes for the G-7 countries. 

Our data set is monthly and covers the period from January 1973 to February 2008.13 As a 

measure of the growth rate of output we use the industrial production index (seasonally 

adjusted) from Thomson Financial (obtained by Datastream). Following Fama (1990) and 

other authors, real stock price changes are obtained by use of Datastream-calculated 

composite and sectoral indices, appropriately adjusted for the inflation rate of the countries 

under consideration. So, apart from the total market aggregate index and the total non-

financial market index, the following sectoral indices are employed: Financial, Basic 

Industries, General Industries, Cyclical Services, Non-Cyclical Services, Information 

                                                 
11In the present study, we use the QS kernel. Employing other kernels such as the Bartlett and the Parzen one 
yields qualitatively similar results. We do not report these results for brevity but they are available from the 
authors upon request. 
 
12Notice that the Q-test is an one-sided test and upper-tailed critical values should be used. 
13The estimation of the long-run correlation along with the in-sample parametric tests  employs the sample up to 
December 2003, while the out-of sample forecasting experiment (Section 4.3) employs the remaining 50 
observations up to February 2008. 
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Technologies, Cyclical Consumer Goods, Non-cyclical Consumer Goods, Utilities.14 

4 Empirical evidence 

In this section we apply the non-parametric techniques outlined above to examine the 

empirical relationship between growth and stock returns. We emphasize that, following Fama 

(1990), Schwert (1990) and others, we do not try to discriminate among various theoretical 

hypotheses. Instead, we implement the estimation and testing strategy outlined in section 2 to 

investigate non-parametrically the strength and the direction of correlation between real stock 

price changes and output growth for the G-7 countries. We then assess our findings in the 

context of standard parametric techniques, which can also accommodate asymmetric 

responses of output growth to stock returns and out-of-sample forecasting of long-horizon 

growth. 

4.1 Long-run correlation between growth and returns 

We begin the empirical analysis with the estimates of the long-run correlation between growth 

and stock returns. The first column in the upper part of Table 1 reports the relevant figures for 

the aggregate market returns at the highest bandwidth examined (36 months). This choice of 

bandwidth, i.e. the lag length of the cross-covariances employed, represents one tenth of our 

sample and ensures that the majority of the effects have been taken into account.15 With the 

exception of Italy, estimates of the long-run correlation range from 0.49 (Japan) to 0.66 (UK). 

The second column reports the standard deviation of the point estimates of the long-run 

correlation based on (3). As was shown in section 2, the variances of the point estimates are 

inversely related to the true value of the long-run correlation coefficients. Accordingly, Italy 

has the lower long-run correlation and thus exhibits the higher standard deviation of the 

respective estimate. The next column reports the respective figures for all the countries. In 

this respect, the long-run correlation of the rest of the countries is found to be significantly 

                                                 
14The Datastream codes for the corresponding stock market indices are the following: TOTMKXX, TOTLFXX, 
TOTLIXX, BASICXX, GENINXX, CYSERXX, NCYSRXX, ITECHXX, UTILSXX, CYCGDXX, 
NCYCGXX, where XX stands for the country code, i.e. CN (Canada), FR (France), BD(Germany), IT (Italy), JP 
(Japan), UK and US. In the same mode, the Consumer Price Index code is the XXI66...CE and the Industrial 
Production code is XXI64...F. All the reported results were obtained by programs written in E-views 4.1 and are 
available from the authors upon request. 
15Alternatively, we could employ the automatic bandwidth selection procedures put forward by Andrews (1991) 
and Newey and West (1987). The Andrews procedure is parametric and relies on the estimates of univariate 
autoregressive models. Applying this procedure to our dataset yields bandwidths that range from 3 months to 6 
months for the countries at hand. This low value of the bandwidth is expected since the series under inspection 
exhibit low autocorrelation. On the other hand, the non-parametric procedure of Newey and West yields 
bandwidths that range from 11 to 19 months. 
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different from zero.16 Not surprisingly, the only country for which we cannot reject the null 

hypothesis of zero long-run correlation is Italy and marginally Germany and Japan. In 

principle, we could also calculate the range of bandwidths over which we reject the null 

hypothesis of a zero coefficient. Given the concave pattern of the relevant t-stat with respect 

to the bandwidth value ,M  the null of a zero correlation coefficient is expected not to be 

rejected for low and high bandwidths due to a low correlation coefficient and a low MT /  

ratio, respectively. This is true for Germany and Japan for which we cannot reject the null of a 

zero correlation coefficient when the bandwidth is in the range of 17 to 32 and 16 to 28, 

respectively. More importantly, we can test whether the estimated long-run correlations are 

significantly different from any value of the correlation coefficient. The fourth column reports 

the results from such hypothesis tests for different imposed levels of the correlation 

coefficient for each country chosen on the basis of the estimated values. In all countries we 

can not reject the null, i.e. that the estimated long-run correlation is not significantly different 

from the imposed value. The respective figures are 0.7 for the UK, 0.6 for Canada, France and 

the US, and 0.5 for Germany and Japan. 

4.2 Temporal and contemporaneous feedbacks 

Having established a significant long-run correlation between stock returns and growth, we 

move on to decompose it into the contemporaneous correlation coefficient, xyc , and the 

temporal correlation coefficients, xyr  and yxr , that describe feedbacks from past real stock 

price changes to current output growth )( tt yx →  and in the opposite direction ( )tt xy → , 

respectively. The last three columns in the upper part of Table 1 report these correlation 

coefficients for the total market indices for the maximum value of bandwidth (36 months). 

Our findings suggest that the contemporaneous correlation is close to zero and, in fact, 

slightly negative for the majority of countries. The highest contemporaneous correlation is 

detected for France and the UK with estimates reaching 0.12, for which the Anderson (1971) 

test rejects the null of a zero correlation. On the other hand, the estimates of the temporal 

correlation from stock returns to growth, xyr , appear to be significant. Specifically, the 

respective estimates range from 0.50 (US) to 0.35 (Canada), whereas Italy fails to show any 

                                                 
16These tests are performed based on the asymptotic approximation of the distribution of the zero long-run 
correlation, which is shown to be standard normal. 
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correlation with a low estimate of 0.19. The results from the temporal correlation from growth 

to stock returns paint the opposite picture with most estimates being close to zero (the largest 

coefficients are observed for Canada, UK, and the US and range between 0.10 and 0.16). 

As outlined in section 2, we can investigate the significance of the temporal 

correlation by testing for causal relations in the mean of the series following Hong (2001). 

Table 2A reports the results for causality-in-mean running from stock returns to growth, 

which indicate that there is a (positive) impact from stock returns to growth.17 Irrespective of 

the choice of bandwidth, the evidence is particularly strong for the US and Germany (in the 

latter case at bandwidths above 9). On the other hand, the test indicates that stock returns 

changes pass through Italy and Japan growth within 3 to 12 months as significant correlation 

is detected only at low bandwidths. As far as the UK is concerned, significant correlation is 

detected within 9 to 24 months. Canada paints the opposite picture as bandwidths exceeding 

18 months are necessary for the detection of correlation. The only country for which our test 

fails to indicate any correlation from stock returns to growth is France. 

Regarding the reverse pattern of correlation from growth to stock returns, our results 

reported in Table 2B do not provide any evidence of association for all the countries at hand, 

with the exception of the UK where correlation is detected for bandwidths above 9 months.  

An open issue is whether these correlation patterns have been stable over the period 

under consideration or whether structural changes have induced shifts in the relationship 

between output growth and stock price changes. To explore this possibility, the second 

(lower) part of Table 1 presents the corresponding estimates for the post-1987 crash period 

covering the years 1989-2003 for a bandwidth of 18 months (covering approximately ten 

percent of the sample). As can be readily seen, the point estimates do not display substantial 

differences, with the possible exceptions of Japan (0.28 compared to 0.49 for the whole 

sample) and Italy (0.38 compared to 0.19). This affects the tests on the null hypothesis of zero 

correlation, which is not rejected for Germany, Italy and Japan. As an informal test on the 

stability of the correlation coefficients, we also conduct tests of equality of the estimated 

values with the imposed values for the whole sample (see fourth column in the upper part of 

Table 1). In all cases the null cannot be rejected, which confirms that the correlation 

                                                 
17 Hong (2001) reports Monte Carlo simulations on the size and power of the Q-test  (along with some variations 
of it) employing sample sizes T equal to 300, 500 and 800, and finds that it performs equally well for all sample 
sizes considered. Specifically, the test performs well at the 10% level, but tends to overreject at the 5% level. 
With respect to its power, the best results are achieved when employing a non-uniform weighting scheme such 
as the QS kernel employed in the present study. 
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coefficients have not changed dramatically for the subsample investigated.18 Hence, the 

contemporaneous and the temporal correlations do not display marked differences with those 

derived from the whole sample. This finding is in contrast with Binswanger (2004) who finds 

that a significant relationship between lagged stock market growth rates and current output 

growth exists only for the US and Germany when the subsample 1989 onwards is considered. 

Now, to obtain a more in-depth picture of the pattern of the correlation estimates as the 

bandwidth increases we depict in Figure 1 our estimates of the correlation coefficients, xyc , 

xyr  and yxr , under increasing values of the bandwidth parameter, M , for the total market 

index in the G-7 countries for the period 1973-2003. Specifically, we allow the bandwidth 

parameter (i.e. the number of autocovariances employed in the estimation) to take values in 

the interval [1, 36] by steps of one. In general, the information content in this Figure shows 

that when the bandwidth parameter increases, the estimates of the temporal correlation 

coefficient xyr  describing the feedback from past stock price changes to output growth 

increase as well. However, a bandwidth, ∗M , exists after which marginal increases in xyr  are 

prevalent. Interestingly, this point coincides with the optimal bandwidth as determined by the 

data dependent procedure of Newey and West (1987); according to this procedure the 

bandwidths selected are 11 months for Canada, 16 for Japan and the UK, 18 for Italy and 19 

months for France, Germany and the US. On the other hand, the estimates of the 

contemporaneous correlation coefficient xyc  and the temporal correlation coefficient ,yxr  

remain close to zero for all values of the bandwidth parameter. 

The rate of growth of the estimates of xyr  does not remain constant over the whole 

range of values of the bandwidth parameter M . Moreover, its pattern is not uniform across 

countries. In most cases, xyr̂  increases with the correlation function having a concave form in 

terms of the bandwidth; this is clearly the case for France, Japan, UK and the US for 

bandwidth values below twenty-four. In these countries, xyr̂  remains roughly constant 

beyond this point, indicating that it has reached its maximum value and no additional 

information can be gained by utilizing more lags of stock price changes. On the other hand, in 

the case of Germany, xyr̂  yields additional information up to the point where the bandwidth 

parameter equals thirty-six, whereas it appears to be stable for values above twelve in Canada. 

                                                 
18In fact, the point estimates derived from a bandwidth of 36 months are much closer to the estimates reported 
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Thus, although the general picture is consistent with the broad finding that the major 

feedbacks from stock price changes to output growth occur within the first six to twelve 

months, non-negligible feedbacks can be detected for periods lasting up to three years. 

We close this section by noting that the earlier findings by Fama (1990), Schwert 

(1990) and other authors have pointed towards a strong positive relation between stock prices 

and future industrial production at a two to four quarter forecast interval, depending on the 

horizon of calculated returns. As has been shown by Fama (1990), the significance of lags 

tends to increase with the horizon of returns, due to their overlapping with future cash flows. 

These findings have been reinforced by the results in Estrella and Mishkin (1998) who have 

found that the stock market is a useful predictor of output in the US at a two quarter horizon. 

The evidence presented here suggests that in the G-7 countries (with the exception of Italy) 

stock prices anticipate upward movements in industrial production at longer intervals (lasting 

up to three years) as well.  

The overall picture from the estimates of long-run correlation coefficients and the 

relevant hypothesis testing suggests that, as pointed out by Mauro (2003), this long-term 

association is stronger in countries with high market capitalization (US, UK), but less weak 

when capitalization is low (Italy).19 In countries with high market capitalization, stocks 

constitute a larger proportion of consumer’s portfolios and consequently stock price 

developments can have a major impact on consumption through their impact on wealth. A 

similar impact is expected on investment through the ‘financing hypothesis’ that argues that 

when stock prices are high compared to the replacement cost of capital, investment is more 

likely to happen through new physical capital such as the issuance of new shares rather than 

the purchase of existing firms on the stock market. In this respect, financially developed 

countries are expected to display a stronger link between stock returns and growth.  

4.3 Alternative methodologies, conditioning and forecasting 

In light of our evidence on the long-run nature of the linkages between returns and growth, in 

this section we re-address the issue in the context of a parametric methodology suitable for 

addressing these impacts, which has been employed by, among others, Stock and Watson 

(2003) and Rapach and Weber (2004). This methodology can accommodate both the in-

                                                                                                                                                         
for the whole sample; these results are available upon request. 
19 Mauro (2003) finds that the magnitude of a country’s slope coefficient in the returns-growth regressions would 
approximately double if a country were to double its market capitalization to GDP ratio. 
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sample predictability that is directly compared to our non-parametric methodology and the 

out-of-sample predictability of stock returns for future growth at various horizons. 

Specifically, we estimate the following Autoregressive Distributed Lag (ADL) model 

for each country: 

h
httt

h
ht xLbyLacy ++ +++= ε)()(               (7) 

where c  is a constant, ),(La  )(Lb  are scalar lag polynomials, ty  is output growth, tx  is 

stock returns and h
hty +  is the growth of output over the next h  periods, i.e. is equal to 

sht
ts y∑ +
+= 1 . The number of lags for both ty  and tx  is selected by the Schwartz Bayesian 

information criterion (SIC). We set the maximum lag length at 12 to avoid estimating any 

models with low degrees of freedom and focus on forecast horizons ( )h  of 1, 2, 3, 6, 9, 12, 15 

and 18 months. To conduct an in-sample test of forecasting ability of stock returns ( )tx , we 

just estimate equation (7) and carry out a Wald test of the null hypothesis that all the 

coefficients of the lag polynomial )(Lb  are equal to zero. If the null hypothesis is rejected, 

then stock returns have in-sample predictive ability for future output growth at various 

horizons.20 

The results (reported in Table 3) suggest that stock returns contain in-sample 

information with respect to future growth. In the case of Japan and US, this result is evident 

for any horizon considered, ranging from the short-run (next month’s growth) to the long-run 

(growth over the next 18 months). Similarly, significant in-sample predictability is found for 

Germany at horizons greater than 2 months, while for France and UK stock returns contain 

information for future growth at horizons exceeding 6 months. For Canada, the horizon is 

further extended to over 12 months. On the other hand, for Italy this predictability is 

significant only at the short-run horizons of 1 and 3 months. 

A series of papers (see e.g. McQueen and Roley 1993; Park, 1997; Boyd et al. 2006) 

have suggested that when the economy is weak, the correlation between current returns and 

future growth is positive and stronger than the case of a strong economy.21 To accommodate 

the effect of a conditional correlation in our model, we augment (7) by including a dummy 

                                                 
20Notice that for horizons greater than one we have an overlapping samples problem that generates 
autocorrelation in the disturbance term. We account for this problem by employing a heteroscedasticity and 
autocorrelation consistent covariance matrix as the one suggested by Newey and West (1987). 
21We thank a referee for pointing out to us this issue. 
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variable taking the value of 1 in cases of recession, as follows:22 

h
htttt

h
ht dDUMxLbyLacy ++ ++++= ε)()(    (8) 

We then contact a likelihood ratio (LR) test between the unrestricted model, given by (8), and 

the restricted one, given by (7), and test whether the exclusion of the parameter d  from (8) is 

a valid restriction.23 

Table 4 reports our results of conditional in sample forecasting for the countries at 

hand. In general we find evidence of a significant asymmetric response of stock returns to 

growth for all the countries with the exception of Italy albeit at various horizons. Specifically, 

for Canada, this effect is significant at the horizons of 1 month and 6-12 months, while for 

France is only a medium term phenomenon for horizons of 6 to 12 months. For Germany, our 

results suggest that the correlation is stronger at horizons exceeding one year, while for Japan 

and the UK a positive effect is evident at the 2-quarters horizons and the 1-quarter horizon, 

respectively.24 This effect is stronger in the US as the unrestricted model is preferred to the 

restricted in most time horizons. 

Next, we turn to the out-of sample forecasting experiment conducted for the period of 

January 2004 to February 2008 (50 observations). Since evaluating the forecasting accuracy 

of the candidate models is of equal importance as constructing the forecasts, the estimation 

procedure is designed to allow us to implement formal statistical tests for the comparison of 

the forecasts provided by two different models. Specifically, we first estimate an AR model 

for each country by setting )(Lb  in (7) equal to zero. Our simulated out-of-sample forecasting 

experiment proceeds recursively in the following manner. In each date of the out-of-sample 

forecast period, the AR model is re-estimated by keeping the lag-order fixed providing us 

with a sequence of forecasts. We then add stock returns, tx , to our model. We keep the order 

of )(La  fixed and once more use SIC to select the order of ).(Lb 25 Consequently, the AR 

model, which is used as a benchmark when evaluating forecasts, is always nested within the 

alternative model. 

                                                 
22Periods of recessions are defined as periods of at least two consecutive negative growth instances. See 
Candelon and Gil-Alana (2004) for a more detailed analysis of the issue. 
23The test follows asymptotically the chi-squared distribution with one degree of freedom. To ensure that there is 
no change in the lag structure of the models invalidating the nested properties of the models at hand, we estimate 
(8) keeping the lag orders of the polynomials  )(),( LbLa  fixed at the respective lags of (7). 
24Please note that the coefficient  d   is found to be positive, so the relationship between current returns/future 
growth actually becomes stronger in periods of weak growth. 
25The lag structure of the models is allowed to vary across countries. 
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The forecasting performance of the model containing stock returns is assessed by the 

simulated out-of-sample mean squared forecast error (MSFE) relative to the MSFE of the 

benchmark AR model (Theil’s U). To establish the statistical significance of this ratio, one 

has to test the hypothesis that the population relative MSFE is equal to one, against the 

alternative of a ratio less than one. Techniques for comparing the forecasting performance of 

two nested models, since the AR model is always nested within the remaining models 

considered, were only recently developed. In this study, we use the following F-statistic 

proposed by McCracken (2004): 

2
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where 21,,, =itiε  are the forecast errors of the restricted and the unrestricted model, 

respectively and P  is the number of out-of-sample observations. Under the null hypothesis, 

the two models have equal MSFE, while under the alternative the MSFE of the unrestricted 

model is less than that of the restricted one. 

We also consider testing the forecasting ability of the stock returns for future growth 

by employing the notion of forecast encompassing, i.e. testing whether an optimal composite 

forecast can be derived utilizing information from both the restricted and the unrestricted 

model. We use here the following test statistic proposed by Clark and McCracken (2001): 
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where 21,,, =itiε  are the forecast errors of the restricted and the unrestricted model, 

respectively and P  is the number of out-of-sample observations. Under the null hypothesis, 

the restricted model forecasts encompass the unrestricted ones. 

The limiting distributions of the aforementioned test-statistics are non-standard and 

numerical estimates of the asymptotic critical values for valid inference depend on the ratio of 

in sample and out-of-sample observations and the number of parameter restrictions. While the 

asymptotic critical values of the aforementioned test are valid for one-step ahead horizons, 

these values cannot be employed for horizons greater than one. For these cases, Clark and Mc 

Cracken (2001, 2005) recommend basing inference on a bootstrap procedure along the lines 

of Kilian (1999). Following this recommendation, we base our inferences on this bootstrap 
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procedure for all the forecast horizons considered.26 

The results from the tests based on (9) and (10) with respect to the out-of sample 

forecasts of stock returns for future growth are reported in Table 5. As can be readily seen, 

Canadian stock returns do not contain any information about future growth at any horizon, 

while the opposite is true for the US. In this case, both tests suggest significant out-of-sample 

predictability of stock returns to output growth. The same is true for the UK albeit at horizons 

greater than 6 months. Forecast encompassing of the restricted model is rejected for the 

remaining countries almost for the majority of horizons considered. In this respect, the long-

term information content of stock returns for future growth can be useful when constructing 

growth forecasts.27 

Overall, our results corroborate the findings of Choi et al. (1999) with respect to the 

out-of sample forecasting ability of monthly output growth.28 Specifically, the authors provide 

evidence of a significant stock market effect on monthly forecasts of IP growth for three of 

the G-7 countries, namely Japan, the UK and the US.  Their findings also suggest that 

predictability in the remaining countries is probably at a shorter horizon than 12 months, 

which coincides with our MSE-F results for Germany, Italy and perhaps France.  

5 Sectoral estimates 

As mentioned in the Introduction, there are several theoretical channels through which output 

growth and stock price changes can be interrelated. In addition to the links between these 

variables at the aggregate level, which have been investigated extensively in the relevant 

literature via parametric methods, stock price indices of individual sectors may also be related 

with output. For instance, it is well known that profits tend to grow in line with output in the 

long run. So, if profits in certain sectors, and consequently sectoral indices, are highly 

procyclical, then useful information may be extracted from stock price changes in these 

sectors. Also, given that the stock market value of companies is related to investment projects 

(q-theory of investment), information from sectoral stock price changes may vary according 

to the sensitivity of sectors with different capital structure to the economic environment.29 

                                                 
26A detailed description of this procedure can be found in Clark and McCracken (2005). The programs written in 
GAUSS are available from David Rapach's website (http://pages.slu.edu/faculty/ rapachde/Research.htm). 
27Notice however that the MSE-F test of equal forecasting ability displays significant heterogeneity among this 
set of countries. For example, for France equal forecasting ability is rejected for periods up to 3 months and for 
the long- horizon of 18 months. 
28 Our results are not fully comparable to Choi et al. (1999) due to the different data sample and the ratio of in-
sample/out-of sample observations. 
29For instance, Duffee and Prowse (1996) have shown that auto industry stock returns have higher explanatory 
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We investigate the decomposed long-run correlation between output growth and 

sectoral share price changes in Table 6 (Panels A to C).30 As a first observation, we note that 

the changes in the non-financial market share index appear more highly correlated with output 

growth compared to the changes in the financial index with the correlation appearing 

relatively stronger at lower bandwidths. The temporal correlation coefficient, xyr , rises in a 

similar manner as the one obtained by use of the composite market index. Hence, the results 

derived earlier on are mainly driven by the changes in the non-financial index that yields a 

higher correlation with future output growth.31 As expected, the temporal and the 

contemporaneous correlation coefficients, yxr  and xyc , appear again insignificant.32 

Turning to the individual sectoral indices, we observe that their patterns vary across 

sectors and across countries. For instance, in the US the estimates of the temporal correlation 

coefficient, xyr̂ , take the largest values in the cases of the General Industries, the Cyclical 

Services, and the Cyclical Consumer Goods indices. As in the case of the aggregate indices, 

the bandwidths required range from eighteen to thirty-six months, which implies that the 

information content for future growth in these indices is present in distant lags as well. 

Looking at the other countries, the Cyclical Consumer Goods appears to take relatively large 

values too in the cases of Canada, France, Germany, and Japan. More importantly, the 

estimated coefficient increases with the bandwidth in Canada, and Japan indicating that, as in 

the US, the association becomes stronger when more lags are given a non-zero weight. Other 

noteworthy patterns appear in Germany for the General Industries and the Utilities indices, 

which increase substantially as the bandwidth widens, in Japan for the General Industries 

index, which takes its largest value when more than twenty lags are utilized, and in the UK 

where more than six lags are required for the long-run coefficient to start increasing. The 

contemporaneous correlation again is very close to zero confirming the results obtained from 

the aggregate indices. 

Finally, an interesting feature is that output growth in the US is negatively correlated 

with future changes in the Basic Industries share index with the long-run correlation 

                                                                                                                                                         
power for future GDP than market returns. 
30We also considered sectoral industrial production indices where available and our results are qualitatively 
similar. The results (available from the authors upon request) are not reported here due to the limited availability 
of these indices across the G-7 countries coupled with the lack of a direct mapping between the respective 
sectoral industrial production index and the stock market. 
31In interpreting these results one should take into account that the industrial production index has been used as a 
measure of output. 
32Similar figures to Figure 1 were produced for each sector and countrry at hand, but we do not report these to 
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coefficient reaching its minimum value of -0.2 at a bandwidth of 20 months. A similar 

negative effect (though somewhat weaker) appears in the case of the Cyclical Consumer 

Goods share index in the US (and also in Canada and France). This evidence implies that a 

fall in output is associated with a future rise of US stock prices in these sectors, particularly in 

the capital-intensive sector of Basic Industries.33 

Our finding of a negative coefficient only in the case of the US Basic Industries index 

explains the negative correlation between output growth and future stock price changes, 

reported by McQueen and Roley (1993) and Park (1997) for the US economy. Specifically, 

the capital-intensive Basic Industries index had a higher weight in the decades of the 70s and 

80s and, thus, is likely to have been strongly affected by adverse developments in US 

monetary policy in a less open economic environment. This has driven the negative 

correlation during an era when manufacturing output and profits accounted for the largest 

portion of total output and profits, but the link has gradually evaporated as other sectoral 

indices became more heavily weighted in the total share market index. 

6 Conclusions 

The bulk of empirical evidence from parametric models has shown that stock price changes 

are useful in forecasting growth. We re-examined the correlation between stock price changes 

and output growth in the G-7 countries by employing non-parametric estimates of the long-

run covariance matrix. The most important finding of the paper is that we have found non-

negligible feedbacks from stock returns to growth lasting for up to three years, which implies 

that the underlying covariance structure of the two series evolves at a long-run level as well. 

Furthermore, we extended our analysis by including sectoral stock price indices, in order to 

investigate for possible links at a more disaggregate level, and we have established that the 

sectoral indices exhibit substantial variations across sectors and across countries. 

Our results on the long-run links between these variables in the G-7 countries may 

shed some light in explaining the poor performance of stock price changes as predictors of 

future output growth despite their strong in-sample correlation (see Choi et al. 1999, and the 

survey by Stock and Watson 2003). The method employed here can also be applied to other 

cases in which parametric methods leave empirical questions open. For instance, Thoma and 

                                                                                                                                                         
save space. The reader is referred to the working paper version for the full set of results (Panopoulou et al. 2006). 
33To some extent, this result is to be anticipated as the growth rate of the industrial production index, used as a 
measure of output growth in this study, is more highly correlated with future growth rates of the industrial stock 
price index. 
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Gray (1998) claim that, contrary to the view popularly held in the literature, financial 

variables (money supply and interest rates) do not provide any predictive power for future 

industrial growth. The authors note that, given that the predictive power of parametric models 

should be evaluated in out-of-sample forecasting, much of their power is the outcome of 

specific outliers. The non-parametric empirical strategy used here can be extended to the 

estimation and hypothesis testing for the long-run covariance structure between monetary 

variables and real activity. Another promising route for further research involves a more in-

depth analysis of the links between sectoral stock portfolios and future sectoral output growth. 

As data on cash flows at the plant or sectoral level become available, unraveling the link 

between firm-specific returns and future output is of importance. Depending on the nature of 

the sector (firm) one could expect to find differences in this firm-specific correlation, for 

instance across services and industries. Finally following Hong et al. (2000), who indicate an 

asymmetry between good and bad news on firm returns, one could go one step further and test 

for the stock returns/growth link across financial states, i.e. across negative and positive 

shocks to returns.  

 

Appendix: Asymptotic distribution of the long-run correlation coefficient 

In the Appendix we derive the asymptotic distribution of the long-run correlation coefficient 

xyρ̂ . Given that the covariance between any two elements of the spectral density matrix, for 

example ),( ba  and ),( dc , is equal to bcadbdac ffff + , we obtain the following asymptotic 

distribution for the elements of Ω̂  : 
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In order to derive the asymptotic distribution of the long-run correlation coefficient 
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ˆ ≡  we apply the delta method with the transformation vector J  equal to the 

partial derivatives of xyρ  with respect to yyxx ωω ,  and xyω  :  
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Setting Q  the asymptotic variance of the Ω  matrix in (A1), the asymptotic variance of the 

long-run correlation coefficient is calculated by setting JJQP ′=  where: 
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From (A1) and (A2) it follows directly that we can get equation (3) in the text. 
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Fig. 1  Decomposed long-run correlation coefficient between output growth and stock returns 
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Notes: The bandwidth parameter M is on the horizontal axis. Stock returns are calculated from the Total Market index. 
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Table 1 Long-run correlation estimates between output growth (y) and stock price changes (x) 
 

 
Country Long-Run 

Correlation 
Standard 
Deviation 

t-stat 
Ho: ρxy =0 

t-stat 
Ho: ρxy =ρ 

Contemporaneous 
correlation 

Temporal 
correlation 

x→y 

Temporal 
correlation  

y→x 

Sample period: 1973-2003 

Canada 0.556 0.215  1.789 -0.219 (ρ=0.6) 0.041 0.353 0.162 

France 0.564 0.212 1.812 -0.183 (ρ=0.6) 0.116 0.362 0.086 

Germany 0.491 0.236  1.578 -0.040 (ρ=0.5) -0.021 0.451 0.061 

Italy 0.195 0.299  0.627 -0.017 (ρ=0.2) -0.032 0.190 0.037 

Japan 0.489 0.237  1.572 -0.047 (ρ=0.5) -0.022 0.477 0.034 

UK 0.658 0.176 2.115 -0.265 (ρ=0.7) 0.116 0.423 0.119 

US 0.582 0.206  1.871 -0.090 (ρ=0.6) -0.018 0.497 0.103 

Sample period: 1989-2003 

Canada 0.578 0.211 1.828 -0.109 (ρ=0.6) 0.002 0.279 0.297 

France 0.549 0.221 1.736 -0.252 (ρ=0.6)  0.090 0.321 0.138 

Germany 0.416 0.262 1.316 -0.354 (ρ=0.5) -0.131 0.428 0.119 

Italy 0.378 0.271 1.195 0.586 (ρ=0.2) 0.085 0.289 0.004 

Japan 0.278 0.292 0.879 -0.936 (ρ=0.5) -0.030 0.348 -0.040 

UK 0.568 0.214  1.796 -0.818 (ρ=0.7)  0.036 0.368 0.164 

US 0.647 0.184  2.046 0.232 (ρ=0.6) -0.020 0.394 0.273 

 
Notes: The bandwidth for the period 1973-2003 is 36 months and for the period 1989-2003 is 18 months; see section 2 in text for details. Bold 
denotes statistical significance at the 10% level. 
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Table 2A Hypothesis testing for temporal correlation: from stock price changes to output growth 
 

Country/Bandwidth 3 6 9 12 18 24 30 36 

Canada 0.57 0.26 0.18 0.12 0.04 0.03 0.04 0.04 

France 0.46 0.47 0.58 0.63 0.64 0.67 0.72 0.75 

Germany 0.39 0.17 0.04 0.01 0.00 0.00 0.01 0.01 

Italy 0.09 0.05 0.08 0.12 0.23 0.33 0.38 0.41 

Japan 0.04 0.03 0.09 0.15 0.18 0.18 0.16 0.13 

UK 0.55 0.16 0.07 0.04 0.05 0.08 0.15 0.20 

US 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Table 2B Hypothesis testing for temporal correlation: from output growth to stock price changes 
 

Country/Bandwidth 3 6 9 12 18 24 30 36 

Canada 0.12 0.18 0.30 0.40 0.56 0.63 0.60 0.51 

France 0.81 0.82 0.85 0.88 0.91 0.88 0.83 0.78 

Germany 0.52 0.73 0.65 0.59 0.61 0.56 0.49 0.39 

Italy 0.79 0.77 0.76 0.77 0.80 0.82 0.84 0.86 

Japan 0.81 0.79 0.78 0.80 0.79 0.79 0.78 0.76 

UK 0.38 0.54 0.09 0.05 0.05 0.02 0.01 0.02 

US 0.74 0.82 0.82 0.77 0.71 0.71 0.74 0.77 

 
Notes: P-values for the Q-test (Hong,2001) reported (see section 2 for details). Bold denotes statistical 
significance at the 10% level. 
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Table 3 In-sample forecasting from stock price changes to output growth 
 

Country/Bandwidth  1 2 3 6 9 12 15 18 

Canada Wald-test 0.081 1.568 0.802 0.337 0.880 6.745 4.779 8.686 

 p-value 0.780 0.260 0.406 0.562 0.408 0.056 0.090 0.008 

 R-square 0.061 0.139 0.152 0.273 0.341 0.420 0.417 0.451 

France Wald-test 0.100 0.745 0.426 7.506 10.421 12.326 7.387 4.506 

 p-value 0.770 0.406 0.516 0.022 0.014 0.002 0.036 0.058 

 R-square 0.145 0.058 0.029 0.088 0.115 0.113 0.089 0.021 

Germany Wald-test 0.363 4.108 3.603 20.782 18.745 20.482 11.664 12.111 

 p-value 0.594 0.058 0.082 0.004 0.002 0.004 0.022 0.006 

 R-square 0.163 0.115 0.065 0.199 0.157 0.125 0.115 0.116 

Italy Wald-test 3.588 2.639 5.085 2.682 1.999 2.492 2.328 1.250 

 p-value 0.078 0.118 0.042 0.154 0.216 0.160 0.188 0.290 

 R-square 0.172 0.110 0.057 0.014 0.020 0.010 0.019 0.030 

Japan Wald-test 3.680 8.506 9.130 8.399 20.386 27.847 26.886 28.073 

 p-value 0.076 0.012 0.006 0.020 0.006 0.004 0.000 0.000 

 R-square 0.209 0.234 0.236 0.203 0.277 0.238 0.229 0.199 

UK Wald-test 2.031 0.737 0.074 23.555 28.772 62.371 53.807 53.427 

 p-value 0.194 0.466 0.802 0.006 0.000 0.000 0.000 0.000 

 R-square 0.041 0.028 0.000 0.168 0.198 0.211 0.216 0.191 

US Wald-test 31.222 19.066 15.723 35.169 29.153 24.952 25.619 23.038 

 p-value 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.004 

 R-square 0.264 0.337 0.330 0.367 0.349 0.303 0.256 0.196 
 

Notes: Bold indicates significance at the 10% level. 
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Table 4 Conditional in-sample forecasting from stock price changes to output growth 
 

Country/Bandwidth  1 2 3 6 9 12 15 18 

Canada LR -test 3.857 1.263 2.213 4.898 6.142 3.005 2.534 2.775 

 p-value 0.050 0.261 0.137 0.027 0.013 0.083 0.111 0.948 

France LR -test 0.234 2.310 0.013 10.937 11.256 3.189 3.010 1.157 

 p-value 0.628 0.129 0.908 0.053 0.047 0.074 0.390 0.282 

Germany LR -test 1.687 0.979 0.426 2.125 1.737 5.122 3.606 7.477 

 p-value 0.194 0.322 0.514 0.977 0.884 0.077 0.058 0.187 

Italy LR -test 0.076 0.256 0.019 0.309 0.011 0.218 0.054 0.008 

 p-value 0.783 0.613 0.889 0.579 0.916 0.641 0.816 0.929 

Japan LR -test 3.133 2.392 2.604 6.597 7.344 4.936 1.797 2.181 

 p-value 0.077 0.122 0.107 0.010 0.500 0.764 0.987 0.975 

UK LR -test 0.039 1.967 3.095 5.000 4.634 5.786 4.734 2.979 

 p-value 0.844 0.161 0.079 0.758 0.796 0.671 0.786 0.936 

US LR -test 12.020 14.805 11.183 9.707 16.361 20.783 19.497 11.823 

 p-value 0.002 0.001 0.004 0.286 0.038 0.004 0.007 0.037 
 

Notes: Bold indicates significance at the 10% level. 
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Table 5 Out-of-sample forecasting from stock price changes to output growth 
 

Country/Bandwidth  1 2 3 6 9 12 15 18 

Canada MSE-F -0.020 -0.129 -0.079 -0.479 -1.361 -15.605 -17.334 -19.585

 p-value 0.356 0.462 0.416 0.606 0.834 0.998 0.996 1.000 

 ENC-NEW -0.009 -0.010 -0.006 -0.202 -0.513 -5.955 -6.607 -6.844 

 p-value 0.432 0.446 0.424 0.648 0.834 1.000 0.998 1.000 

France MSE-F 2.479 2.340 1.037 -7.967 -8.218 -8.402 -0.782 2.479 

 p-value 0.008 0.010 0.062 1.000 1.000 0.994 0.852 0.008 

 ENC-NEW 2.973 1.489 0.738 8.218 10.332 9.802 9.862 2.973 

 p-value 0.002 0.016 0.054 0.000 0.000 0.000 0.004 0.002 

Germany MSE-F -0.691 3.324 2.023 -3.012 -1.179 1.288 -0.356 -2.743 

 p-value 0.778 0.004 0.018 0.978 0.904 0.034 0.680 0.974 

 ENC-NEW -0.094 2.408 1.900 14.287 10.734 10.198 7.912 5.219 

 p-value 0.596 0.002 0.012 0.000 0.000 0.000 0.004 0.002 

Italy MSE-F 0.641 4.715 6.573 3.643 1.772 1.154 0.705 0.339 

 p-value 0.088 0.000 0.000 0.004 0.012 0.064 0.112 0.178 

 ENC-NEW 2.108 3.472 4.896 2.830 1.402 1.184 0.858 0.344 

 p-value 0.002 0.000 0.000 0.008 0.018 0.026 0.044 0.142 

Japan MSE-F 0.877 1.547 2.655 0.276 4.009 4.870 -0.403 -8.281 

 p-value 0.060 0.032 0.002 0.204 0.004 0.002 0.720 0.992 

 ENC-NEW 0.753 1.500 2.284 1.187 6.910 11.540 7.453 1.345 

 p-value 0.048 0.016 0.000 0.026 0.004 0.002 0.002 0.010 

UK MSE-F -2.773 -2.974 -2.040 3.140 6.459 10.662 10.526 6.234 

 p-value 0.990 0.972 0.952 0.004 0.000 0.002 0.000 0.000 

 ENC-NEW -0.944 -1.105 -0.925 5.814 7.454 9.339 8.242 4.836 

 p-value 0.988 0.978 0.974 0.002 0.000 0.002 0.000 0.000 

US MSE-F 5.281 11.212 5.982 13.435 23.352 16.671 10.087 6.381 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 

 ENC-NEW 9.257 20.358 18.088 30.119 32.896 22.991 15.267 9.518 

 p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 
Notes: Bold indicates significance at the 10% level. 
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Table 6 Sectoral estimates 
 

Panel A. Temporal correlation from stock price changes to output growth 
Country/Sector TOTLI TOTLF BASIC GENIN CYSER NCYSR CYCGD NCYCG UTILS ITECH 

Canada 0.328 0.391 0.225 0.256 0.322 0.417 0.530 --- 0.283 0.267 

France 0.358 0.325 0.314 0.347 0.321 0.429 0.449 0.272 --- 0.365 

Germany 0.490 0.353 0.372 0.434 0.442 0.325 0.605 0.332 0.500 --- 

Italy 0.265 0.132 0.120 0.074 0.112 0.275 0.329 --- 0.172 --- 

Japan 0.506 0.341 0.383 0.494 0.427 0.448 0.523 0.448 --- 0.430 

UK 0.441 0.346 0.394 0.407 0.403 0.377 0.366 0.438 --- 0.221 

US 0.488 0.496 0.433 0.491 0.496 0.377 0.601 0.412 --- 0.462 

 

Panel B. Temporal correlation from output growth to stock price changes 
Country/Sector TOTLI TOTLF BASIC GENIN CYSER NCYSR CYCGD NCYCG UTILS ITECH 

Canada 0.152 0.173 0.084 0.224 0.121 0.175 -0.235 --- 0.060 0.055 

France 0.092 0.145 0.106 0.094 0.032 0.115 -0.239 0.075 --- 0.104 

Germany 0.020 0.132 0.024 0.081 -0.099 0.007 -0.084 0.077 0.126 --- 

Italy -0.103 0.131 -0.085 0.072 0.027 -0.070 -0.134 --- -0.081 --- 

Japan -0.001 0.137 0.068 0.005 0.107 -0.002 -0.069 0.045 --- -0.028 

UK 0.104 0.150 0.002 0.031 0.155 0.144 0.031 0.060 --- 0.125 

US 0.096 0.171 -0.091 0.146 -0.003 0.130 -0.148 0.165 --- 0.125 

 

Panel C. Contemporaneous correlation between output growth and stock price changes 
Country/Sector TOTLI TOTLF BASIC GENIN CYSER NCYSR CYCGD NCYCG UTILS ITECH 

Canada 0.046 0.018 0.076 0.029 0.008 0.014 0.066 --- -0.002 0.004 

France 0.114 0.064 0.077 0.112 0.212 0.083 0.160 0.103 --- 0.123 

Germany -0.014 -0.045 -0.013 -0.028 0.062 -0.035 -0.088 0.028 -0.030 --- 

Italy 0.000 -0.055 -0.031 -0.024 -0.011 -0.032 0.049 --- 0.015 --- 

Japan -0.023 -0.016 0.000 -0.034 -0.017 -0.013 -0.015 0.000 --- -0.031 

UK 0.117 0.098 0.150 0.106 0.080 0.016 0.040 0.103 --- -0.004 

US -0.017 -0.029 -0.016 -0.016 -0.028 -0.005 -0.023 -0.023 --- -0.018 

 
Notes: Correlations are calculated at a bandwidth, M=36. TOTLI=total market excluding financial, 
TOTLF=financial BASIC= Basic Industries, GENIN= General Industries, CYSER= Cyclical Services, NCYSR= 
Non-Cyclical Services, ITECH= Information Technologies, UTILS= Utilities, CYCGD=Cyclical Consumer Goods, 
NCYCG=Non-cyclical Consumer Goods. 
 


