
An Analytical Upper Bound on the Minimum Number of

Recombinations in the History of SNP Sequences in Populations

Yufeng Wu

Department of Computer Science and Engineering

University of Connecticut

Storrs, CT 06269, U.S.A.

ywu@engr.uconn.edu

Keywords: algorithm, combinatorial problems, population genetics, recombination,

ancestral recombination graph.

1 Introduction

A major development in genetics is the on-going collection of large scale population-scale genetic

variation data, such as single nucleotide polymorphisms (SNPs), microsatellites, and structural

variations, in several large projects (e.g. international HapMap project [8, 9]). An important

question is how we can better utilize and analyze these variation data to provide more biological

insights. This paper focuses on one such application: understand meiotic recombination using

population variation data: More specifically, we are given a binary matrix M with n sequences

(i.e. rows) and m sites (i.e. columns). A column corresponds to a SNP site where two of the four

possible nucleotides appear in the population with a frequency above some set threshold. Thus, we

can use 0 and 1 to encode the two shown nucleotides. We are interested in estimating the level of

historical recombination in the evolutionary history of the set of binary sequences.

A mutation at a site is a change of state at a single site (either from 0 to 1 or vice versa). A

common assumption is the infinite sites model in population genetics, i.e., that any site (in the

study) can mutate at most once in the entire history of the sequences. This implies that each site

in any of the studied sequences can take on only two states (also called alleles), and hence the

sequences we see today are binary sequences. Although non-binary population sequences do exist,

the infinite sites model may be justified if the population being studied is not very old (and thus

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24067164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the chance for more than one mutation occurring at the same site is small). In fact, most SNPs in

the international HapMap project [8, 9] are binary. Throughout this paper, we assume the infinite

sites model holds for every SNP site we considered.

If recombination is assumed to be absent, the genealogical history of sequences is modeled

as a single tree or perfect phylogeny (see e.g. [3]), and can be quite easily reconstructed under

the one mutation per site model. The situation changes when recombinations occur. Meiotic

recombination is an important genetic process, shaping the genetic diversity within a population.

Meiotic recombination takes two equal length sequences and produces a third sequence of the

same length consisting of some prefix of one of the sequences, followed by a suffix of the other

sequence. With recombination, the genealogical history should be modeled as a network (called

ancestral recombination graph or ARG as introduced in Section 1.1), instead of a tree. An important

example where ARGs can be useful is “association mapping” which is widely hoped to help find

genes that influence genetic diseases. Recombination in the history of a population is the key to

that approach, and understanding or estimating the effects of recombination is very important to

making association mapping work.

In studying recombination, a common underlying problem is to determine the minimum number

of recombinations needed to generate a given set of molecular sequences from an ancestral sequence

(which may or may not be known), assuming the one mutation per site model. We let Rmin(M)

denote the minimum number of recombinations needed to generate the sequences M from any

ancestral sequence, allowing only one mutation per site over the entire history of the sequences.

The problem of computing or estimating Rmin(M) has been studied in a number of papers (e.g.

[10, 11, 6, 12, 1, 13]). A variation to the problem occurs when a specific ancestral sequence is known

in advance. No polynomial-time algorithm for either problem is known, and the second problem

is known to be NP-hard [14, 2]. Since Rmin(M) is not easy to compute exactly, an alternative

is to ask for an upper bound on Rmin(M). Song, et al. [13] developed an algorithm to compute

upper bounds on Rmin(M) (i.e. derive sequences in M with close to Rmin(M) recombinations).

The method is heuristic: to get the best upper bound, the running time is exponential in terms of

n.

This article is focused on a different type of question on estimating recombination: we want to

derive an analytical (i.e. mathematical) estimate on the needed recombinations. Note that this is

2



different from the computational upper bounds (e.g. the method in [13]) which take a particular

dataset. Here, we ask for the range of the number of recombinations needed for arbitrary data

with fixed size. Analytical bounds on recombination are very easy to compute (by hand) and also

theoretically interesting. This motivates the following problem, which is the focus of the current

work.

Analytical upper bound problem: for binary matrix with n rows and m sites, find an analytical

upper bound on Rmin(M) in terms of input data characteristics (e.g. n and m).

Analytical upper bound gives a mathematical bound on Rmin(M), based on properties of M

(e.g. m and n). Such an analytical upper bound holds for any M with certain properties, and

thus gives very quick estimate on how many recombinations are needed for data with known sizes.

Before the current work, only an almost trivial analytical upper bound is known [7, 6]. Here, we

present the first non-trivial analytical upper bound on Rmin(M), which is O(log2(n)) smaller than

the previously known upper bound, where n is the number of the input sequences. Moreover, we

show that the new upper bound is asymptotically optimal.

1.1 More definitions

When we say that M is “generated” by mutations and recombinations with one mutation per

site, that is shorthand for a more complete model of how sequences are generated on a network

or an ancestral recombination graph (ARG) in the population genetics literature. An ARG N ,

generating n sequences of m sites, is a directed acyclic graph containing exactly one node (the

root) with no incoming edges, and exactly n leaves with one incoming edge each and no outgoing

edges. Every other node has one or two incoming edges. A node with two incoming edges is called

a “recombination” node. Each site (integer) from 1 to m is assigned to exactly one edge in N ,

and none are assigned to any edge entering a recombination node. Each node in N is labeled by

an m-length binary sequence, starting with the root node which is labeled with an “ancestral”

sequence. The label for any non-recombination node v is obtained from the label of v’s parent p(v)

by changing the state of any site assigned to the edge (p(v), v). This implements mutations on that

edge. Each recombination node a is associated with an integer ra, called the “crossover point” for

a. See Figure 1 for an illustration on the ARG. See Gusfield, et al. [6] and Gusfield [4] for more

3



Figure 1: A phylogenetic network (ARG) with two recombination nodes (taken from [6]). The
matrix that this ARG derives is shown to the right.

elaborated explanation.

When we say r is a lower bound on Rmin(M), this means that Rmin(M) ≥ r. The “haplotype

bound”, h(M), was introduced in [11]. The haplotype bound is one of best lower bounds on

Rmin(M). Consider the set of sequences M arrayed in a matrix. Then h(M) is the number of

distinct rows of M , minus the number of distinct columns (denoted as m) of M , minus one. It is

easy to establish its correctness (see [11]). When used with the composite method [11], it leads to

high lower bounds.

A commonly-used technique of generating a sequence in the history is to use recombination

to concatenate segments that already appear in the history before. In more detail, consider a

sequence r. Suppose r can be broken into non-overlapping blocks b1, b2, . . . bk. Here, a block is a

contiguous segment of sites of M . Further assume for each bi there exists a sequence ri already

in the history such that ri matches r when restricted to bi. That is, the segment bi is already

present in the history. Then, we can easily concatenate the blocks b1, . . . , bk through recombination

between blocks. To see this, we maintain a recombinant sequence rp with an increasingly longer

prefix of r, which is initialized to be identical to r1 (i.e. the existing sequence matching b1). Then,

for each block bi (i ≥ 2), we perform recombination between rp and ri to bring block bi into rp. Of

course, no recombination is needed if rp already contains bi. The number of recombination needed

is no more than k − 1 ≤ m − 1.

4



2 Improved analytical upper bound on Rmin

In this section, we present the first non-trivial analytical upper bound on the minimum number of

recombinations Rmin. This bound improves a trivial bound by a factor of log2(n) asymptotically.

We start by describing the previous trivial bound UB0 = (n − 1) × (m − 1). A simple proof of the

validity of UB0 as an upper bound was given in [7]. For completeness, we give a short proof here.

Proposition 2.1 [7, 6] Rmin ≤ (n − 1) × (m − 1).

Proof We start from an arbitrary sequence r1 in M , and generate a complementary sequence r′
1

through mutations at each site. That is, r1[j] + r′
1
[j] = 1 for each site sj. Now, for any of the

remaining n − 1 sequences ri in M , it takes at most m − 1 recombinations between r1 and r′
1

to

derive ri. Therefore, we derive all sequences with at most one mutation per site. Thus, we need no

more than (n − 1) × (m − 1) recombinations in deriving M .

We now demonstrate a non-trivial upper bound:

UB1 = 2mn/log2(n)

This gives O(log2(n)) improvement upon UB0. The key idea of UB1 is to exploit local sequence

similarity shared by the input sequences within short intervals. Here, interval refers to a segment

of consecutive SNPs. For any interval with k sites, there are at most 2k unique sequences with this

interval. Thus, when k = O(log2(n)), there are at most n possible unique sequences. Note that

there are no more than n unique input sequences within any interval. But it may take more than

one recombination per sequence when generating these n input sequences. The important property

here is, for short interval, we can afford to derive each of the n possible sequences (thus also the

input sequences segments within the interval) with no more than one recombination per sequence.

Thus, it takes no more than n recombinations to generate the input sequences within such interval.

To exploit the local sequence similarity, we apply a divide-and-conquer approach: divide the

input sequences into small segments of columns, such that each segment can contain only a small

number of unique sequences. The method is a two-stage approach: first derive sequences for each

segment with mutations and recombinations, and then combine the segments to generate entire

5



data with recombinations. When properly divided, the number of recombinations needed will not

be very large.

We need the following lemma for our upper bound.

Lemma 2.2 For a matrix M ′ with m sites and un-specified number of rows, Rmin(M
′) ≤ 2m−m−1.

Proof First Rmin(M
′) remains the same when duplicate rows are removed. That is, we only

consider unique rows in M ′. Then, the key fact for M ′ is that the number of unique rows is at most

2m. This is because all rows are binary with m bits. In the following, we show a simple procedure

that generates all the binary sequences with m bits (and so all sequences in M ′ are included).

We start from the all-zero sequence as the root sequence. Note that we can start from any

sequence with m bits and the following procedure works by re-coding the input. Then generate m

sequences with exactly one 1 allele, through mutations at proper site from the root. From now on,

only recombinations are needed for the remaining 2m −m− 1 sequences. We divide the remaining

sequences into groups, where sequences in a group have the same number of 1 allele. We generate

the sequences group by group, with increasing number of 1-allele.

We generate sequence r in a group with k 1-allele by a recombination of two sequences: the

first being the sequence r1 with a single 1 allele at the leftmost position j0 where r[j0] = 1, and

the second being the sequence r2 identical to r but r2[j0] = 0. Note r2 must have already been

generated since it has fewer number of 1 alleles. Since we generate each of the remaining 2m−m−1

sequences with exactly one recombination, the lemma follows.

Now, we show how to generate a matrix M of n rows and m sites by dividing M into segments

of columns.

1. Divide M into m/log2(n) blocks of n rows by log2(n) sites each, as illustrated in Figure 2.

2. Starting from an arbitrarily fixed row r0 (the root) in M , derive all the above blocks. That

is, for block bi, generate m-bit sequences in block bi such that all the log2(n)-bit sequences

within bi are created. And these sequences are identical to r0 outside block bi. In other words,

the derivation of these blocks shares the same root.

3. For each sequence in M (except r0), use recombinations to concatenate the segments generated

in the previous step.

6



Figure 2: Divide input sequences into blocks, each with log2(n) sites.

Note that the number of sites in each of the m/log2(n) blocks is log2(n). Due to Lemma 2.2, it

needs at most n − log2(n) − 1 recombinations to generate sequence segments in each block. Thus,

we need no more than (n− log2(n)− 1)×m/log2(n) ≤ nm/log2(n) recombinations at Step 2. Note

that any sequence in M is composed of segments in blocks already generated at Step 2. Since

there are m/log2(n) blocks, each sequence needs no more than m/log2(n) − 1 recombinations to

link these blocks. See Section 1.1 on how to concatenate the segments into the target sequence.

Since there are n input sequences, the number of recombinations used at Step 3 is no more than

nm/log2(n). Therefore, the total number of recombinations needed by the above method is no more

than 2mn/log2(n). This leads to a new upper bound UB1, which is factor of log2(n) improvement

over UB0 asymptotically. Thus, we have the following main result.

Theorem 2.3 Rmin ≤ 2mn/log2(n) = UB1.

A natural question is whether there exists better upper bounds than UB1. As shown in the

following, the room for further improvement is not very large: there exists matrix n by m matrix

M1 (for any n and m) where Rmin(M1) is at least (roughly) nm/log2(n). In other words, UB1 is

no more than 2Rmin(M1) for M1 (with some approximation).

We again let the n by m matrix M1 divided into n by log2(n) non-overlapping blocks. Each

of the m/log2(n) blocks has exactly the same content (and with same row order): all n possible

unique sequences of length log2(n). Then we restrict our attention to each block. Note that each

block of log2(n) bits has n unique sequences as constructed. From the haplotype bound, we need

at least n − log2(n) − 1 recombinations to generate sequences within the block. Moreover, the

breakpoints of the recombinations to generate sequences within a block are inside the block. The

7



total number of recombinations for the entire data must be at least as large as the sum of the

haplotype lower bound on Rmin of these blocks. This is because the blocks are spatially disjoint,

and thus the recombinations used to generate sequence segments in one block can not generate

novel sequence segments in another block 1. That is, we need at least m(n − log2(n) − 1)/log2(n)

recombination. This is roughly nm/log2(n), which is about the half of UB1.

Remarks. We have demonstrated that UB1 is asymptotically smaller than the trivial upper bound

UB0. Also, it is unlikely to have a upper bound that is asymptotically much better than UB1.

However, this does not necessarily mean the end of story: there might exist analytical upper bound

on Rmin(M) using additional characteristics of M than just n and m. For example, the connected

components and incompatibility graph (as introduced in [6]) played an important role in studying

recombination (e.g. [5]). So, there may be improved analytical upper bounds that are based on,

say, number of connected components of the incompatibility graph, in addition to n and m.

Acknowledgments

I would like to thank Dan Gusfield for useful discussions. The research is supported by grant IIS-

0803440 from National Science Foundation. and a grant from the Research Foundation of University

of Connecticut. Part of work was performed when I was with University of California, Davis, and

was supported by grants CCF-0515278 and IIS-0513910 from National Science Foundation.

References

[1] V. Bafna and V. Bansal, Inference about Recombination from Haplotype Data: Lower Bounds

and Recombination Hotspots. J. of Comp. Bio., v.13, p.501-521, 2006.

[2] M. Bordewich and C. Semple: On the computational complexity of the rooted subtree prune

and regraft distance. Annals of Combinatorics, v.8, p.409-423, 2004.

[3] D. Gusfield: Algorithms on Strings, Trees and Sequences: Computer Science and Computational

Biology, Cambridge University Press, 1997.

1This also follows from the recombination lower bound composition method [11]

8



[4] D. Gusfield: Optimal, efficient reconstruction of Root-Unknown phylogenetic networks with

constrained and structured recombination. JCSS, 70, 381-398, 2005.

[5] D. Gusfield and V. Bansal and V. Bafna and Y. Song: A decomposition theory for phylogenetic

networks and incompatible characters, Journal of Computational Biology, v. 14, pages 1247-1272,

2007.

[6] D. Gusfield, S. Eddhu and C. Langley: Optimal, efficient reconstruction of phylogenetic net-

works with constrained recombination. J. Bioinformatics and Computational Biology, v. 2, 173-

213, 2004.

[7] J. Hein, M. Schierup and C. Wiuf: Gene Genealogies, Variation and Evolution: A primer in

coalescent theory. Oxford University Press, 2005.

[8] International HapMap Consortium: A haplotype map of the human genome. Nature, 437,

p1299-1320, 2005.

[9] International HapMap Consortium: A second generation human haplotype map of over 3.1

million SNPs, Nature, 449, p.851861, 2007.

[10] R. Hudson and N. Kaplan: Statistical properties of the number of recombination events in the

history of a sample of DNA sequences. Genetics, v.111, p.147-164, 1985.

[11] S. R. Myers and R. C. Griffiths: Bounds on the minimum number of recombination events in

a sample history. Genetics, v. 163, p.375-394, 2003.

[12] Y. S. Song and J. Hein: Constructing Minimal Ancestral Recombination Graphs. J. of Comp.

Bio., 2005, 12, p159-178.

[13] Y. S. Song, Y. Wu and D. Gusfield: Efficient computation of close lower and upper bounds

on the minimum number of needed recombinations in the evolution of biological sequences.

Bioinformatics, v. 421, p.i413-i422, Proceedings of ISMB 2005.

[14] L. Wang, K. Zhang and L. Zhang: Perfect Phylogenetic Networks with Recombination. J. of

Comp. Bio., v.8, p.69-78, 2001.

9


