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Abstract

We give a 5knO(1) time fixed-parameter algorithm for determining
whether a given undirected graph on n vertices has a subset of at most k
vertices whose deletion results in a tree. Such a subset is a restricted form
of a feedback vertex set. While parameterized complexity of feedback ver-
tex set problem and several of its variations have been well studied, to the
best of our knowledge, this is the first fixed-parameter algorithm for this
version of feedback vertex set.
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1 Introduction

The goal of parameterized complexity is to find ways of solving NP-hard prob-
lems more efficiently than brute force: our aim is to restrict the combinatorial
explosion to a parameter that is hopefully much smaller than the input size. For-
mally, a parameterization of a problem is assigning an integer k to each input
instance and we say that a parameterized problem is fixed-parameter tractable
(FPT) if there is an algorithm that solves the problem in f(k) · nO(1) time,
where n is the size of the input and f is an arbitrary computable function de-
pending on the parameter k only. There is a long list of NP-hard problems
that are FPT under various parameterizations: finding a vertex cover of size k,
finding a cycle of length k, finding a maximum independent set in a graph of
treewidth at most k, etc. For more background, the reader is referred to the
monographs [6, 7, 20].

One of the most well studied directions in parameterized complexity is to
“delete vertices of the input graph such that the resulting graph satisfies some
interesting properties”. More precisely, a natural optimization problem associ-
ated with a graph class G is the following: given a graph G, what is the minimum
number of vertices to be deleted from G to obtain a graph in G? For example,
when G is the class of empty graphs, forests or bipartite graphs, the correspond-
ing problems are Vertex Cover, Feedback Vertex Set and Odd Cycle
Transversal, respectively. In the parameterized setting, a natural parameter
for vertex-deletion problems is the solution size, that is, the number of vertices to
be deleted so that the resulting graph belongs to the given graph class. This line
of research has been at the forefront of research in parameterized complexity and
various new results have been obtained in the last few years. For examples, an
improved algorithm for Odd Cycle Transversal [14, 19], meta theorems for
class of deletion problems [9, 13], Proper Interval Vertex Deletion [23],
Directed/Undirected Subset Feedback Vertex Set [4, 5].

In this paper we consider the following variant of the classical Feedback
Vertex Set problem in the realm of parameterized complexity:

Weighted Tree Deletion Set (WTDS)
Input: An undirected graph G = (V,E), a weight function

w : V → N+ on vertices, and an integer k ∈ N.
Parameter: k
Question: Is there a set S ⊆ V of total weight

∑
v∈S w(v) at

most k, such that G[V \ S] is a tree?

If w(v) = 1 for every v ∈ V , then we speak simply about Tree Deletion
Set (TDS). We also refer the subset S as a tree deletion set.

TDS is a special case of WTDS, but on the other hand, if k = nO(1),
where n = |V |, then WTDS is polynomial time reducible to TDS, by adding
to each vertex v of the graph min{k,w(v) − 1} pendant vertices. Clearly the
resulting unweighted graph has a TDS of size at most k if and only if the original
graph has a WTDS of weight at most k. This is because if an original vertex
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is in the tree deletion set, then all the pendant vertices adjacent to it must also
be in that set.

If we simply want to find a subset S of vertices such that G[V \S] is a forest,
then S is a feedback vertex set. Finding a (size at most k or minimum) feedback
vertex set is a well known NP-complete problem and has been well studied in the
paradigms of parameterized complexity [2, 3, 22], approximation [1] and exact
algorithms [8]. As a tree deletion set is also a feedback vertex set, it is clear that
the size of the minimum tree deletion set is at least the size of the minimum
feedback vertex set. However the minimum tree deletion set can be arbitrarily
large compared to the size of the minimum feedback vertex set. Consider a
graph which simply has a cycle on three vertices, with each vertex attached to
a large number of pendant vertices. Any of the vertices of the cycle forms a
feedback vertex set (of size 1), but the minimum tree deletion set must contain
all the pendant vertices attached to that vertex. Furthermore, standard prepro-
cessing rules like deleting degree one vertices and ‘short circuiting’ degree two
vertices no longer work for tree deletion sets. We would like to point out that
Tree Deletion Set has been considered before in the realm of approxima-
tion algorithm and has been shown to be hard to approximate within O(n1−ε)
for any ε > 0 unless P=NP [24]. This is in sharp contrast to the fact that
Feedback Vertex Set has a factor 2-approximation algorithm [1].

Variations of Feedback Vertex Set, Dominating Set, and Vertex
Cover when the solution S is required to induce an independent set or a con-
nected graph have also been well studied [15, 16, 17, 18]. To the best of our
knowledge, this is the first paper that studies the variation of a problem where
the demand of connectivity is on G[V \ S] rather than the solution. That is, in
our problem we want G[V \ S] to induce a connected graph (i.e., it is a tree).

We first present a simple proof of the NP-completeness of the problem, and
then show that it is fixed-parameter tractable when parameterized by k, the
solution size by giving an O∗(5k) time1 fixed-parameter tractable algorithm.
This is in contrast to, and comes reasonably close to the O∗(3.83k) bound known
for the general feedback vertex set problem [2].

The next section provides a simple proof of the problem being NP-complete.
Section 3 is the main section that gives the fixed-parameter algorithm for the
problem. Finally in Section 4, we conclude with open problems.

2 NP-completeness

It follows from the general results of Yannakakis [24], that Tree Deletion Set
is NP-complete. As Yannakakis’s result is general, the proof is a bit involved.
To make the paper self-contained, we present a short and simple proof of the
NP-completeness.

Proposition 1 Tree Deletion Set is NP-complete.

1O∗ notation ignores polynomial factors



618 Raman, Saurabh, Suchý An FPT algorithm for Tree Deletion Set

Proof: The problem is obviously in NP. For the hardness we reduce Vertex
Cover (VC), which is well known to be NP-complete [11]. An instance of VC
consists of a graph G and a positive integer k and the question is whether there
is a set S of at most k vertices (vertex cover) such that G\S contains no edges.
Given an instance (G, k) of VC we obtain an equivalent instance (G′, k) of TDS
as follows. G′ is obtained from G by introducing a new universal vertex u (i.e. u
is adjacent to all vertices of G) and attaching k + 1 new pendant vertices to it.
Now if S is a vertex cover in G, then G \ S is a star. On the other hand, if S is
a tree deletion set of size at most k in G′, then u /∈ S, as otherwise there would
be at least two of the newly added pendant vertices left in G\S and they would
become disconnected. But then, as u is adjacent to all vertices of G, there must
be no edge in G \ S in order for G′ \ S to be a tree, which implies that S is a
vertex cover for G. �

3 FPT Algorithm

The main result of this section is the following:

Theorem 1 Weighted Tree Deletion Set can be solved in time O∗(5k).

The rest of this section is devoted to the proof of this theorem.

3.1 Reduction Rules

We begin with some reduction rules which simplify the input instance. These
rules modify the graph G, the weight function w, and the parameter k. For the
purpose of the analysis, we denote the original value of the parameter k given
on input by k0. We say that a reduction rule is safe if the instance obtained by
application of the rule is a yes-instance if and only if the original instance was.

The following two rules formalize obvious constraints to the solvability of
the instance.

Reduction Rule 1 If k < 0, then answer NO.

Reduction Rule 2 Let N ′ be the set of vertices which have weight more than k.
If G[N ′] contains a cycle, then answer NO.

Lemma 1 Reduction Rule 2 is safe.

Proof: As no vertex of weight more than k can be included in any set of total
weight at most k, no set of total weight at most k forms a tree deletion set. �

While the structure of the vertices of weight more than k is fixed, the fol-
lowing rule helps to simplify the neighborhood of such vertices.

Reduction Rule 3 Let N ′ be the set of vertices which have weight more than k.
If there is a vertex v in V (G)\N ′ which has two neighbors in the same connected
component of G[N ′] then delete v and decrease k by w(v).



JGAA, 17(6) 615–628 (2013) 619

Lemma 2 Reduction Rule 3 is safe.

Proof: The vertex v must be included in any tree deletion set of total weight
at most k, as otherwise it would form a cycle together with the vertices in a
connected component of N ′. �

The following rule helps us to deal with isolated vertices and the case when
the graph is disconnected.

Reduction Rule 4 If the input graph is disconnected, then delete all vertices
in connected components of weight less than

(∑
v∈V w(v)

)
− k and decrease k

by the weight of the deleted vertices.

Lemma 3 Reduction Rule 4 is safe.

Proof: If the vertices of some connected component of total weight less than(∑
v∈V w(v)

)
− k were not taken into the constructed tree deletion set, then

all vertices outside the connected component have to be taken, as the resulting
graph must have only one component. But this would mean that the constructed
tree deletion set would contain vertices of total weight more than

(∑
v∈V w(v)

)
−[(∑

v∈V w(v)
)
− k
]

= k — a contradiction. �

Remark 1 If
(∑

v∈V w(v)
)
> 2k or there is a vertex of weight more than k,

then after the application of Reduction Rule 4 the graph has at most one con-
nected component.

The following rule deals with vertices of degree 1 in the graph.

Reduction Rule 5 If v is of degree 1 and u is its only neighbor, then delete v
and set w(u) = w(u) + w(v).

Lemma 4 Reduction Rule 5 is safe.

Proof: LetG,w, k be the instance before the application of the rule andG′, w′, k
the instance after the application of the rule. Let us first assume, that S is a
tree deletion set in G with w(S) ≤ k. If S does not contain u, then S \ {v} is
also a tree deletion set for G of lower total weight and it is also a tree deletion
set in G′ of the same weight. If S contains u, but not v, then v is the only
vertex not in S, S \ {u} is also a tree deletion set for G of lower total weight
and it is also a tree deletion set in G′ of the same weight. Finally, if S contains
both u and v, then S \ {v} is a tree deletion set in G′ of the same weight.

Assume now that S′ is a tree deletion set in G′. If S′ does not contain u,
then S′ is also a tree deletion set in G of the same weight. If S′ contains u,
then S′ ∪ {v} is a tree deletion set in G of the same weight. �

Now we deal with degree two vertices. In the case of (unweighted) feedback
vertex set, a degree two vertex can be removed by making its neighbors adjacent
(even if they were adjacent before) without affecting the size of the feedback
vertex set. For the weighted case, it is sufficient to keep only the minimum
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weight vertex among the degree two vertices in a long path. However, for tree
deletion sets, the degree two vertices may help in making the resulting graph a
tree, and so we need a slightly different reduction rule.

We observe that if there is a long path with several degree two intermediate
vertices, it is sufficient to keep only two of them distributing the total weight
among the two with one of them having the minimum weight. This is because,
if both end points of the long path are in the tree deletion set, then all the
intermediate vertices or none of them will be in the tree deletion set. If only
one of the end points is in the tree deletion set, then none of the intermediate
vertices can be in the minimum weight tree deletion set. If neither of the end
points is in the tree deletion set, then either the minimum weight intermediate
vertex or none of them is in the tree deletion set.

We make the reduction rule and the arguments formal in the following dis-
cussion. In effect, the following rule reduces the number of degree two vertices
by shortening long paths.

Reduction Rule 6 If v0, v1, . . . , vl, vl+1 is a path in the input graph, such that
l ≥ 3 and deg(vi) = 2 for every i ∈ {1, . . . , l}, then (a) replace the ver-
tices v1, . . . , vl by two vertices u1 and u2 with edges {v0, u1}, {u1, u2}, and

{u2, vl+1} and with w(u1) = min{w(vi) | 1 ≤ i ≤ l} and w(u2) =
(∑l

i=1 w(vi)
)
−

w(u1). Moreover, in case of l ≥ 2, if w(v0) > k or w(vl+1) > k holds, then
apply (a) and then (b) delete u2 and connect u1 directly to vl+1.

Lemma 5 Reduction Rule 6 is safe.

Proof: LetG,w, k be the instance before the application of the rule andG′, w′, k
the instance after the application of the rule. Let us first assume, that S is a
tree deletion set in G with w(S) ≤ k. We show that there is a tree deletion
set S′ for G′ with w′(S′) ≤ w(S). We distinguish three cases.

• S contains both v0 and vl+1. Note that this can only happen when only
the reduction (a) was applied. In this case v1 is disconnected from G \
{v0, . . . , vl+1} and, therefore, either {v1, . . . , vl} ⊆ S or (V (G)\{v1, . . . , vl}) ⊆
S. In the former case S′ = (S \{v1, . . . , vl})∪{u1, u2} is a tree deletion set
for G′ with w′(S′) = w(S) while in the latter case, for S′ = S \{v1, . . . , vl}
we have G \ S′ is a path, G′ \ S′ is a path, and w′(S′) = w(S′) ≤ w(S).

• S contains exactly one of v0 and vl+1. As the situation is symmet-
ric, we can assume that vl+1 is in S. As {v1, . . . , vl} induces a path
in G, {v1, . . . , vl} \ S induces a path in G \ S and G \ (S ∪ {v1, . . . , vl})
is also a tree. Attaching at a node of this tree a path, we obtain again
a tree. Hence, S′ = S \ {v1, . . . , vl} is also a tree deletion set in G.
Since G \ (S ∪ {v1, . . . , vl}) = G′ \ (S ∪ {u1, u2}), it follows that S′ is also
a tree deletion set in G′ with w′(S′) = w(S′) ≤ w(S). This is true both
in case (a) and (b).

• S contains neither of v0 and vl+1. If S ∩ {v1, . . . , vl} = ∅, then S is
also a tree deletion set in G′. Otherwise, {v1, . . . , vl} \ S induces two
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paths each attached to two different nodes in the tree G \ S. Assume
that we have w(vr) = min{w(vi) | 1 ≤ i ≤ l}. We first show that S′′ =
(S \ {v1, . . . , vl}) ∪ {vr} is also a tree deletion set for G. This is true,
as attaching the two pending paths v1, . . . , vr−1 and vr+1, . . . , vl to the
tree G \ (S ∪ {v1, . . . , vl}) = G′ \ (S ∪ {u1, u2}) again creates a tree.
By the same reason S′ = (S′′ \ {vr}) ∪ {u1} is a tree deletion set in G′.
Also w(S′′) ≤ w(S) as vr is the vertex of the minimum weight and w′(S′) =
w(S′′).

Now assume that S′ is a tree deletion set in G′. We show that there is a tree
deletion set S for G with w(S) ≤ w′(S′). We again distinguish three cases.

• S′ contains both v0 and vl+1. Note that this can only happen when only
the reduction (a) was applied. In this case u1 is disconnected from G′ \
{v0, u1, u2, vl+1} and, therefore, either {u1, u2} ⊆ S′ or (V (G′)\{u1, u2}) ⊆
S′. In the former case S = (S′ \ {u1, u2})∪ {v1, . . . , vl}) is a tree deletion
set for G with w(S) = w′(S′) while in the latter case, for S = S′ \{u1, u2}
we have G′ \ S is a path, G \ S is a path, and w(S) = w′(S) ≤ w′(S′).

• S′ contains exactly one of v0 and vl+1. In case only (a) was applied,
we know that {u1, u2} induces a path in G′, {u1, u2} \ S′ induces a path
in G′ \S′ and G′ \ (S′∪{u1, u2}) is also a tree. Attaching at a node of this
tree a path, we obtain again a tree. Hence, S = S′ \ {u1, u2} is also a tree
deletion set in G′. Since G′ \ (S′ ∪ {u1, u2}) = G \ (S ∪ {v1, . . . , vl}), it
follows that S is also a tree deletion set in G with w(S) = w′(S) ≤ w′(S′).
The case (b) follows along the same lines, just replacing {u1, u2} with
{u1}.

• S′ contains none of v0 and vl+1. If S′∩{u1, u2} = ∅, then S′ is also a tree
deletion set in G. Otherwise, {u1, u2} \S′ forms at most a vertex pending
to a node in the tree G′ \ S′. We first show that S′′ = (S′ \ {u2}) ∪ {u1}
is also a tree deletion set for G′. This is true, as in G′ \ S′′ the vertex
u2 (if present) is pending to a node vl+1 of G′ \ (S′ ∪ {u1, u2}) which is
a subtree of G′ \ S′. Now assume w(vr) = min{w(vi) | 1 ≤ i ≤ l} and
let S = (S′′ \ {u1}) ∪ {vr}. Then G \ S can be obtained from the tree
G′ \ (S′ ∪ {u1, u2}) = G \ (S ∪ {v1, . . . , vl}) by attaching two pending
paths v1, . . . , vr−1 and vr+1, . . . , vl. Thus S is a tree deletion set in G. If
(b) was applied, then S′′ = S′, otherwise we have l ≥ 3, hence w′(u2) >
w′(u1), and w′(S′′) ≤ w′(S′). Finally, w(S) = w′(S′′) ≤ w′(S′).

�

3.2 Branching Steps

Our FPT algorithm is based on a branching strategy similar to the one applied
in [16]. First we use the algorithm of Cao et al. [2] to determine whether G has
a feedback vertex set of size at most k in O∗(3.83k) time. As a tree deletion
set of weight at most k is also a feedback vertex set of size at most k, if the
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algorithm answers NO, we can also answer NO. Otherwise let F be the feedback
vertex set for G found by the algorithm.

Our algorithm now branches into several cases and it returns YES if and only
if at least one of the branches answers YES. In a search for a tree deletion set X
we first guess its intersection Y with the known feedback vertex set F . This
means that we branch into 2|F | branches, each corresponding to one subset Y ⊆
F and limit our search to the tree deletion sets X with X ∩ F = Y .

As the vertices of Y are included in the tree deletion set constructed, we
remove them and decrease k by

∑
v∈Y w(v). As the tree deletion set we seek

does not intersect N = F \Y , we assign the vertices of N weight k+ 1. We also
know that G \ (Y ∪N) is a forest, as F = (Y ∪N).

Now we are ready to describe the branching part of the algorithm. It modi-
fies G,w, k and N . At the beginning and after each branching step, we apply Re-
duction Rules 1 to 5 and we only apply Reduction Rule 6 if none of {v1, . . . , vl}
is in N . We always assume that the graph is reduced with respect to these
reduction rules.

Let H = V \N . Our branching step picks a vertex v from H, and branches
by picking v into the tree deletion set or by not picking it (and hence adding
it to N) and recursively solving the resulting problem. When we pick v into
the solution, k drops by w(v), which is at least one. The key observation in [3]
for undirected feedback vertex set was that if v is adjacent to two connected
components of N , then when v is added to N , the number of connected com-
ponents of N decreases by at least one resulting in some progress. However,
for the undirected feedback vertex set, it was always possible to choose such a
vertex (adjacent to two connected components of N) as the minimum degree of
the graph was three, and V \N induces a forest. For tree deletion set though,
we are not guaranteed to have vertices with at least two neighbors in N all the
time.

Let us call a vertex useful if it is in H, have exactly two neighbors in G and
both these neighbors are in N . Our strategy is to show that if a vertex, while
branching, doesn’t decrease k or the number of connected components in N ,
it increases the count of useful vertices resulting in some progress. Increase in
the the number of useful vertices constitute progress as, we argue that, if every
vertex in H becomes useful, then we can solve the problem in polynomial time.
To bound the depth of the recursion, we use the measure µ = k + c− u where

k is the budget - the weight of the vertices we can still add to the tree deletion
set being constructed. Initially, we have k = k0 −

∑
v∈Y w(Y ).

c is the number of components in G[N ]. Initially, we have N = F \ Y and
therefore c ≤ k − |Y |.

u is the number of useful vertices in H.

As c ≤ k, we have µ ≤ 2k. We argue that each (two way) branching rule
decreases this measure, and that the reduction rules do not increase the measure.
Note also that none of the rules introduces a cycle to G[H] and therefore G[H]
is still a forest.
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Lemma 6 No reduction rule increases µ.

Proof: None of the rules increases k and none of the reduction rules increases
c, the number of connected components of N . While Reduction rules 3 and 4
delete some useful vertices, in such cases, k is decreased by the weight of the
deleted vertices and therefore by at least the number of deleted useful vertices.

�

After applying the reduction rules, we distinguish three cases. If µ is not
positive, we return NO, which is justified by the lemma below.

Lemma 7 If the measure µ becomes non positive, then there is no tree deletion
set for the current branch.

Proof: Suppose that there is a tree deletion set X of total weight at most k
for the graph G at a branch with measure µ = k + c − u. Let U ′ be the set of
useful vertices in X and U the set of useful vertices not in X. Contract each
connected component of G[N ] to a single vertex and denote the resulting graph
G̃. Let us denote the set of vertices created by contraction of the components
of G[N ] by Ñ . The contraction does not create parallel edges, because G is
reduced with respect to Reduction Rule 3. Moreover, since G \X is a tree, we
know that G̃ \X is also a tree, since contracting edges of a tree cannot make it
disconnected or create a cycle. Hence, G′ = G̃[Ñ ∪U ] is a forest. Therefore, G′

has at most |Ñ |+ |U |−1 edges. On the other hand, each vertex in U has exactly
two neighbors in Ñ and therefore G′ has 2|U | edges. It follows that |U | ≤ |Ñ |−1.

As the number c of components in N equals |Ñ |, u = |U |+ |U ′|, and |U ′| ≤ k
(as U ′ is a subset of the at most k deleted vertices), we have µ = k + c − u ≥
k + |Ñ | − (|Ñ | − 1 + k) = 1 — a contradiction. �

If µ ≥ 1, and if there is a vertex v in H which satisfies at least one of the
following conditions, then we branch on this vertex v.

(i) it has total degree at least three in G and at least two neighbors in N ;

(ii) it has a neighbor in N and a neighbor which is a leaf in G[H]; or

(iii) it has at least two neighbors in H, which are both leaves in G[H];

More precisely, for such a vertex v we consider two cases:

• v is a part of the tree deletion set constructed — then we delete v from
the graph and decrease k by w(v);

• v is not in the sought tree deletion set— then we set the weight of v
to k + 1 and add v to N .

In both cases the procedure is called recursively on the modified G,w, k,N and
the procedure returns YES if in at least one of the branches the recursive call
returns YES. If there are several vertices satisfying the conditions, then we select
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a vertex which satisfies condition (i) if such a vertex is available. We only select
other vertices if there is no vertex satisfying the condition (i).

In this ‘two way branch’ we show that in each such recursive call, the value
of µ is at least one less than that in the current call.

Lemma 8 If the vertex we branch on satisfies at least one of the conditions (i)
to (iii), then the measure decreases by at least one in each branch.

Proof: Let us first consider the case that we delete the vertex we branch
on. Since it is not in N , deleting it cannot increase the number of connected
components in G[N ]. Moreover, since the vertex has degree at least three in
case (i) and neighbors in H in cases (ii) and (iii), it is not a useful vertex and
therefore the number of useful vertices remains the same. Since k is decreased
by the weight of the vertex deleted, the measure drops by at least one.

Consider now the case that we add the vertex v to N and suppose it satisfies
condition (i). Then v has at least two neighbors in N and since the graph
is reduced with respect to Reduction Rule 3, these neighbors are in different
connected components of G[N ]. Therefore c is decreased, k remains the same
and u is not decreased, which means that the measure drops.

If v satisfies condition (ii), then adding v to N does not increase the number
of components in G[N ] as v already has a neighbor in N . On the other hand,
a neighbor u of v in H is a leaf in G[H]. Since u does not satisfy condition
(i), and the graph is reduced with respect to Reduction Rule 5, u has exactly
one other neighbor, which is in N . Hence, u becomes useful and the measure is
decreased as k remains the same.

Finally, if v satisfies condition (iii), then adding v to N may increase the
number of components in G[N ] by one. However, both neighbors of v, which
are leaves in G[H] and do not satisfy condition (i), become useful. Therefore
the measure decreases also in this case. �

Finally, if µ ≥ 1, but there is no vertex in H satisfying the conditions, then
either N is empty or every vertex in H is useful as we argue below.

Lemma 9 If no vertex satisfies any of the conditions (i) to (iii) and N is
nonempty, then every vertex in H is useful.

Proof: We show that if three is a vertex v′ ∈ H which is not useful, then there
is a vertex in H which satisfies some of the conditions (i) to (iii).

If v′ is isolated in G[H], then v′ must have at least three neighbors in N ,
as the graph is reduced with respect to Reduction Rules 4, 5, and 3, v′ is not
useful, and there are no isolated vertices by Remark 1 as N is nonempty. But
then v′ satisfies condition (i).

Recall that G[H] is a forest. If v′ is non-isolated in G[H], then consider
a leaf v in the same connected component of G[H], which has the maximal
distance from v′ (see Figure 1). We know, that v has degree at least two in G,
as the graph is reduced with respect to Reduction Rule 5. If v has degree at
least three, then v satisfies the condition (i). Otherwise consider a neighbor u of



JGAA, 17(6) 615–628 (2013) 625

N

v′

v

u
wH

Figure 1: Complicated case in the proof of Lemma 9.

v in H. If u has degree two in G, then the part (b) of Reduction Rule 6 applies
on the path formed by v, u and their neighbors. Hence, the vertex u has degree
at least three in G. If u has a neighbor in N , then u satisfies the condition (ii).

If u has degree three in G[H], then consider a neighbor w of u which is not
on the unique path between v and v′ in G[H] (see Figure 1). If w is a leaf
in G[H] then u satisfies condition (iii). If w is not a leaf in G[H] then any leaf
in the subtree of G[H] rooted in w which does not contain u has greater distance
from v′ than v, which contradicts the way we selected v. �

If all vertices in H are useful vertices, we proceed as follows. Note that the
graph is formed by the vertices in N and useful vertices adjacent to them. We
contract each connected component of G[N ] to a single vertex. Let us again
call the set of vertices created this way Ñ . Recall that there is no cycle in G[N ]
as the graph is reduced with respect to Reduction Rule 2. As we only search
for a tree deletion set X among vertices in H, it is easy to verify that X ⊆ H
is a tree deletion set in the graph after contraction if and only if it was a tree
deletion set in the original graph. Note that the contraction does not create
parallel edges, because the graph is reduced with respect to Reduction Rule 3
and, hence, there is no vertex in H with both its neighbors in the same connected
component of G[N ].

Now if there are two vertices in H with the same neighbors in Ñ , then we
delete the one with the lower weight and decrease k by its weight. Clearly
at least one of them must be in the constructed tree deletion set and if only
one of them is in the tree deletion set, then we can assume it is the one with
lower weight. Next we construct an auxiliary graph G with vertex set Ñ and
a weighted edge between a pair of vertices if there is a vertex v in H with this
pair of vertices as its neighbors in G. The weight of the edge equals the weight
of v. It is easy to see, that a minimum tree deletion set in G corresponds to
the edge complement of a maximum spanning tree in G and vice versa. More
precisely if T = (Ñ , E′) is a spanning tree, then the set X of vertices v of H
such that the edge corresponding to N(v) in G is not in E′ is a tree deletion
set for G. Similarly, if X ⊆ H is a tree deletion set in G, then T = (Ñ , S),
where S = {N(v) | v ∈ H \ X} is a spanning tree of G. The weight of S is
always

∑
v∈H\X w(v)
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Hence, we use the standard algorithm [10] to find a maximum spanning
tree T = (Ñ , S) of G, and answer YES if and only if (

∑
v∈H w(v))−w′(S) is at

most k, where w′(S) denotes the weight of the tree T .
If N is empty, then the graph consists of isolated vertices, since G[H] is a

forest and the graph is reduced with respect to Reduction Rule 5. Therefore it
is enough to delete all vertices but the one with the largest weight and answer
YES if and only if the weight of the deleted vertices is at most k. This finishes
the description of the algorithm.

The correctness of the algorithm has been already argued within its descrip-
tion, here we argue about the running time of the algorithm. First note that
an application of any of the reduction rules can be recognized as well as applied
in linear time. Since the Reduction Rules 1 and 2 only apply once, and the
Reduction Rules 3–6 reduce the number of vertices, the rules can be exhaus-
tively applied in O(nm) time. To check the value of the measure and to find a
vertex to branch on takes a linear time. Finally, one can contract the connected
components in G[N ] in O(mn) time and find the maximum spanning tree in G
in O(m) time. Hence the time spent in each node of the search tree is O(mn).

It remains to count the number of nodes in the search tree. We first branch
into at most 2|F | branches, each corresponding to one subset Y of the feedback
vertex set F . Then we keep branching into two branches, each time reducing
the measure µ by at least one. Since at the beginning we have µ = k + c− u ≤
2k0−2|Y |, this part of the search tree has at most 2 ·22k0−2|Y | nodes. Summing
this according to y = |Y |, we have that the total number of nodes in the search

tree is at most
∑k0
y=0

(
k0
y

)
2 · 22k0−2y = 2 · (1 + 4)k0 = 2 · 5k0 . Recall that the first

step in our algorithm is to determine whether G has a feedback vertex set of
size at most k. This step is done in O∗(3.83k) time using the algorithm of Cao
et al. [2]. Therefore the whole algorithm runs in O∗(5k) time. This completes
the proof.

4 Conclusions and Open Problems

We have shown that the Weighted Tree Deletion Set problem is fixed-
parameter tractable. Improving the running time of our algorithm is a natural
open problem. Another direction, which has attracted a lot of attention in pa-
rameterized complexity recently, is to study the kernelization complexity of the
problem. Our fixed-parameter algorithm immediately implies an exponential
kernel for the problem, but the natural open question is whether the problem
has a polynomial size kernel. That is, is there a polynomial time algorithm
that reduces the given input (G, k) to an equivalent graph with the number of
vertices bounded by a polynomial in k? While the related feedback vertex set
problem has an O(k2) sized kernel [22], we conjecture that the Tree Dele-
tion Set problem does not admit a polynomial sized kernel under standard
complexity theoretic assumptions2.

2This conjecture has been recently resolved in the negative, the authors of [12] obtain a
polynomial kernel for the problem.
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[21] V. Raman, S. Saurabh, and O. Suchý. An fpt algorithm for tree deletion set.
In S. Ghosh and T. Tokuyama, editors, WALCOM: Algorithms and Compu-
tation, volume 7748 of Lecture Notes in Computer Science, pages 286–297.
Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-36065-7_27.
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