
Journal of the Operations Research
Society of Japan

2007, Vol. 50, No. 1, 31-45

A NONMONOTONE MEMORY GRADIENT METHOD

FOR UNCONSTRAINED OPTIMIZATION

Yasushi Narushima
Tokyo University of Science

(Received July 11, 2005; Revised October 5, 2006)

Abstract Memory gradient methods are used for unconstrained optimization, especially large scale prob-
lems. They were first proposed by Miele and Cantrell (1969) and Cragg and Levy (1969). Recently
Narushima and Yabe (2006) proposed a new memory gradient method which generates a descent search
direction for the objective function at every iteration and converges globally to the solution if the Wolfe
conditions are satisfied within the line search strategy. In this paper, we propose a nonmonotone memory
gradient method based on this work. We show that our method converges globally to the solution. Our
numerical results show that the proposed method is efficient for some standard test problems if we choose
a parameter included in the method suitably.

Keywords: Nonlinear programming, optimization, memory gradient method, non-
monotone line search, global convergence, large scale problems.

1. Introduction

We consider the following unconstrained optimization problem

minimize f(x) (1.1)

where f : Rn → R is smooth and its gradient g(x) ≡ ∇f(x) is available. We denote
gk ≡ g(xk) and fk ≡ f(xk) for simplicity. For solving this problem, iterative methods are
widely used. These take the form:

xk+1 = xk + αkdk (1.2)

where xk ∈ Rn is the k-th approximation to the solution, αk > 0 is a step size and dk ∈ Rn

is a search direction. In outline form, the algorithm for a general iterative method is as
follows:

Algorithm 1.1 (Iterative Method)
Step 0. Given x0 ∈ Rn and d0 ∈ Rn. Set k = 0. Go to Step 2.
Step 1. Compute dk.
Step 2. Compute αk by using a line search.
Step 3. Let xk+1 = xk + αkdk. If a stopping criterion is satisfied, then stop.
Step 4. Set k=k+1 and go to Step 1.

There exist many kinds of iterative methods. In general, the Newton method and quasi-
Newton methods are very effective in solving the problem (1.1). These methods, however,
must hold and manipulate matrices of size n × n. Thus these methods cannot always be
applied to large-scale problems. Accordingly, acceleration of the steepest descent method

31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24067096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

32 Y. Narushima

(which does not need any matrices) has recently attracted attention. For instance, the
conjugate gradient method is one of the most famous methods in this class.

The memory gradient method also aims to accelerate the steepest descent method and
it was first proposed by Miele and Cantrell [7] and by Cragg and Levy [1]. The search
direction of this method is defined by

dk = −γkgk +
1

m

m∑
i=1

βkidk−i, (k ≥ 1) (1.3)

where βki ∈ R (i = 1, . . . , m) and γk ∈ R are parameters, γ ≤ γk < γ̂, and γ and γ̂ are
given positive constants. The search direction at the first iteration is chosen as the steepest
descent direction with a sizing parameter γ0 > 0: d0 = −γ0g0.

A new memory gradient method has been proposed by Narushima and Yabe [9]. This
method always satisfies the sufficient descent condition and converges globally if the Wolfe
conditions (see, for example, [10]) are satisfied within the line search strategy. Note that
the parameters used in [9] are different from those given by Miele et al.

The technique of the nonmonotone line search was first proposed by Grippo et al. [4].
There are many successful applications or extensions which use nonmonotone line search
methods in both unconstrained and constrained optimization. For example, it is applied
to Newton type methods by Grippo et al. [4–6] and to the conjugate gradient method by
Dai [2]. Moreover the basic analysis of the nonmonotone line search strategy is given by
Dai [3].

Now we introduce an algorithm for a nonmonotone line search strategy at the k-th
iteration. Let 0 < λ1 ≤ λ2, 0 < λ3 ≤ λ4 < 1, δ ∈ (0, 1) and let M̄ be a positive integer.

Further, let α
(0)
k ∈ [λ1, λ2] be an initial trial step size at the k-th iteration. We choose M(k)

such that M(0) = 0 and 0 ≤M(k) ≤ min{M(k − 1) + 1, M̄} (k ≥ 1).

Algorithm 1.2 (Nonmonotone Line Search Strategy)

Step 0. Given α
(0)
k and M(k). Set i = 0.

Step 1. If

f(xk + α
(i)
k dk) ≤ max

0≤j≤M (k)
{fk−j} + δα

(i)
k g

T
k dk (1.4)

holds, set αk ≡ α
(i)
k and stop. Otherwise go to Step 2.

Step 2. Choose σ
(i)
k ∈ [λ3, λ4] and compute α

(i+1)
k such that

α
(i+1)
k = α

(i)
k σ

(i)
k . (1.5)

Step 3. Set i = i+ 1 and go to Step 1.

In Algorithm 1.2, if we always choose 0.5 as σ
(i)
k , then we obtain the bisection nonmono-

tone line search method. On the other hand, if we set

σ
(i)
k = max

{
λ3, min

{
λ4,

0.5α
(i)
k g

T
k dk

fk + α
(i)
k g

T
k dk − f(xk + α

(i)
k dk)

}}
,

then we obtain the quadratic interpolation nonmonotone line search method. Moreover
if M̄ = 0, the above nonmonotone line search reduces to the Armijo line search (see, for
instance, [10]). In the nonmonotone line search strategy, the choice of αk does not force a

c© Operations Research Society of Japan JORSJ (2007) 50-1

A Nonmonotone Memory Gradient Method 33

monotone decrease of the objective function. However αk is chosen such that the current
objective function value is less than the maximum of the objective function value for the
past M(k) iterations.

In this paper, we will consider a nonmonotone memory gradient algorithm which uses
the nonmonotone line search strategy. Our algorithm is based on the memory gradient
method proposed by Narushima and Yabe [9].

This paper is organized as follows. Our nonmonotone memory gradient algorithm is
proposed in the next section. In Section 3, we give a global convergence property of the
algorithm. Moreover, we investigate the relation between our method and the R-linear
convergence result, under appropriate assumptions. Our numerical results are presented in
Section 4, and conclusions are drawn in the last section. Throughout this paper, ‖ ·‖ denote
the l2 vector norm.

2. A New Nonmonotone Memory Gradient Method

In this section, we propose a nonmonotone memory gradient method which always satisfies
the sufficient descent condition, i.e.,

gT
k dk ≤ −c1‖gk‖2 for all k ≥ 1 (2.1)

for some positive constant c1.
As in the method given in [9], we define βki as follows

βki = ‖gk‖2ψ†
ki, (2.2)

where a† is defined by

a† =

{
0 if a = 0
1

a
otherwise,

and ψki are parameters which satisfy the following condition:{
gT

k dk−1 + ‖gk‖‖dk−1‖ < γkψk1 (i = 1),
gT

k dk−i + ‖gk‖‖dk−i‖ ≤ γkψki (i = 2, . . . , m).
(2.3)

Recall that γk is a sizing parameter which satisfies γ ≤ γk < γ̂ (γ > 0). This choice
guarantees βk1 > 0 and βki ≥ 0 (i = 2, . . . , m), if ‖gk‖
= 0. We note that, if there exists at
least one index i > 1 such that inequality (2.3) is satisfied as a strict inequality, that is,

gT
k dk−i + ‖gk‖‖dk−i‖ < γkψki,

then the theorems given below still hold. However, it is natural to use information of the
most recent iteration, i.e. i = 1. We recall the following result from [9].

Lemma 2.1 Let dk be defined by the memory gradient method (1.3). We choose βki and ψki

that satisfy (2.2) and (2.3) for all k. Then the search direction (1.3) satisfies the sufficient
descent condition (2.1) for all k.

Now we present the algorithm of our nonmonotone memory gradient method.

Algorithm 2.1 (Nonmonotone Memory Gradient Method)
Step 0. Given x0 ∈ Rn, γ0 ≥ γ, M̄ and m. Set d0 = −γ0g0 and k = 0. Go to Step 2.
Step 1. Compute γk ≥ γ and ψki satisfying (2.3), define βki by (2.2) and generate dk by

(1.3).
Step 2. Compute αk by the nonmonotone line search (Algorithm 1.2).
Step 3. Let xk+1 = xk + αkdk. If the stopping criterion is satisfied, then stop.
Step 4. Set k=k+1 and go to Step 1.

c© Operations Research Society of Japan JORSJ (2007) 50-1

34 Y. Narushima

3. Convergence Analysis

In this section, we show the global convergence property of the present method. For this
purpose, we make the following standard assumptions.

Assumption 3.1
(A1) f is bounded below on Rn and is continuously differentiable in a neighborhood N of
the level set L = {x ∈ Rn : f(x) ≤ f(x0)} at the initial point x0.
(A2) The gradient g(x) is Lipschitz continuous in N , namely, there exists a positive constant
L such that

‖g(x) − g(y)‖ ≤ L‖x− y‖

for any x, y ∈ N .

It should be noted that the assumption that the objective function is bounded below
is weaker than the usual assumption that the level set is bounded since f is a continuous
function defined on Rn.

In the rest of this section, we assume gk
= 0 for all k (otherwise a stationary point has
been found). The next lemma implies that the angle between the search direction of our
method and the steepest descent direction is an acute angle and is bounded away from 90◦.

Lemma 3.1 Let dk be defined by the memory gradient method (1.3). If we choose ψki and
βki that satisfy (2.3) and (2.2) for all k, there exists a positive constant c2 such that

|gT
k dk|

‖gk‖‖dk‖ ≥ c2, (3.1)

for all k.

Proof. From (1.3), we have

‖dk‖2 = ‖ 1

m

m∑
i=1

βkidk−i‖2 − 2γkg
T
k dk − γ2

k‖gk‖2.

Dividing both sides by (gT
k dk)

2, we obtain

‖dk‖2

(gT
k dk)2

=
‖ 1

m

∑m
i=1 βkidk−i‖2

(gT
k dk)2

− 2γk
gT

k dk

(gT
k dk)2

− γ2
k

‖gk‖2

(gT
k dk)2

=
‖ 1

m

∑m
i=1 βkidk−i‖2

(gT
k dk)2

− γk
2

(gT
k dk)

− γ2
k

‖gk‖2

(gT
k dk)2

=
‖ 1

m

∑m
i=1 βkidk−i‖2

(gT
k dk)2

−
(

1

‖gk‖ + γk
‖gk‖
gT

k dk

)2

+
1

‖gk‖2

≤ ‖ 1
m

∑m
i=1 βkidk−i‖2

(gT
k dk)2

+
1

‖gk‖2

≤
(1

m

∑m
i=1 βki‖dk−i‖
|gT

k dk|
)2

+
1

‖gk‖2
. (3.2)

c© Operations Research Society of Japan JORSJ (2007) 50-1

A Nonmonotone Memory Gradient Method 35

On the other hand, we obtain from Lemma 2.1, (1.3), (2.2) and (2.3)

|gT
k dk| = −gT

k dk

= γk‖gk‖2 − 1

m

m∑
i=1

βkig
T
k dk−i

=
1

m

m∑
i=1

(γk‖gk‖2 − βkig
T
k dk−i)

≥ 1

m

m∑
i=1

(γkψki − gT
k dk−i)βki > 0. (3.3)

The first equality follows from the fact that gT
k dk < 0 for all k which is established by

Lemma 2.1, and the last inequality follows from (2.3) and βk1 > 0. Noting that γkψki ≥
gT

k dk−i + ‖gk‖‖dk−i‖ and multiplying this by βki ≥ 0, we have

βki(γkψki − gT
k dk−i) ≥ βki‖gk‖‖dk−i‖.

Summing the above inequality, we obtain
m∑

i=1

βki(γkψki − gT
k dk−i) ≥ ‖gk‖

m∑
i=1

βki‖dk−i‖.

Therefore inequality (3.3) yields

1
m

∑m
i=1 βki‖dk−i‖
|gT

k dk| ≤
1
m

∑m
i=1 βki‖dk−i‖

1
m

∑m
i=1(γkψki − gT

k dk−i)βki

≤ 1

‖gk‖ . (3.4)

Finally it follows from (3.2) and (3.4) that

(gT
k dk)

2

‖dk‖2
≥ ‖gk‖2

2
.

This implies that (3.1) holds with c2 = 1√
2
. �

By using Lemma 2.1 and Lemma 3.1, we have the following convergence theorem.

Theorem 3.1 Suppose that Assumption 3.1 holds. Let the sequence {xk} be generated by
Algorithm 2.1. Then our method converges in the sense that

lim inf
k→∞

‖gk‖ = 0.

Proof. Define l(k) to be a number such that

k −M(k) ≤ l(k) ≤ k and fl(k) = max
0≤j≤M (k)

{fk−j}

for every k. By (1.4) and the fact that M(k + 1) ≤ M(k) + 1, we obtain

fl(k+1) = max
0≤j≤M (k+1)

{fk+1−j}
≤ max

0≤j≤M (k)+1
{fk+1−j}

= max{fl(k), fk+1}
= fl(k).

c© Operations Research Society of Japan JORSJ (2007) 50-1

36 Y. Narushima

Therefore we see that the sequence {fl(k)} is non-increasing. Moreover, by (1.4), we have
(for k > M̄)

fl(k+1) ≤ fl(l(k))

≤ max
0≤j≤M (l(k)−1)

{fl(k)−1−j} + δαl(k)−1g
T
l(k)−1dl(k)−1

= fl(l(k)−1) + δαl(k)−1g
T
l(k)−1dl(k)−1.

From Assumption 3.1 and the fact that the sequence {fl(k)} is non-increasing, {fl(k)} has
a limit. In the remainder of the proof, we replace the subsequence {l(k) − 1} by {k′}.
Therefore

lim
k′→∞

αk′gT
k′dk′ = 0 (3.5)

holds.
If the theorem is not true, there exists a constant c3 > 0 such that

‖gk‖ ≥ c3 (3.6)

for all k. From Lemma 2.1 and (3.6), we have

αk′gT
k′dk′ ≤ −c1αk′‖gk′‖2 ≤ −αk′c1c

2
3 < 0. (3.7)

It follows from (3.5) and (3.7) that

lim
k′→∞

αk′ = 0.

This equation implies that when k′ is sufficiently large, α
(0)
k′ (> λ1) does not satisfy (1.4) i.e.

αk′ = α
(i)
k′ holds for some i
= 0. Therefore from (1.4) we have

f(xk′ + α
(i−1)
k′ dk′) > max

0≤j≤M (k′)
{fk′−j} + δα

(i−1)
k′ gT

k′dk′

≥ fk′ + δα
(i−1)
k′ gT

k′dk′ . (3.8)

By the mean value theorem and the Lipschitz continuity of g, we obtain

f(xk′ + α
(i−1)
k′ dk′) − fk′ = α

(i−1)
k′ g(xk′ + τα

(i−1)
k′ dk′)Tdk′

= α
(i−1)
k′

[
gT

k′dk′ + {g(xk′ + τα
(i−1)
k′ dk′) − gk′}Tdk′

]
≤ α

(i−1)
k′ {gT

k′dk′ + Lτα
(i−1)
k′ ‖dk′‖2}

= α
(i−1)
k′ gT

k′dk′ + Lτ (α
(i−1)
k′ ‖dk′‖)2,

for some constant τ such that 0 < τ < 1. It follows from (1.5) and (3.8) that

gT
k′dk′ + Lτ

αk′

σ
(i−1)
k′

‖dk′‖2 > δgT
k′dk′ .

Taking the conditions δ ∈ (0, 1) and λ3 ≤ σ
(i−1)
k′ into account, we can write

αk′ > c̄
|gT

k′dk′ |
‖dk′‖2

, (3.9)

c© Operations Research Society of Japan JORSJ (2007) 50-1

A Nonmonotone Memory Gradient Method 37

where c̄ = λ3(1−δ)
Lτ

> 0. Since (3.9) yields

αk′|gT
k′dk′ | > c̄

|gT
k′dk′ |2
‖dk′‖2

> 0,

we have, from (3.5),

lim
k′→∞

|gT
k′dk′ |2
‖dk′‖2

= 0. (3.10)

On the other hand, it follows from Lemma 3.1 and (3.6) that

|gT
k′dk′ |
‖dk′‖ ≥ c2‖gk′‖ ≥ c2c3 > 0.

This contradicts (3.10). Therefore the proof is complete. �

This theorem implies that, if we choose γk and ψki (i = 1, . . . , m) to satisfy the condition
(2.3), then global convergence of our method is achieved. Based on this theorem, we can
propose several kinds of search directions.

Since Algorithm 1.2 reduces to the Armijo line search for M̄ ≡ 0, we directly obtain the
next corollary from Theorem 3.1 without proof.

Corollary 3.1 Suppose that Assumption 3.1 holds. Let the sequence {xk} be generated by
the memory gradient method with the Armijo line search strategy, i.e. Algorithm 2.1 with
M̄ ≡ 0. Then our method converges in the sense that

lim inf
k→∞

‖gk‖ = 0.

In [9], the global convergence property of our memory gradient method with the Wolfe
conditions has been established. On the other hand, this corollary implies that we can
prove the convergence property with a weaker condition than the Wolfe conditions.

In the rest of this section, we study strong results for the restricted version of Algo-
rithm 2.1. To establish strong properties, we require ψki to satisfy

max
{
gT

k dk−i, ν‖gk‖‖dk−i‖
}

+ ‖gk‖‖dk−i‖ ≤ ψkiγk (i = 1, . . . , m), (3.11)

where ν > −1 is a constant we choose in the algorithm. Note that if we choose ψki which
satisfy (3.11), then these also satisfy (2.3) and ψki does not become zero (whenever gk
= 0).
The following lemma is obtained.

Lemma 3.2 Let dk be defined by the memory gradient method (1.3). If we choose ψki and
βki that satisfy (3.11) and (2.2) for all k, then there exists a positive constant c4 such that

‖dk‖ ≤ c4‖gk‖ (3.12)

for all k.

c© Operations Research Society of Japan JORSJ (2007) 50-1

38 Y. Narushima

Proof. It follows from (1.3), (2.2), (3.11) and ψki
= 0 (i = 1, · · · , m) that

‖dk‖ =

∥∥∥∥∥−γkgk +
1

m

m∑
i=1

‖gk‖2ψ†
kidk−i

∥∥∥∥∥
≤ γ̂‖gk‖ +

1

m

m∑
i=1

‖dk−i‖‖gk‖2

ψki

≤ γ̂‖gk‖ +
1

m

m∑
i=1

γ̂‖dk−i‖‖gk‖2

max {gT
k dk−i, ν‖gk‖‖dk−i‖} + ‖gk‖‖dk−i‖

≤ γ̂‖gk‖ +
1

m

m∑
i=1

γ̂‖gk‖
1 + ν

= γ̂

(
1 +

1

1 + ν

)
‖gk‖.

Therefore the proof is complete with c4 = γ̂
(

2+ν
1+ν

)
. �

By using this lemma, the following two desired properties are easily obtained.
First, we derive a strong convergence result for the restricted version of our algorithm.

The following lemma was proved by Dai [3]. A similar proof can be given for this case,
although there are a few differences between the situation that Dai [3] considers and our
nonmonotone line search algorithm.

Lemma 3.3 Suppose that Assumption 3.1 holds. Consider any iterative method (1.2) in
which dk satisfies (2.1) and (3.12), and in which αk is obtained by Algorithm 1.2. Then
there exists a positive constant c5 such that

‖gk+1‖ ≤ c5‖gk‖ (3.13)

for all k. Further, we have that

lim
k→∞

‖gk‖ = 0. (3.14)

From this lemma, we obtain the following theorem.

Theorem 3.2 Suppose that Assumption 3.1 holds. Let the sequence {xk} be generated
by Algorithm 2.1. Further we choose ψki and γk which satisfy (3.11). Then our method
converges in the sense that

lim
k→∞

‖gk‖ = 0.

Proof. By Lemmas 2.1, 3.2 and 3.3, we obtain the result immediately.
�

Next, we investigate the convergence rate of our method for uniformly convex functions.
For this purpose, we make the following assumption.

Assumption 3.2
(A3) The objective function is a uniformly convex function, namely, there exist positive
constants η1 and η2 such that

η1‖x− y‖2 ≤ (x− y)T [g(x) − g(y)] ≤ η2‖x− y‖2

for any x, y ∈ Rn

c© Operations Research Society of Japan JORSJ (2007) 50-1

A Nonmonotone Memory Gradient Method 39

Under this assumption, Dai [3] proved the following lemma.

Lemma 3.4 Suppose that Assumption 3.2 holds and that the objective function f(x) is
sufficiently smooth. Consider any iterative method (1.2) in which dk satisfies (2.1) and
(3.12), and in which αk is obtained by Algorithm 1.2. Then there exist constants c6 > 0 and
c7 ∈ (0, 1) such that

f(xk) − f(x∗) ≤ c6c
k+1
7 [f(x0) − f(x∗)] ,

where x∗ is a unique minimizer of f .
This lemma implies that the convergence rate is R-linear. By using this lemma, we

obtain the following theorem.

Theorem 3.3 Suppose that Assumption 3.2 holds and that the objective function f(x) is
sufficiently smooth. Let the sequence {xk} be generated by Algorithm 2.1. Further, we
assume that ψki and γk are chosen to satisfy (3.11). Then the sequence {xk} converges
R-linearly to the solution x∗.

Proof. By Lemmas 2.1, 3.2 and 3.4, the results follows immediately.
�

4. Numerical Results

In this section, we report some preliminary numerical results of Algorithm 2.1. We denote
sk−1 = xk − xk−1 and yk−1 = gk − gk−1.

In our experiment, we first chose γk and next determined ψki (i = 1, . . . , m) that satisfied
condition (3.11). We choose γ0 = 1 and

γk =

⎧⎪⎨
⎪⎩

1 if
zT
k−1sk−1

zT
k−1zk−1

< 10−15

zT
k−1sk−1

zT
k−1zk−1

otherwise,
(4.1)

where

zk−1 = yk−1 +
θk−1

sT
k−1uk−1

uk−1,

uk−1 is any vector such that sT
k−1uk−1
= 0 and

θk−1 = 6(f(xk−1) − f(xk)) + 3(gk−1 + gk)
Tsk−1.

This choice of the sizing parameter was proposed in [9]. In the numerical experiments, we
chose uk−1 = sk−1. For a given γk, we used ψki (i = 1, . . . , m) defined by

ψki =
max

{
gT

k dk−i, ν‖gk‖‖dk−i‖
}

+ ‖gk‖‖dk−i‖ + n

γk
(i = 1, . . . , m), (4.2)

where ν = −0.8. Note that this choice of ψki satisfies condition (3.11).

In the nonmonotone line search strategy, the initial step size α
(0)
k = 1 was always chosen,

and σ
(i)
k = 0.5 in all cases. We set the other parameters as follows: δ = 10−4 and

M(k) =

{
k k < M̄
M̄ otherwise.

c© Operations Research Society of Japan JORSJ (2007) 50-1

40 Y. Narushima

The stopping condition was

‖gk‖ ≤ 10−5.

We tested our method with the values m = 0, 1, 3, 5, 7, 9 and M̄ = 0, 1, 3, 5, 7, 9. The
choice m = 0 yields the steepest descent method with the sizing parameter (4.1) (denoted
by S-SD), namely, dk = −γkgk. Moreover, if we choose M̄ = 0, then Algorithm 1.2 reduces
to the Armijo line search method.

In order to compare our method with other methods, we used the limited memory BFGS
quasi-Newton method (denoted by LQN) with memory m̂ = 3, 5, 7 (see [10] for example).
In LQN, the step size αk which satisfies the Armijo condition was chosen in the line search
and an initial Hessian approximation was set to (yT

k−1sk−1/y
T
k−1yk−1)I , where I is the unit

matrix. Moreover, in LQN, if the search direction does not generate a descent direction,
then we use the steepest descent direction.

Table 1: Test problems
Name Dimension
Extended Rosenbrock Function n=10000 or 100000
Extended Powell Singular Function n=10000 or 100000
Trigonometric Function n=10000 or 100000
Broyden Tridiagonal Function n=10000 or 100000
Wood Function n=4

The test problems we used are described in Moré et al. [8]. In Table 1, the first col-
umn and the second column denote the problem name and the dimension of the problem,
respectively. Since we are interested in the performance for the large scale problems, we
list only large problems although we tested other small problems in Moré et al. [8]. We
present the results for the Wood Function (n = 4), because this function is singular at the
solution. Tables 2 to 11 give the numerical results of the experiments in the general form:
(number of iterations)/(number of function value evaluations). We write “Failed ” when
the number of iterations exceeded 1000. In Tables 2 to 10, we list the numerical results of
our method, where the column ‘m = 0’ corresponds to the numerical results for S-SD. In
each table, the results printed in boldface imply that the nonmonotone memory gradient
algorithm performed better than the monotone memory gradient algorithm (M̄ = 0). In
Table 11, we list the numerical results for the LQN method.

From now on, for simplicity, MG and NMG will denote the monotone memory gradient
algorithm and the nonmonotone memory gradient algorithm, respectively. Comparing MG
and NMG in each column for the Extended Rosenbrock Function and the Extended Powell
Singular Function in Tables 2 to 5, we can see that NMG performed better, depending
on the parameters m and M̄ . In particular, the number of function evaluations for NMG
was much fewer than for MG. For the Trigonometric Function (Tables 6 and 7), we do not
observe any significant improvement for NMG. In this case, we see that NMG is merely
comparable with MG. For the Broyden Tridiagonal Function with n = 10000 in Table 8,
we find that there are good results for NMG, for instance, m = 5, M̄ = 1 and the column
corresponding to m = 1. However we observe that NMG performed poorly in the cases
m = 9, M̄ = 5, 7, 9. For the Broyden Tridiagonal Function with n = 100000 in Table 9, we
can see that NMG is comparable with MG except for the column m = 3. From Tables 2 to
11, we see that our methods are comparable with S-SD. In Tables 2 to 5 and 8 to 10, we see
that if we choose suitable values for the parameters, NMG outperforms S-SD. Comparing

c© Operations Research Society of Japan JORSJ (2007) 50-1

A Nonmonotone Memory Gradient Method 41

our method with LQN, LQN outperforms our method for the Powell Singular Function and
the Wood Function.

The performance of our method depends on the choice of parameters m and M̄ , and we
have not yet found the best choices. Even if we choose large values for m and M̄ , these are
not necessarily the best (for instance, in Table 2, M̄ = 9 is good, while in Table 9, M̄ = 0
is good). Though it may be difficult to propose the best choice theoretically, the choices
m = 5, 7 and m̄ = 7, 9 are better in our experiments. In addition, we obtain dk ≈ −γkgk

if n is extremely large and gk is small (because βki ≤ γk‖gk‖/n holds). It therefore follows
that, in such situations, our method may tend to exhibit slow convergence, like the method
of steepest descent. Thus we may need further study about choices for the parameter ψki.

Finally, we present Figure 1, as an example, to demonstrate the local behavior of our
method. This figure gives the values of log10[f(x)] for the Extended Rosenbrock Function,
where f(x) becomes zero at the optimal solution. In the figure, the triangle symbols and
the diamond symbols show the behavior of the function value for m = 7, M̄ = 0 (monotone
case) and m = 7, M̄ = 9 (nonmonotone case), respectively. We are unable to observe any
strong indication of superlinear convergence here.

Table 2: Extended Rosenbrock Function (n = 10000)
������M̄

m
0 1 3 5 7 9

0 63/123 73/131 67/118 74/130 72/127 69/133
1 66/112 80/117 72/109 72/109 65/103 70/106
3 61/95 80/117 76/112 72/109 66/101 73/109
5 59/81 75/93 77/99 63/87 64/86 70/97
7 59/81 76/98 67/88 64/85 64/86 68/92
9 59/80 68/81 65/80 57/72 47/63 67/88

Table 3: Extended Rosenbrock Function (n = 100000)
������M̄

m
0 1 3 5 7 9

0 63/123 76/136 67/118 76/132 72/127 71/135
1 68/114 80/117 72/109 75/112 66/104 70/106
3 61/95 80/117 76/112 75/112 66/101 73/109
5 59/81 75/93 77/100 63/87 67/89 70/97
7 59/81 76/98 67/88 64/85 67/89 68/92
9 59/80 68/81 65/80 60/75 48/64 70/91

Table 4: Extended Powell Singular Function (n = 10000)
������M̄

m
0 1 3 5 7 9

0 239/405 245/408 191/301 310/484 313/476 225/384
1 172/233 226/293 214/272 253/347 191/255 205/268
3 187/269 217/260 262/336 197/267 186/254 190/257
5 182/241 237/301 212/269 197/267 186/254 211/277
7 186/257 195/246 164/213 213/279 176/236 206/252
9 153/179 196/254 145/166 156/194 198/241 204/235

c© Operations Research Society of Japan JORSJ (2007) 50-1

42 Y. Narushima

Table 5: Extended Powell Singular Function (n = 100000)
������M̄

m
0 1 3 5 7 9

0 212/361 237/414 233/382 300/482 243/388 258/426
1 223/315 215/274 236/318 247/350 251/338 286/385
3 293/414 267/341 265/345 246/321 219/280 223/311
5 204/273 267/341 223/294 246/321 219/280 184/247
7 221/310 205/266 198/269 227/296 214/297 217/270
9 172/217 251/325 180/208 164/197 220/267 207/259

Table 6: Trigonometric Function (n = 10000)
������M̄

m
0 1 3 5 7 9

0 59/61 61/62 65/69 64/66 61/65 66/69
1 59/60 61/62 66/68 60/61 63/65 65/66
3 59/60 61/62 66/67 60/61 63/65 65/66
5 59/60 61/62 66/67 60/61 63/65 65/66
7 59/60 61/62 66/67 60/61 60/61 65/66
9 59/60 61/62 66/67 60/61 60/61 65/66

Table 7: Trigonometric Function (n = 100000)
������M̄

m
0 1 3 5 7 9

0 42/43 50/52 42/43 59/60 52/54 45/46
1 42/43 50/51 42/43 59/60 47/48 45/46
3 42/43 50/51 42/43 59/60 47/48 45/46
5 42/43 50/51 42/43 59/60 47/48 45/46
7 42/43 50/51 42/43 59/60 47/48 45/46
9 42/43 50/51 42/43 59/60 47/48 45/46

Table 8: Broyden Tridiagonal Function (n = 10000)
������M̄

m
0 1 3 5 7 9

0 85/111 83/104 126/148 95/118 107/132 94/118
1 82/90 81/89 120/132 73/84 90/103 90/102
3 82/90 79/86 105/117 165/174 151/162 100/116
5 82/90 79/86 105/117 165/174 151/162 540/565
7 82/90 79/86 91/99 134/143 151/162 585/608
9 88/96 79/86 91/99 134/143 151/162 525/549

Table 9: Broyden Tridiagonal Function (n = 100000)
������M̄

m
0 1 3 5 7 9

0 54/80 55/75 57/72 51/69 50/66 55/78
1 58/69 77/88 65/78 55/65 57/68 56/67
3 56/64 54/63 156/169 54/63 58/67 61/71
5 56/64 56/63 151/165 54/63 58/67 61/70
7 56/64 56/63 151/163 60/68 57/65 59/67
9 56/64 56/63 151/163 60/68 57/65 59/67

c© Operations Research Society of Japan JORSJ (2007) 50-1

A Nonmonotone Memory Gradient Method 43

Table 10: Wood Function (n = 4)
������M̄

m
0 1 3 5 7 9

0 358/461 395/497 332/427 148/223 242/315 336/443
1 303/351 320/368 661/825 418/472 264/315 336/390
3 282/323 397/448 616/770 437/485 192/231 365/412
5 250/293 443/497 516/595 292/336 141/178 373/446
7 272/306 356/397 545/609 369/421 141/178 328/390
9 270/303 352/391 451/518 340/392 141/178 332/407

Table 11: Results of LQN
P n LQN LQN LQN

m̂ = 3 m̂ = 5 m̂ = 7
Extended Rosenbrock Function 10000 41/84 41/100 31/166

100000 41/84 41/100 32/167
Extended Powell Singular Function 10000 84/122 57/78 57/76

100000 155/211 57/78 58/77
Trigonometric Function 10000 44/45 41/43 41/42

100000 24/26 31/32 23/24
Broyden Tridiagonal Function 10000 68/80 66/74 60/66

100000 72/83 70/85 61/71
Wood Function 4 40/61 33/53 30/47

-20

-15

-10

-5

0

5

10

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

the number of iterations

L
o
g
[
f
(
x
)
]

Figure 1. The function value for Extended Rosenbrock Function
n = 10000, m = 7, M̄ = 0 (symbol �) and m = 7, M̄ = 9 (symbol)

c© Operations Research Society of Japan JORSJ (2007) 50-1

44 Y. Narushima

5. Conclusion

In this paper, we have proposed a new nonmonotone memory gradient method which always
satisfies the sufficient descent condition, and we have proved the global convergence of our
method. We have also derived a stronger convergence result for a restricted version of
the new method. Finally, we have demonstrated the R-linear convergence of the proposed
method in the case where the objective function is uniformly convex.

From the numerical experiments, we see that our method is comparable with S-SD and
that the numerical performance of the proposed method depends on the parameters m and
M̄ . We are interested to investigate further new good choices of ψki in theory and for
practical computation.

Acknowledgements

The author would like to thank the referees for valuable comments. The author is grateful to
Prof. Hiroshi Yabe of Tokyo University of Science for his valuable advice and encouragement.
The author is grateful to Prof. John A. Ford of University of Essex for his valuable advice.
The author was supported in part by a Grant for the Promotion of the Advancement of
Education and Research in Graduate Schools of the Ministry of Education, Culture, Sports,
Science and Technology of Japan.

References

[1] E.E. Cragg and A.V. Levy: Study on a supermemory gradient method for the minimiza-
tion of functions. Journal of Optimization Theory and Applications, 4 (1969), 191–205.

[2] Y.H. Dai: A nonmonotone conjugate gradient algorithm for unconstrained optimization.
Journal of System Science and Complexity, 15 (2002), 139–145.

[3] Y.H. Dai: On the nonmonotone line search. Journal of Optimization Theory and Appli-
cations, 112 (2002) 315–330.

[4] L. Grippo, F. Lampariello, and S. Lucidi: A nonmonotone line search technique for
Newton’s method. SIAM Journal on Numerical Analysis, 23 (1986), 707–716.

[5] L. Grippo, F. Lampariello, and S. Lucidi: A truncated Newton method with nonmono-
tone line search for unconstrained optimization. Journal of Optimization Theory and
Applications, 60 (1989), 401–419.

[6] L. Grippo, F. Lampariello, and S. Lucidi: A class of nonmonotone stabilization methods
in unconstrained optimization. Numeriche Mathematik, 59 (1991), 779–805.

[7] A. Miele and J.W. Cantrell: Study on a memory gradient method for the minimization
of functions. Journal of Optimization Theory and Applications, 3 (1969), 459–470.

[8] J.J. Moré, B.S. Garbow, and K.E. Hillstrom: Testing unconstrained optimization soft-
ware. ACM Transactions on Mathematical Software, 7 (1981), 17–41.

[9] Y. Narushima and H. Yabe: Global convergence of a memory gradient method for
unconstrained optimization, Computational Optimization and Applications, 35 (2006),
325–346.

[10] J. Nocedal and S.J. Wright: Numerical Optimization, Springer Series in Operations
Research (Springer Verlag, New York, 1999).

Yasushi Narushima
Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku,

c© Operations Research Society of Japan JORSJ (2007) 50-1

A Nonmonotone Memory Gradient Method 45

Tokyo 162-8601, Japan

c© Operations Research Society of Japan JORSJ (2007) 50-1

