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ABSTRACT

Most existing video quality metrics measure temporal distor-
tions based on optical-flow estimation, which typically has
limited descriptive power of visual dynamics and low effi-
ciency. This paper presents a unified and efficient framework
to measure temporal distortions based on a spacetime tex-
ture representation of motion. We first propose an effective
motion-tuning scheme to capture temporal distortions along
motion trajectories by exploiting the distributive character-
istic of the spacetime texture. Then we reuse the motion
descriptors to build a self-information based spatiotempo-
ral saliency model to guide the spatial pooling. At last, a
comprehensive quality metric is developed by combining the
temporal distortion measure with spatial distortion measure.
Our method demonstrates high efficiency and excellent cor-
relation with the human perception of video quality.

Categories and Subject Descriptors

I.4.9 [Computing Methodologies]: IMAGE PROCESS-
ING AND COMPUTER VISION Applications

General Terms

Algorithms, Experimentation, Measurement

Keywords

Video quality assessment, spatiotemporal oriented energy
(SOE), spacetime texture representation, visual attention

1. INTRODUCTION
Digital videos typically pass through several processing

stages (e.g., lossy source encoding and transmission over er-
ror prone channels) that may result in impairment of qual-
ity before they reach the end users. Methods for evaluating
video quality have received growing interest from content
providers and network operators, as they play a crucial role
in Quality-of-Service (QoS) monitoring, and perceptually
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optimal design and/or performance evaluation of video pro-
cessing systems. Objective video quality assessment (VQA)
methods are based on automated algorithms that attempt
to predict video quality in a way consistent with the human
perception. As a result, their performance is evaluated by
how well the predicted quality correlates with the human-
supplied subjective quality. Depending on the presence of a
reference video, the VQA methods can be divided into three
classes: full-reference, reduced-reference, and no-reference.
In this study, we focus on the full-reference VQA algorithms.

Many factors affect the quality of digital videos. Distor-
tions in video that arise primarily from the occurrence of mo-
tion are referred to as “temporal distortions” (e.g., ghosting,
jerkiness, and mosquito effect), as opposed to the “spatial
distortions” (e.g., blocking, ringing, and noise) [8]. Along
with the progress of image quality assessment (IQA), there
has been extensive research for measuring spatial distortions
in videos. On the contrary, how to measure temporal dis-
tortions is much less studied.

In the context of video coding and quality assessment, mo-
tion has often been related to the notion of “optical flow”, a
motion vector at each spatiotemporal point with its length
representing the magnitude of motion and its direction the
direction of motion. It is no surprise that almost all existing
VQA methods that explicitly incorporate motion estima-
tion are based on the optical-flow representation. In early
studies [12, 13], motion vectors are employed to estimate
the weights for pooling the local quality measures into a
single quality score. More recently, Moorthy et al. [6] pro-
posed a motion compensated SSIM index for video quality
assessment, in which the SSIM index [11] is performed on
motion-compensated image blocks. Lately, Seshadrinathan
and Bovik [8] propose the MOVIE index that captures the
temporal distortions along motion trajectories by using Ga-
bor filters tuned to the motion directions based on an optical
flow method. It achieves the best quality prediction perfor-
mance among a set of state-of-the-art VQA methods [9].

The optical-flow methods that attempt to precisely esti-
mate motion vectors usually suffer from the high computa-
tional overhead caused by iterative optimization. A more
critical issue is that the conventional optical-flow represen-
tation is inadequate in capturing general visual dynamics,
such as pure temporal variations (e.g., campfire), and semi-
transparency scene with more than one motion present at a
single point (e.g., rising smoke) [3]. In this paper we intro-
duce a recently proposed spacetime texture representation
of motion [3] to the field of VQA. Besides its high efficiency,



it provides a distributed representation of motion and thus
better descriptive power of general visual dynamics.

We first propose a local motion-tuned temporal distor-
tion measure by exploiting the distributive characteristic of
the spacetime-texture descriptors. The descriptors are then
reused to build a spatiotemporal attention model for spa-
tial pooling. In the end, the temporal distortion measure is
combined with a simple spatial distortion measure to give
a comprehensive evaluation of video quality. Our method
achieves remarkable performance in both quality prediction
and computational efficiency.

2. PROPOSED METHOD

2.1 Motion-tuned temporal distortion measure
To compute the spacetime texture representation [3], a

video sequence is first filtered spatiotemporally using a bank
of broadly tuned Gaussian third derivative filters, G3

θ̂
, where

θ̂ is a unit vector that captures the spatiotemporal direction
of the filter symmetry axis. Each filter responds best to
a stimulus moving in a specific direction in the spatiotem-
poral space. As in [3], the filter responses are point-wise
rectified and summed over a spatiotemporal neighborhood
(a spatiotemporal region Π) to yield a measurement of signal

energy for this region at each orientation θ̂:

Eθ̂(x, y, t) =
∑

(x,y,t)∈Π

(G3
θ̂
∗ V )2 (1)

where V = V (x, y, t) denotes the input spatiotemporal vol-
ume (i.e., the input video sequence), and the symbol “*”
denotes convolution. The bandpass nature of the G3 filters
leads to the invariance of the energies to additive intensity
variations. However, the local energy estimates still increase
monotonically with contrast. In order to capture the tem-
poral distortions irrespective of both the additive intensity
variations and contrast change, a pixel-wise divisive normal-
ization is performed. Specifically, the local energy measures
are normalized by the summation of energy responses from
all filters considered at each location.

Let Êr

θ̂k
(x, y, t) and Êd

θ̂k
(x, y, t) denote the normalized lo-

cal energy measure along direction θ̂k in the reference video
and distorted video, respectively. Now, we can obtain a lo-
cal temporal distortion measure at each location (x, y, t) by
calculating the similarity between the two corresponding en-
ergy distributions in the reference and distorted videos. In
this paper, we use the efficient L2 distance:

TD(x, y, t) = [
K∑

k=1

(Êr

θ̂k
(x, y, t)− Êd

θ̂k
(x, y, t))2]

1

2 . (2)

In this measure, each filter in the selected filter bank plays
an equally important part. However, it has been shown that
assigning biased weights to the filters according to the lo-
cal motion pattern can better capture the temporal distor-
tions [8]. Inspired by this, we propose a local motion-tuned
temporal distortion measure. Following the method in [3],
a distributed motion representation can be efficiently com-
puted by “appearance marginalization” of the oriented ener-
gies in Eq. (1). The goal of this marginalization is to capture
the purely dynamic properties of a scene, i.e., the motion-
related properties independent from the spatial appearance.
As a pattern with a specific velocity manifests itself as a

plane through the origin in the frequency domain, the purely
spatial orientation component in Eq. (1) can be discounted
by summation across a set of spatiotemporal oriented energy
measurements consistent with the corresponding frequency
plane. Let a frequency plane be parameterized by its unit
normal n̂k, and N the order of the Gaussian filters (here,
N = 3). On each plane, N + 1 equally spaced directions

{θ̂j , j = 1, . . . , N + 1} are sampled for summation,

Ẽn̂k
=

N+1∑

j=1

Eθ̂k,j
, k = 1, . . . ,K (3)

with each Eθ̂k,j
being the spatiotemporal energy given in

Eq. (1). In this study, we selected 13 planes (i.e., K = 13)
corresponding to the following motion directions: static (no
motion), motion in eight directions (leftward, rightward, up-
ward, downward and the four diagonals), and flicker in four
directions (horizontal, vertical and two diagonals). We find
that tuning the directions more finely did not lead to notice-
ably better performance but incurs greater computation. To
attain insensitivity to contrast change, each Ẽn̂k

is normal-
ized by their summation over all K directions. This results
in a K-bin histogram {Ên̂k

, k = 1, . . . ,K}, which encapsu-
lates a relative indication of the motion strength correspond-
ing to each plane. Let Êr

n̂k
(x, y, t) denote the histogram

corresponding to a plane n̂k at a spatiotemporal location
(x, y, t) in the reference video. To obtain a motion-tuned

temporal distortion measure, we integrate Êr
n̂k

(x, y, t) into
the temporal distortion measure in Eq. (2):

(4)

MT -TD(x, y, t) = [
K∑

k=1

(Êr
n̂k

(x, y, t)×

N+1∑

j=1

(Êr

θ̂k,j
(x, y, t)− Êd

θ̂k,j
(x, y, t))2)]

1

2 ,

where theN+1 filters {θ̂k,j , j = 1, . . . , N+1} consistent with

a certain frequency plane n̂k are weighted by Êr
n̂k

(x, y, t).

2.2 Attention-guided spatial pooling
In recent years, visual attention has received increasing

interest in the area of visual quality assessment. While
most attention-guided VQAmethods employ attention mod-
els purely based on spatial cues (e.g., color, intensity and
spatial orientation), some recent VQA methods take into
consideration the motion-driven attention, in which the mo-
tion estimates are usually based on the optical-flow repre-
sentation (e.g. [15]) or simply described by the adjacent
frame difference (e.g., [5]). In this study, we reuse the local
motion descriptors computed in Section 2.1 for visual at-
tention modeling. Following the Attention by Information
Maximization (AIM) principle proposed by Bruce and Tsot-
sos [2], a spatiotemporal saliency model is built based on the

self-information of the local features, Ên̂k
and Ẽn̂k

. At each
spatiotemporal location, we compute two self-information
measures:

SIM (x, y, t) =
K∑

k=1

−log(p(Ên̂k
(x, y, t))), (5)

SIMC(x, y, t) =
K∑

k=1

−log(p(Ẽn̂k
(x, y, t))), (6)



where p(Ên̂k
(x, y, t)) and p(Ẽn̂k

(x, y, t)) are the probabili-
ties of seeing certain values of the motion descriptors given
their surround, which are estimated by histogram density es-
timation over all the pixels in the current frame. Note that,
SIM is based on a motion descriptor that is invariant to lo-
cal luminance contrast. Hence it highlights the regions with
motion patterns that are very different from their surround.
On the other hand, SIMC is based on a motion descriptor
that is confounded by luminance contrast. As a result, it
also highlights the regions of high luminance contrast. The
overall saliency is a combination of SIM and SIMC . How
to optimally combine saliency maps driven by multiple cues
remains an open problem. A widely accepted principle is
that salient motion plays a much more significant role than
static features (including luminance contrast) in attracting
visual attention [4]. Following this principle, we compute
the combined saliency as

(7)
SICOM (x, y, t) = γ · SIM (x, y, t) + (1− γ)

· SIMC(x, y, t) · SIM (x, y, t),

where SIM and SIMC are normalized to the range of [0, 1],
and γ is a free parameter in the range of [0, 1]. In our im-
plementation, we set γ = 0.5 empirically. With this combi-
nation scheme, if motion saliency exists, SIM will dominate
the overall saliency. Otherwise, if SIM is largely smooth,
SIMC (in this case, primarily driven by luminance contrast)
will play a significant role. In our implementation, we also
take into account the center bias by combining the saliency
map SICOM with a center-bias map CB:

A(x, y, t) = SICOM (x, y, t) · CB(x, y), (8)

where CB(x, y) = 1 − d/D is a decreasing function of the
distance d between the image center and the spatial po-
sition (x, y). D is the distance between the center and a
corner. Based on this saliency model, an attention-guided
motion-tuned temporal distortion measure at each frame t
is computed as

(9)AG-MT -TD(t) =

∑
x,y

MT -TD(x, y, t) ·A(x, y, t)
∑

x,y
A(x, y, t)

.

With this spatial pooling scheme, the temporal distortions
in the highly attentional regions are heavily penalized.

2.3 Overall video quality prediction
It is clear that the human perception of video quality is

affected by both temporal and spatial distortions. There-
fore, we combine the proposed temporal distortion measure
with a spatial distortion measure to give a comprehensive
judgment of video quality:

Doverall = DAG-MT-TD · (1−QMS-SSIM), (10)

where DAG-MT-TD is a temporal distortion measure by tem-
porally pooling the frame-level AG-MT -TD(t) scores (see
Eq. (9)), andQMS-SSIM is a spatial quality measure by tem-
porally pooling the frame-level MS-SSIM [14] scores. Note
that a higher MS-SSIM score (always in the range of [0, 1])
indicates high quality. The MS-SSIM index is selected be-
cause it has shown good effectiveness in measuring a variety
of spatial distortions as well as high computational efficiency.
For temporal pooling, we employ a method similar to the one
used in [7] to penalize high temporal variations, which ad-
justs the mean value of the frame-level quality indices with

an additive term that increases with the temporal variations
of quality.

3. EXPERIMENTAL RESULTS
There are two commonly used public databases for VQA,

namely, the VQEG FRTV Phase 1 database [1] and the
LIVE video quality database [10]. The former was pub-
lished in 2000, and the distortions in its test videos (e.g.,
MPEG-2 and H.263 compression) are considered to be out-
dated. The later was published in 2010, which was designed
to be a replacement of the VQEG FRTV Phase 1 database.
It contains videos compressed by H.264 and MPEG-2, as
well as videos obtained by simulated transmission of H.264
compressed streams through error prone IP and wireless net-
works [10]. Consequently, most of the recent work uses the
LIVE database for performance evaluation. We also follow
this trend in this paper.

We employ two commonly used metrics, the Spearman’s
Rank Correlation Coefficient (SRCC) and the Pearson Lin-
ear Correlation Coefficient (PLCC), to measure the corre-
lation between the algorithm-supplied and human-supplied
quality scores – they measure the prediction monotonicity
and prediction accuracy, respectively. The intermediate re-
sults are presented in Table 1, where the suffix “(tv)” in-
dicates that the temporal variation of quality is taken into
account in temporal pooling. Columns without the suffix
use the mean of frame-level quality scores. By comparing
the performance of the “TD”, “MT-TD” and “AG-MT-TD”
methods, we can see that both the motion-tuning scheme
and the attention model play very beneficial roles in the
proposed method. In addition, the “Proposed (tv)” method
achieves considerable performance gain over “AG-MT-TD
(tv)”and“MS-SSIM (tv)”, which indicates that the two com-
ponents compliment each other.

We have compared our method with a set of VQA algo-
rithms studied in a recent survey paper [9] and two recent
visual attention-guided VQA methods (“VA-You” [15] and
“VA-Ma” [5]) in Table 2. In comparison, our method demon-
strates remarkable quality-prediction performance. The op-
tical flow-based MOVIE index [8] also achieves impressive
results. It is worth mentioning that the MOVIE index does
not incorporate a visual attention model and hence its per-
formance may also be improved by exploring visual attention
adequately.

We have also analyzed the computation time of our method.
It shows that our method implemented in MATLAB took
178 seconds (26 seconds for the DAG-MT-TD component and
152 seconds for the QMS-SSIM component) to evaluate a 10-
second 25 fps 432× 768 test video on a Linux machine with
an Intel Core i2 CPU (2.33 GHz ) and 8 GB memory. In our
implementation, the QMS-SSIM component was performed
at five scales starting from the original scale to four gradu-
ally coarser scales, whereas the DAG-MT-SD component was
performed at a coarse scale (144× 256) for higher efficiency
(if it was performed at the original scale, it would take about
254 seconds to run and give close prediction performance).
Clearly, our method is highly efficient even when compared
with the simple frame-by-frame MS-SSIM method. Under
the same test condition, the MOVIE index took about 5.88
hours using the C++ code [8] provided by the authors, where
a considerable portion of the running time (more than 55%)
was purely devoted to the computation of optical flow.



Table 1: Intermediate results: SRCC and PLCC on the LIVE Video Quaity database

Metrics TD MT-TD AG-MT-TD AG-MT-TD (tv) MS-SSIM MS-SSIM (tv) Proposed (tv)
SRCC 0.7011 0.7432 0.7736 0.7914 0.7367 0.7536 0.8215
PLCC 0.7116 0.7478 0.7777 0.7933 0.7441 0.7647 0.8274

Table 2: Comparative results: SRCC and PLCC on the LIVE Video Quality database.

Metrics PSNR SSIM MS-SSIM VSNR SpeedSSIM VQM V-VIF MOVIE VA-You VA-Ma Proposed
SRCC 0.3684 0.5257 0.7367 0.6755 0.5849 0.7026 0.5710 0.7890 – 0.7484 0.8215

PLCC 0.4035 0.5444 0.7441 0.6896 0.5962 0.7236 0.5756 0.8116 0.776 0.7768 0.8274

4. CONCLUSION
In this paper, we present a unified and efficient frame-

work for motion-tuned and attention-guided VQA based on
a spacetime texture representation of motion. When evalu-
ated on the LIVE video quality database, our method achieves
excellent correlation with human perception of video quality.
With the exciting success in this initial attempt, we believe
spacetime texture can serve as an excellent alternative to the
optical-flow methods in the field of VQA, especially in real-
time and/or mobile device-based applications that require
high computational efficiency. Despite this, spacetime tex-
ture as formulated is not a replacement of optical flow for all
application domains, e.g., in cases that motion vectors need
to (and can) be precisely estimated and that computation
overhead is not a major concern. In the future, we will em-
ploy the reliable and efficient spacetime texture representa-
tion to conduct further analysis of the location (spatial and
temporal), intensity and pattern of visual dynamics, which
we believe will facilitate the modeling of visual attention and
the measurement of several challenging temporal distortions,
including stalling, frame freezing, and frame skipping.
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