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Mixed modeling and sample size
calculations for identifying
housekeeping genes
Hongying Dai,a*† Richard Charnigo,b Carrie A. Vyhlidal,c
Bridgette L. Jonesc and Madhusudan Bhandaryd

Normalization of gene expression data using internal control genes that have biologically stable expression
levels is an important process for analyzing reverse transcription polymerase chain reaction data. We propose
a three-way linear mixed-effects model to select optimal housekeeping genes. The mixed-effects model can
accommodate multiple continuous and/or categorical variables with sample random effects, gene fixed effects,
systematic effects, and gene by systematic effect interactions. We propose using the intraclass correlation
coefficient among gene expression levels as the stability measure to select housekeeping genes that have low
within-sample variation. Global hypothesis testing is proposed to ensure that selected housekeeping genes are
free of systematic effects or gene by systematic effect interactions. A gene combination with the highest lower
bound of 95% confidence interval for intraclass correlation coefficient and no significant systematic effects is
selected for normalization. Sample size calculation based on the estimation accuracy of the stability measure is
offered to help practitioners design experiments to identify housekeeping genes. We compare our methods with
geNorm and NormFinder by using three case studies. A free software package written in SAS (Cary, NC, U.S.A.)
is available at http://d.web.umkc.edu/daih under software tab. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: housekeeping gene; normalization; RT-PCR; systematic effect; linear mixed-effects model (LMM);
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1. Introduction

Quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) is a technique that
permits accurate quantification of steady-state mRNA levels and has become widely used for the
expression profiling of regulated genes [1–3]. Normalization of gene expression data using reference
genes that have biologically stable expression is an important process for analyzing RT-PCR data.
Generally, target gene expression levels are divided by normalizing factors on the basis of expression
levels from reference genes. This normalization process can remove the transcriptional variations in
target gene expression, allow target genes to reflect biologically relevant interpretation, and make data
from multiple experiments comparable [4].

Housekeeping genes [5] are those that are expressed at relatively constant levels regardless of gender,
age, or treatments under investigation (defined as systematic effects in this paper). Although house-
keeping genes are biologically expressed at relatively constant levels, the empirical measurements of
their expression may vary depending on experimental conditions. For example, the density of cultured
cells, variability in sample acquisition, RNA template isolation, and the presence of PCR inhibitors may
introduce errors into the analysis process, which necessitates validation of housekeeping genes (i.e., the
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verification that they can, in fact, be used for normalization) in each experiment [1, 6]. When target
genes are confounded with systematic effects and random experimental effects, it is important to use
housekeeping genes as reference genes in the normalization process to separate random experimental
effects from systematic effects and to extract accurate, reproducible, and biologically relevant mRNA
quantification.

Studies have shown that it might be inadequate to use a single housekeeping gene for normaliza-
tion [1]. Several methods have been proposed to assist in the selection of multiple housekeeping genes,
including [4, 7–14], etc. Among these, geNorm [7] and NormFinder [8] are the two most commonly
applied methods.

geNorm [7] selects housekeeping genes by using standard deviation as a stability measure. Let Yij
be the expression level from the j th .j D 1; 2; : : : ; m/ candidate gene in the i th .i D 1; 2; : : : ; n/

sample. The vector Aj1j2 D
˚
log2

�
Y1j1=Y1j2

�
; log2

�
Y2j1=Y2j2

�
; : : : ; log2

�
Ynj1=Ynj2

��
is the log2-

transformed expression ratio between gene j1 and j2 for 8j1; j2 2 f1; 2; : : : ; mg across all samples.
Calculate the standard deviation of Aj1j2 , that is, Vj1j2 D st:dev: .Aj1j2/, and average the standard
deviation for gene j1 with respect to all other genes Mj1 D

NVj1:. Large Mj1 value indicates a large
variation in log2-transformed gene expression ratio when gene j1 is compared with respect to other
genes, which further indicates low stability for gene j1. geNorm [7] suggests selecting genes with
relatively small M values as suitable housekeeping genes. According to this rationale, geNorm adopts
a step-down elimination approach to remove genes with the highest M value step by step. Every time
after one gene is removed, the M values are recalculated for all remaining genes. This process is often
repeated until two or three genes are remained.

NormFinder [8] introduces a group variable and takes between group variation into account in a
two-way ANOVA model, Yjg i D ˛jg C ˇgi C "jg i , where ˛jg is the amount of expression attributable
to the j th gene within the gth group, ˇgi is the amount of expression attributable to the i th sample in

the gth group, and "jg i �N
�
0; �2jg

�
. Let ´jg D Nyjg� be the average of the measured gene expressions

for gene j in group g and �g D Ňg� be the average sample level in group g. Then, the stability measure
�jg is the mean plus one standard deviation of ´jg � �g � ˛j . Finally, combine �jg ; g D 1; 2; : : : ; G,

into one value for gene j by taking average �j D
PG
gD1 �jg=G.

Limitations in the current normalization approaches exist. (i) The existing methods cannot detect
multiple systematic effects, systematic effects related to continuous variables, or interactions between
genes and systematic effects. geNorm does not take systematic effects into account, which may lead
to misspecification of housekeeping genes [8]. NormFinder addresses this issue by constructing a two-
way ANOVA model but only incorporates one categorical group variable. For instance, assume that age
has a potential systematic effect related to gene expression. geNorm is unable to take the age effect into
account, whereas NormFinder has to analyze age as a categorical group variable. The possibility of a con-
tinuous age effect or gene by age interaction is not addressed by the existing methods. (ii) The existing
methods do not allow missing data. The missing observations need to be imputed before analysis.
Otherwise, a sample with a missing value will be excluded, leading to loss of valuable information. (iii) A
sample size calculation procedure has not been established in the existing methods. Lack of confidence
interval in stability measures poses a major challenge for practitioners to determine the cutoff of a stabil-
ity measure in selection of housekeeping genes. When stability values from different gene combinations
are close, there is no statistical testing to determine whether the scores are significantly different.

To address these issues, we propose a three-way linear mixed-effects model (LMM) and develop a
procedure to determine housekeeping genes. In Section 2, we will lay out the model, provide confidence
intervals for the stability measure, generate sample size calculation for experimental design, and propose
a procedure for determination of housekeeping genes. In Section 3, we will illustrate our method and
compare our method with geNorm and NormFinder in three case studies. The empirical assessment to
compare our method versus geNorm and NormFinder is in Section 4. We will describe the advantages
of the proposed method in Section 5.

2. Methods

2.1. Three-way linear mixed-effects model

We will construct a three-way LMM for selection and testing housekeeping genes with the strongest
intraclass correlation coefficient (ICC). The three-way LMM is composed of (i) fixed gene effects,
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(ii) random sample effects, and (iii) fixed systematic effects and/or their interactions with genes. Random
sample effects are used to take the within-sample correlation into account as multiple genes are measured
from the same sample. We propose using ICC among gene expression levels as the stability measure to
select housekeeping genes that have high between-sample variation and low within-sample variation.
Hypothesis testing is proposed to ensure that selected housekeeping genes are free of systematic effects
or gene by systematic effect interactions.

Let Y D .y11; y12; : : : ; y1m; y21; y22; : : : ; y2m ; : : : ; yn1; yn2; : : : ; ynm/
t be the vector of gene

expression levels, yij , of the j th .j D 1; 2; : : : ; m/ candidate gene measured from the i th .i D 1;

2; : : : ; n/ subject. Gene expressions can be log transformed if needed. We will construct a LMM,

Y D E1�C .X1ˇ1CX2ˇ2/CG� CA˛C " .1:1/

D .E1�CX12ˇ12CG�/CA˛C " .1:2/

DXˇCA˛C " .1:3/

: (1)

In model (1.1), � is the global mean, and E1 is the vector of 1 with length mn. We express systematic
effects in matrix notation where X1 stands for variables and ˇ1 is a fixed effect parameter vector.
Systematic effects include (i) the main effects from multiple continuous and/or categorical variables
(i.e., treatment groups, genetic variants, demographic variables, and clinical variables), X1ˇ1, and
(ii) interactions between the systematic effect variables and genes, X2ˇ2. The fixed gene effect, G� ,
models the mean expression levels contributed by genes, where � D .�1; �2; : : : ; �m/t andG D 1n˝Im.
The random subject effect, A˛, models between-subject variation, where ˛ D .˛1; ˛2; : : : ; ˛n/

t and
A D In ˝ 1m. The between-subject variation, ˛i , identically and independently follows N

�
0; �2˛

�
.

The sample variation "ij identically and independently follows N
�
0; �2"

�
, and "ij and ˛i are mutually

independent.
We express model (1) into three equivalent formats as they are needed in different stages of model

estimation. In model (1.2), the main systematic effects and interactions between systematic effects and
genes are aggregated into X12ˇ12, where X12ˇ12 D X1ˇ1 C X2ˇ2 and ˇ12 D

�
ˇt1; ˇ

t
2

�t
. To ensure

stable housekeeping genes free of systematic effects, we need to perform statistical inference regarding

ˇ12 D
�
ˇt1; ˇ

t
2

�t
D E0: (2)

We further combine all fixed effect components into Xˇ, where Xˇ D E1� C X12ˇ12 C G� and
ˇ D

�
�; ˇt12; �

t
�t

in model (1.3), which has the standard format for the general LMM.

2.2. Proposed housekeeping gene identification process

We propose a step-up process to identify housekeeping genes:

Step 1: Start with exhaustive search of k D 2 gene combinations. Fit two genes j1 and j2 for
8j1; j2 2 f1; 2; : : : ; mg to model (1).

Step 2: Perform likelihood ratio test (LRT) to remove gene combinations with significant systematic
effects. The LRT is the uniformly most powerful test and will be applied in the case studies.
Two alternatives to the LRT, the Wald test and score test, are available. The details of hypothesis
testing will be described in Section 2.3.

Step 3: Calculate ICC �j1j2 D �
2
˛=
�
�2˛ C �

2
"

�
and 95% confidence interval of ICC for genes j1 and j2.

See Section 2.4 for details.
Step 4: Repeat Steps 1–3 for k D 3; 4; : : : ; m gene combinations. This process will terminate for

k < m if ICC stops improving.
Step 5: A gene combination with the highest lower bound of 95% confidence interval of ICC and no

significant systematic effects (LRT p-value > 0.05) is the optimal reference for normalization.

After selection of housekeeping genes, one can perform the downstream analysis for target genes. A
geometric mean from multiple housekeeping genes on each sample will be used as a normalizing factor.
Target gene expression levels are divided by the normalizing factor from the same sample. Note the tar-
get genes will not be included in the selection of housekeeping genes as target genes usually have more
variations potentially associated with diseases. Including target genes from the downstream analysis in
the housekeeping gene selection process will increase the selection bias.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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2.3. Hypothesis testing of systematic effects

Ideal housekeeping genes should be free of systematic main effects .ˇ1/ and systematic effect by gene
interactions .ˇ2/. Therefore, it is important to perform statistical tests to assess overall systematic effects

through H0 W ˇ12 D
�
ˇt1; ˇ

t
2

�t
D

*

0 versus Ha W ˇ12 ¤ E0. In LMM, the LRT is commonly used
to fulfill this task. Under H0, the LRT statistic converges in distribution to a chi-square distribution,

that is, �
d
!�2v , where the degrees of freedom v equals the length of ˇ12. One can also consider a

Wald test. Let Ǒ12 be a maximum likelihood estimator of ˇ12 and I
�
Ǒ
12

�
be the Fisher information

matrix for ˇ12. UnderH0, Ǒt12I
�
Ǒ
12

�
Ǒ
12

d
!�2v . A score test, based on the derivatives of the log likeli-

hood function l , can be formulated when the variability is difficult to estimate. Take the observed score

U

�
ˇ12 D

*

0

�
D @l

@ˇ12

ˇ̌̌
ˇ12D

*
0

and the observed information I

�
ˇ12 D

*

0

�
D � @2l

@ˇ12@ˇ
t
12

ˇ̌̌
ˇ12D

*
0

, then

the score test statistic U

�
ˇ12 D

*

0

�t
I

�
ˇ12 D

*

0

��1
U

�
ˇ12 D

*

0

�
d
!�2v under H0.

In addition to the global test of systematic effects H0 W ˇ12 D E0, one can perform post hoc tests to
assess each individual component of ˇ12. Let L be a vector with the length of ˇ12, one component as 1
and the reming components as 0. To test H0 W Ltˇ12 D 0 versus Ha W Ltˇ12 ¤ 0, let OCˇ12 be the esti-

mated variance and covariance matrix for ˇ12. The t -test statistic t D Lt Ǒ12q
Lt OCˇ12L

approximately follows

t -distribution, and the degrees of freedom can be estimated by [15]. If one is reluctant to employ formal
hypothesis testing for identifying systematic variability, then another possibility is estimation. For exam-
ple, one may compute the LRT (or Wald or score) statistic and subtract off the degrees of freedom. This
will yield a point estimate of the underlying noncentrality parameter, which is essentially an effect size.
One may declare as unsuitable for normalization candidate genes for which the estimated effect size is
too large, even if formal hypothesis testing would not have rejected the corresponding null hypothesis
(note that, in this context, a type I error is less serious than a type II error: declaring as unsuitable genes
that would have been okay is better than declaring as suitable genes that would not have been okay).

2.4. Confidence interval of intraclass correlation coefficient

When genes are free of systematic effects or systematic effect by gene interactions, that is, ˇ12 D E0, we
can reduce model (1) to a two-way mixed-effects ANOVA model

Y D E1�CG� CA˛C "; (3)

where� is the overall fixed effect, � is the fixed gene effect, and ˛ is the random sample effect. Model (3)
fits as Case 3A in [16]. Consider ANOVA for a complete randomized block design, let MSB be the
between-subject mean square, and let MSR be the residual mean square. The ICC in model (3) can be
estimated by O� D .MSB � MSR/=.MSB C .m � 1/MSR/. An exact 100.1 � c/% confidence interval
for � has

lower limitD .FL � 1/=.FLC n� 1/ and upper limitD .FU � 1/=.FUC n� 1/; (4)

where FL D .MSB=MSR/=Fc=2I�1;�2 , FU D .MSB=MSR/=Fc=2I�2;�1 , 	1 D m � 1, and 	2 D
.m� 1/.n� 1/.

2.5. Sample size

Algorithms to determine the number of samples in selection of housekeeping genes for RT-PCR data
have not been specifically provided in literature. Our proposed method suggests that ideal reference
genes for normalization do not have systematic effects or systematic effect by gene interactions.
Therefore, one can utilize the ICC in model (3) to determine the sample size. According to [17], the

width of the confidence interval of ICC derived in (4) can be approximated by 2´c=2
p

var O�, where
var . O�/D 2.1��/2.1C .m�1/�/2=fm.m�1/.n�1/g. Let w be a desired width of confidence interval
and � be an expected ICC for housekeeping genes. Solving the equation w D 2´c=2

p
var O�, we obtain

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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Table I. Minimal sample sizes needed in experiments to detect m underlying housekeeping genes with
ICCD � and w D width of 95% confidence interval of �.

w D 0:1 w D 0:2

� mD 2 3 4 5 mD 2 3 4 5

0.90 57 42 37 4 15 12 10 10
0.89 68 49 43 40 18 13 12 11
0.88 80 58 50 47 21 16 14 13
0.87 92 66 58 54 24 18 16 15
0.86 106 76 66 61 28 20 18 16
0.85 120 86 74 68 31 23 20 18
0.84 135 96 83 76 35 25 22 20
0.83 150 106 92 84 39 28 24 22
0.82 166 117 101 93 43 30 26 24
0.81 183 128 110 101 47 33 29 26
0.8 201 140 120 110 51 36 31 29
0.79 219 152 130 119 56 39 34 31
0.78 237 164 140 128 60 42 36 33
0.77 256 176 150 137 65 45 39 35
0.76 276 189 160 146 70 48 41 38
0.75 296 202 171 155 75 52 44 40
0.74 316 214 181 164 80 55 46 42
0.73 337 227 191 174 85 58 49 45
0.72 358 241 202 183 91 61 52 47
0.71 379 254 213 192 96 65 54 49
0.70 401 267 223 201 101 68 57 51

the minimal total sample size as n D 8´2
c=2
f.1 � �/2.1 C .m � 1/�/2g=fm.m � 1/w2g C 1. Because

the underlying housekeeping genes are expected to have high ICC, we tabulate minimal sample sizes for
two to five housekeeping genes with ICC ranging between 0.7 and 0.9 and two-sided confidence interval
width = 0.1 and 0.2 in Table I. Here, m is the number of true housekeeping genes instead of the number
of candidate genes in experiments.

3. Case studies

In this section, we will compare our proposed method with geNorm and NormFinder by using three
case studies. In all three case studies, our proposed method included a gene fixed effect, tumor fixed
effect, tumor by gene interaction, and sample random effect in full LMM (1). We performed LRT to
remove candidate housekeeping genes with significant systematic effects (tumor effects or tumor by
group interactions). The ICC and 95% confidence interval were calculated from the reduced LMM where
insignificant systematic effects were removed. A gene combination with the highest lower bound in 95%
CI of ICC was selected as the optimal housekeeping genes.

geNorm did not take the tumor effect or tumor by gene interaction into consideration. The algorithm
measured stability of genes, with higher M values indicating lower stability. Genes with high M values
were removed sequentially, and M values were updated until only two genes remained.

NormFinder took the tumor effect into consideration but did not consider tumor by gene interaction.
All genes were fitted into one ANOVA model in one step, and the two most stable genes were selected
as the optimal housekeeping genes.

3.1. Bladder cancer 1 study

Gene expression levels measured by RT-PCR were obtained for 14 genes on 28 subjects (Table II). The
subjects were divided into three tumor groups: Ta (nD 10), T1 (nD 8), and T2�4 (nD 10).

The results from the proposed method suggest that there were no significant systematic effects
regarding the tumor group main effect and tumor group by gene interaction. The top three gene combina-
tions with the highest ICCs in two-way, three-way, and four-way combinations are listed in Table III(a).

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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Table II. The dataset description.

Number of
Study Sample candidate Systematic
name size genes Candidate genes effect variable Reference

Bladder cancer 1 28 14 ATP5B, HSPCB, S100A6, Tumor group [8] supplementary
FLOT2, TEGT, UBB, data
TPT1, CFL1, ACTB,
RPS13, RPS23, GAPD,
UBC, FLJ20030

Bladder cancer 2 26 8 CD14, FCN1, CCNG2, NPAS2, Tumor group [8] supplementary
UBC, CFL1, ACTB, GAPD data

Colon cancer 40 13 UBC, UBB, SUI1, Cancer [8] supplementary
NACA, FLJ20030, CFL1, classification data
ACTB, CLTC, RPS13,
RPS23, GAPD, TPT1,
TUBA6

Our proposed method selected HSPCB, RPS13, and RPS23 as the most suitable reference genes for
normalization (estimated ICCD 0:90, 95% CI: 0.817–0.95, LRT p-valueD 0:53) (Table III(a)).

The selections of reference genes from NormFinder and geNorm were different. geNorm selected
UBC and CFL1 (M -value D 0:358), whereas NormFinder selected HSPCB and RPS13 (combined
stability value D 0:08) (Table IV). Because the proposed method selected optimal housekeeping
genes from all combinations, whareas the software NormFinder only provides the optimal two-way
combinations of housekeeping genes, the result from the proposed method is consistent with that of
NormFinder in this case.

3.2. Bladder cancer 2 study

Gene expression levels measured by RT-PCR were obtained from eight genes on 26 subjects (Table II).
The subjects were divided into two tumor groups: Ta (nD 12) and T2�4 (nD 14).

The proposed method tested the systematic effects, namely the main effect of tumor group and tumor
group by gene interaction. The results of LRT show that four sets of gene combinations had significant
systematic effects (LRT p-value< 0:05). Post hoc analysis indicates that the systematic effects were due
to the interaction between gene and tumor group. These four sets of gene combinations were removed
from further analysis. Our method suggests that UBC, CFL1, and GAPD are suitable housekeeping
genes with the estimated ICCD 0:89, 95% CID 0.80–0.94, and LRT p-valueD 0:22 (Table III(b)).

The three genes with the lowest M -values are UBC (M�value D 0:46), CFL1 (M -value D 0:46)
and GAPD (M -value D 0:496) according to geNorm (Table IV). The results from geNorm and our
proposed methods are consistent. NormFinder suggests a different set of genes, CFL1 and ACTB, with
the combined stability valueD 0:088.

3.3. Colon cancer study

The RT-PCR measures of gene expression were obtained for 13 genes on 40 subjects (Table II). The
subjects were classified into two cancer groups: Normal (nD 10) and Dukes (nD 30).

The proposed method tested the systematic effects regarding the cancer classification main effect and
gene by cancer classification interaction. Three gene combinations had significant systematic effects
(LRT p-value< 0:05) that were due to the interaction between gene and cancer classification according
to the post hoc analysis. Our method suggests that CFL1, ACTB, and CLTC are suitable housekeeping
genes with ESTIMATED ICCD 0:92, 95% CI: 0.864–0.95, LRT p-valueD 0:42 (Table III(c)).

Our proposed method and geNorm have the same selections for two-way (RPS23CTPT1) and three-
way (RPS13C RPS23C TPT1) gene combinations, as the gene combination with the highest ICC by
our proposed method matched the gene combination with the lowest M -values by geNorm. However,
the results of LRT show that there was significant systematic effect (LRT p-value < 0:05) due to

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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Table III. Selection of housekeeping genes using the proposed method.

Systematic effects
(a) Bladder 1 study top LRT Tumor Gene*tumor
Top gene combinations ICC 95% CI of ICC Gene H0 W ˇ12 D E0 group group

HSPCBCRPS23 0.91 (0.816, 0.96) < 0:01 0.18 0.90 0.21
RPS13CRPS23 0.91 (0.81, 0.96) 0.02 0.25 0.81 0.31
ATP5BCHSPCB 0.89 (0.79, 0.95) < 0:01 0.48 0.99 0.49
HSPCB+RPS13+RPS23 0.90 (0.817, 0.95) < 0:01 0.53 0.90 0.29
ATP5BCHSPCBC TEGT 0.88 (0.80, 0.94) < 0:01 0.88 0.99 0.66
ATP5BCHSPCBCRPS23 0.88 (0.78, 0.94) < 0:01 0.36 0.98 0.1
ATP5BCHSPCBCRPS13CRPS23 0.87 (0.79, 0.93) < 0:01 0.44 0.96 0.24
ATP5BCHSPCBC TEGTCRPS23 0.87 (0.78, 0.93) < 0:01 0.69 0.97 0.46
HSPCBC TPT1CRPS13CRPS23 0.86 (0.77, 0.93) < 0:01 0.32 0.82 0.17

Systematic effects
(b) Bladder 2 study top LRT Tumor Gene*tumor
Top gene combinations ICC 95% CI of ICC Gene H0 W ˇ12 D E0 group group

UBCCGAPD 0.90 (0.79, 0.95) 0.02 0.27 0.86 0.11
CFL1CGAPD 0.89 (0.76, 0.95) 0.16 0.78 0.54 0.75
UBCCCFL1 0.88 (0.75, 0.94) 0.30 0.11 0.77 0.04
UBC+CFL1+GAPD 0.89 (0.80, 0.94) 0.05 0.22 0.71 0.12
UBCCCFL1CACTB 0.80 (0.65, 0.89) 0.52 0.01 0.38 < 0:01

CFL1CACTBCGAPD 0.79 (0.64, 0.89) 0.50 0.17 0.28 0.14
UBCCCFL1CACTBCGAPD 0.81 (0.69, 0.90) 0.26 0.02 0.44 0.01
CCNG2CUBCCCFL1CGAPD 0.74 (0.60, 0.86) 0.35 < 0:01 0.68 < 0:01

CCNG2CUBCCCFL1CACTB 0.65 (0.47, 0.80) 0.60 < 0:01 0.90 < 0:01

Systematic effects
(c) Colon study top LRT Tumor Gene*tumor
Top gene combinations ICC 95% CI of ICC Gene H0 W ˇ12 D E0 group group

RPS23C TPT1 0.94 (0.892, 0.97) 0.94 < 0:01 0.12 < 0:01

RPS13CRPS23 0.94 (0.889, 0.97) < 0:01 0.02 0.17 0.02
UBBCCFL1 0.92 (0.857, 0.96) 0.07 0.79 0.69 0.59
RPS13CRPS23C TPT1 0.93 (0.88, 0.96) < 0:01 0.03 0.19 0.02
SUI1CRPS13CRPS23 0.92 (0.87, 0.95) < 0:01 0.10 0.16 0.1
CFL1+ACTB+CLTC 0.92 (0.864, 0.95) < 0:01 0.42 0.46 0.32
SUI1CRPS13CRPS23C TPT1 0.92 (0.87, 0.95) < 0:01 0.09 0.17 0.09
NACACRPS13CRPS23C TPT1 0.91 (0.86, 0.95) < 0:01 0.09 0.19 0.09
CFL1CACTBCCLTCC TUBA6 0.91 (0.857, 0.95) < 0:01 0.11 0.60 0.07

Genes with the highest lower bound for 95% CI of ICC and LRT p-value > 0:05 are selected as reference genes for
normalization and highlighted in red. Gene combinations with LRT p-value < 0:05 have systematic effects and thus
are removed from consideration. Stop testing higher-order gene combinations if ICC does not increase.

gene by cancer classification. Therefore, these genes were removed from consideration in our method.
NormFinder suggests a different set of genes, TPT1 and TUBA6 with combined stability valueD 0:061
for normalization.

4. Empirical assessment

An empirical assessment was performed to compare our proposed method with competitors, geNorm,
and NormFinder. We focus on two scenarios regarding genes with and without a group effect to illustrate
the major differences among the three approaches (Table V). For each scenario, sample sizes of 25 and
50 subjects were assessed, respectively. We used bladder 2 data in Section 3 as a reference for parameter
values in the following simulation models.

We first considered scenario I where expression levels for three candidate genes were simulated from
the model ln.yij /D �j C ˛i C vij C "ij for the j th gene in the i th subject. The mean gene expression
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Table IV. Selection of housekeeping genes using geNorm and NormFinder.

geNorm (no group) NormFinder (disease group)

Study name Gene M value Gene Stability value

Bladder 1 UBC 0.358 HSPCB 0.107
CFL1 0.358 TEGT 0.136
ATP5B 0.441 ATP5B 0.138
HSPCB 0.465 UBC 0.141
GAPD 0.550 RPS23 0.148
TEGT 0.568 RPS13 0.149
RPS23 0.634 CFL1 0.185
RPS13 0.634 FLJ20030 0.185
TPT1 0.695 TPT1 0.187
FLJ20030 0.732 UBB 0.196
FLOT2 0.770 FLOT2 0.205
UBB 0.776 GAPD 0.236
ACTB 0.813 S100A6 0.239
S100A6 0.931 ACTB 0.242

Bladder 2 UBC 0.46 CFL1 0.109
CFL1 0.46 ACTB 0.171
GAPD 0.496 UBC 0.259
ACTB 0.708 GAPD 0.262
CCNG2 1.069 CCNG2 0.68
CD14 2.134 CD14 0.87
NPAS2 2.338 NPAS 0.889
FCN1 2.551 FCN1 1.022

Colon RPS23 0.388 UBC 0.088
TPT1 0.388 GAPD 0.099
RPS13 0.491 TPT1 0.128
SUI1 0.545 RPS13 0.143
UBC 0.566 TUBA6 0.147
TUBA6 0.581 NACA 0.177
UBB 0.587 UBB 0.178
GAPD 0.594 SUI1 0.218
NACA 0.6 CFL1 0.222
CLTC 0.637 FLJ20030 0.228
ACTB 0.645 ACTB 0.247
CFL1 0.647 RPS23 0.265
FLJ20030 0.811 CLTC 0.278

The best combination of two suitable genes is in red.

level was set as�j D 4 for all three genes .j D 1; 2; 3/. The random effect ˛i �N.0; 0:64/ induced the
correlations among gene expression levels in the i th subject. Every subject had an independent random
residual "ij � N.0; 0:16/. We assumed that genes 1 and 2 were the true housekeeping genes that were
stable over subjects with variability vij D 0. We assumed that gene 3 was not a true housekeeping gene,
and its expression level varied across subjects with vij � uniform.0; 3/.

Counts of correct selections of housekeeping genes over 10 simulations appear in Table V. For both
n D 25 and n D 50, our method and geNorm correctly selected genes 1 and 2 as housekeeping genes
with 100% accuracy. NormFinder misclassified gene 3 as one of the housekeeping genes in two cases
when nD 25 and in four cases when nD 50.

The selection error of NormFinder in scenario I could arise from selection bias due to violation of
the NormFinder model assumptions. Indeed, Anderson et al. noted in [8] (page 5247, requirements) that
the candidate genes are assumed to have no prior expectation of expression difference between groups.
More specifically, in the appendix of [8] (pages 3 and 4), the authors indicated the confounding of mean
parameters. To address this confounding, NormFinder assumes that the average expression level of all
genes is independent of the group. Furthermore, NormFinder does not perform filtration to remove genes

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013



H. DAI ET AL.

Table V. Empirical comparison of three methods for selection of housekeeping genes.

Models (gene expression
level for the j th gene of the Sample Proposed
i th subject in the gth group) size method NormFinder geNorm

Scenario 1: ln.yij /D �j C ˛i C vij C "ij 25 10/10 8/10 10/10
no group effect Genes 1 and 2: vij D 0

Gene 3: vij � uniform.0; 3/
For all three genes,
�j D 4, ˛i �N.0; 0:64/,
and "ij �N.0; 0:16/ 50 10/10 6/10 10/10

Scenario 2: Genes 1 and 2: 25 10/10 0/10 0/10
group effect ln.yij /D �j C ˛i C vij C "ij , vij D 0

Gene 3: ln.yijg /D �j C ˛i C vij C �gC "ij
vij � uniform.0; 3/; �g D�2

for g D 1 and �g D 0 for g D 2
Gene 4: ln.yi4g /D 2 � ln.yi3g /C 
i4,

i4 �N.0; 0:01/

For all genes, �j D 4, ˛i �N.0; 0:64/,
"ij �N.0; 0:16/ 50 10/10 0/10 0/10

Counts of correct selections of housekeeping genes over 10 simulations are listed. Genes 1 and 2 are true housekeeping
genes with variability vij D 0.

with group effects. The prescription vi3 � uniform.0; 3/ in our assessment implies that, for some of the
simulated data sets, there might have been problematic imbalances across groups in the sample average
expression level of all genes, even though scenario I did not have any group effect in the underlying
population.

Next, we simulated scenario II with a group effect. We assume genes 1 and 2 are the true house-
keeping genes with the model ln.yij / D �j C ˛i C vij C "ij , where �j D 4, ˛i � N.0; 0:64/,
"ij � N.0; 0:16/, and vij D 0. We assume that genes 3 and 4 are not true housekeeping genes with
variability vij � uniform.0; 3/. For n D 25, 10 subjects were randomly assigned to group 1, and the
remaining subjects are in group 2. For n D 50, 25 subjects were randomly assigned to each group. For
genes 3 and 4, a group effect �g D �2 is added to group 1. Gene 4 has twice the gene expression level
of gene 3 plus a residual 
i4 � N.0; 0:01/. The explicit expressions for genes 3 and 4 under groups
g D 1; 2 are listed in Table V.

In scenario II, our method correctly selected the housekeeping genes with 100% accuracy, whereas
geNorm and NormFinder were unable to select the correct housekeeping genes. geNorm compares the
ratios between expression levels for two genes and selects genes with the lowest variability, ignoring
the potential group effect among genes. As a result, geNorm mistakenly selected genes 3 and 4 as
housekeeping genes with a selection error rate of 100%. NormFinder was unable to identify the correct
housekeeping genes, as this method is based on a null hypothesis of no group effect.

5. Discussion and conclusion

We have proposed a three-way LMM and ICC to determine reference genes for normalization. The
mixed-effects model can take multiple continuous or categorical systematic effect variables into account
and ensure that the selected housekeeping genes are free of systematic effects. The proposed method
offers a 95% confidence interval for the stability measure. Sample size calculation is offered on the basis
of the proposed method framework, which fills in the gap in the existing methods. One of attractive
features for the LMM is that it can accommodate data that are missing at random. Our method inherits
this nice feature.

geNorm is one of the most commonly used approaches for normalization in RT-PCT data with
more than 4000 citations by research articles. Our proposed method provided consistent results when
compared with geNorm in two of our case studies while addressing the limitations in geNorm.
We constructed the three-way LMM to analyze fixed gene effects, random sample effects, and fixed
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systematic effects. Multiple tests of individual systematic effects would inflate the probability of type I
error. We address this issue by performing a global test on H0 W ˇ12 D E0 with the LRT or the Wald test.
Condensing multiple effects into one global test offers a powerful test without inflating the probability
of type I error. Gene combinations with LRT p-value< 0:05 will be removed from analysis.

The ICC is suitable to serve as a stability measure in search of reference genes with low variability. The
ICC � D �2˛=

�
�2˛ C �

2
"

�
is the ratio of between-subject variation to sum of between-subject variation

and residual variation. Maximizing ICC is equivalent to minimizing relative residual variation when
taking the sum of variations into account as � D �2˛=

�
�2˛ C �

2
"

�
D 1 � �2" =

�
�2˛ C �

2
"

�
. The ratio-

nale of using ICC to identify reference genes is in agreement with the rationales adopted by existing
methods. For instance, geNorm minimizes the standard deviation for the ratios between gene expression
levels, although it is heuristic to average the standard deviations and combine them into an M -value.
The BestKeeper method [10] suggests the use of Pearson correlation coefficients for all pairwise gene
combinations to select reference genes with high Pearson correlation coefficients. However, Pearson
correlation coefficients cannot measure the correlations among three or more genes.

The proposed method utilizes a step-up algorithm to search for gene combinations with high ICC and
no systematic effects. The algorithm stops if the lower bound of 95% confidence interval of ICC does
not increase for higher-order gene combinations. Using the lower bound of 95% confidence interval
for ICC will take the variation of the stability measure into account and avoid selection of genes with
ICC estimated so imprecisely that we cannot be confident of a high value. geNorm performs a step-
down algorithm to remove genes with the highest M -value step by step and recalculates M -values for
remaining genes. There is no objective cutoff point to determine when to stop the process. It is difficult
to justify implementing an arbitrary cutoff such as M < 0:5 or M < 1:5 to determine reference genes in
all experiments.

The rationales of the step-up and step-down algorithms for the proposed method and geNorm are
consistent in that both methods try to exclude noisy genes that are inappropriate to serve as reference
genes for normalization. All genes are analyzed by NormFinder in a two-way ANOVA model. Not
removing irrelevant and noisy genes might inflate the variation in the model. As a result, geNorm and
NormFinder did not select same genes in the three case studies.

Anderson et al. [8] pointed out the importance of analyzing systematic effects and constructed a
two-way ANOVA model to measure the stability value after adjusting for a group effect. However, the
method in NormFinder only works when the candidates are chosen from a set of genes with no prior
expectation of expression difference between groups. In other words, the stability value and selection of
housekeeping genes will be biased in NormFinder analysis if any candidate genes have significant group
effects [8].

We compare our methods with geNorm and NormFinder by using three case studies. In three case
studies (bladder cancer 1, bladder cancer 2, and colon cancer), there was no agreement in the selection
of housekeeping genes between geNorm and NormFinder. In bladder cancer 1 study when there was no
significant systematic effect, our selection was consistent with that of NormFinder. In bladder 2 and colon
cancer case studies, the significant systematic effects due to group by gene interaction led to selection
bias in NormFinder. As a result, the findings from our proposed method and geNorm were consistent, and
they were different from those of NormFinder. We also provide sample size calculation for experiments
to identify housekeeping genes. The existing methods do not provide sample size calculation formula.
Our formula suggests increasing sample sizes as the expected ICC approaches (m � 2)/(2m � 2) or
a higher confidence level is desired. Moreover, sample size decreases as the number of true house-
keeping genes increases. As indicated by [18], the effective sample size, using the notation from our
manuscript, is mn=.1C �.m � 1//. Making m larger does increase the effective sample size, which in
turn provides narrower confidence intervals at a fixed n(or, as in Table I, permits a smaller m at a fixed
confidence interval width). However, there is a lower bound 8´2.1 � �/2�2=w2 as m!1. Thus, the
sample size n cannot be made arbitrarily small by making m sufficiently large. A free software package
written in SAS is available at http://d.web.umkc.edu/daih under software tab for practitioners to apply
the proposed method.
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