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Abstract. This paper is a tutorial on how to model
and prove complex properties of complex hybrid sys-
tems in KeYmaera, an automatic and interactive formal
verification tool for hybrid systems implementing differ-
ential dynamic logic. Hybrid systems can model highly
nontrivial controllers of physical plants, whose behav-
iors are often safety critical such as trains, cars, air-
planes, or medical devices. Formal methods can help de-
sign systems that work correctly. This paper illustrates
how KeYmaera can be used to systematically model, val-
idate, and verify hybrid systems. We develop tutorial
examples that illustrate challenges arising in many real-
world systems. In the context of this tutorial, we identify
the impact that modeling decisions have on the suitabil-
ity of the model for verification purposes. We show how
the interactive features of KeYmaera can help users un-
derstand their system designs better and prove complex
properties for which the automatic prover of KeYmaera
still takes an impractical amount of time. We hope this
paper is a helpful resource for designers of embedded
and cyber-physical systems and that it illustrates how
to master common practical challenges in hybrid sys-
tems verification.

1 Introduction

Hybrid systems [2, 15, 24] feature both discrete and
continuous dynamics. Hybrid systems are important for
modeling and understanding systems with computerized
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or embedded controllers for physical systems. Prime ex-
amples of hybrid systems include cars [17, 30], aircraft
[44, 52, 53], trains [46], robots [36], and even audio proto-
cols [25]. The design of any controller for these systems
is critical, because malfunctions may have detrimental
consequences to the system operation. A number of for-
mal verification techniques have been developed for hy-
brid systems, but verification is still challenging for more
complex applications [1]. Experience can make a big dif-
ference when making trade-offs to decide on a modeling
style, on the most suitable properties to consider, and
on the best way to approach the verification task.

This article introduces hybrid system modeling with
differential dynamic logic [37, 38, 40]. Furthermore, we
explain how to prove complex properties of hybrid sys-
tems with our theorem prover KeYmaera. We intend this
paper to be a valuable resource for system designers and
researchers who face design challenges in hybrid systems
and want to learn how they can successfully approach
their verification task. Formal verification is a challeng-
ing task, but we argue that it is of utmost importance
for safety-critical designs and the coverage benefits com-
pared to traditional incomplete system testing far out-
weigh the cost. Especially, the possibility of checking
and dismissing designs early in the development cycle re-
duces the risk of design flaws causing costly downstream
effects.

Even though some of our findings affect other verifi-
cation tools, we focus on KeYmaera [45] in this paper.
KeYmaera implements differential dynamic logic [37, 38,
40], which is a specification and verification logic for
hybrid systems. KeYmaera is based on KeY [6], and is
presently the premier theorem prover for hybrid systems.
For formal details and more background on the approach
behind KeYmaera, we refer to the literature [38–40]. It
has matured to a powerful verification tool that has been
used successfully to verify cars [30, 33], aircraft [44],
trains [46], robots [32], and surgical robots [28]. Like
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with any other verification tool, some decisions in the
modeling, specification, and proof approach make veri-
fication unnecessarily tedious, while others are compu-
tationally more effective. Relative completeness results
[38, 40] identify exactly which decisions are critical, but
even the decisions that are not can have a dramatic im-
pact on the effectiveness of the verification process in
practice [40].

We identify best practices for hybrid systems verifica-
tion that help practitioners and researchers verify hybrid
systems with KeYmaera more effectively. We develop a
series of tutorial examples that illustrate how to master
increasingly more complicated challenges in hybrid sys-
tems design and verification. These examples are care-
fully chosen to illustrate common phenomena that occur
in practice, while being easier to understand than the full
details of our specific case studies1: here, we illustrate hy-
brid systems and KeYmaera by considering motion in a
series of car models. We emphasize that KeYmaera is in
no way restricted to car dynamics but has been shown to
work for more general dynamics, including hybrid sys-
tems with non-linear differential equations, differential
inequalities, and differential algebraic constraints.

2 Introduction to Hybrid Systems Modeling

In this section we exemplify the main concepts of hy-
brid systems, before we introduce hybrid programs, a
program notation for hybrid systems.

2.1 Hybrid Systems by Example

Hybrid systems, as already mentioned, comprise contin-
uous and discrete dynamics. The movement of cars (i. e.,
their continuous dynamics) can be described by differ-
ential equations. Kinematic models based on Newton’s
laws of mechanics are sufficient for basic car interactions
where p is the position of the car, v its velocity and a
its acceleration. All these state variables are functions in
time t. They observe the following ordinary differential
equation (ODE):

dp

dt
= v,

dv

dt
= a ≡ p′ = v, v′ = a (1)

This ODE models that the position p of the car changes
over time with velocity v, and that the velocity v changes
with acceleration a. As time domain we use the non-
negative real numbers, denoted by R≥0, and instead of
dp
dt we write p′ for the time-derivative of p. Observe that
equation (1) does not specify how the acceleration a
evolves. We could add another differential equation a′ =
j where j is the jerk, but then the question is how j

1 Specific case studies include cars [30, 33], aircraft [44], trains
[46], robots [32], and surgical robots [28]. The models of these case
studies are included in KeYmaera.
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Fig. 1: One example trace of a hybrid system for car dynam-
ics (1) with the acceleration signal changing as indicated over
time

evolves. KeYmaera follows the explicit change principle.
That is, no variable changes unless the model explicitly
specifies how it changes. In particular, the absence of a
differential equation for a in (1) indicates a is constant
during this continuous evolution.

If we want to model an analog controller for a, we
can replace a in (1) by a term that describes how the
analog controller sets the acceleration a, depending on
the current position p and velocity v. For example, if vs is
the set-value for the velocity, we could describe a simple
proportional controller with gain Kp by the differential
equation p′ = v, v′ = Kp(v − vs).

A common alternative is to use a discrete controller,
which turns the purely continuous dynamical systems
into a hybrid system that exhibits both discrete and con-
tinuous dynamics. A discrete controller instantaneously
sets values at particular points in time. An example tra-
jectory is shown in Fig. 1 for the car dynamics (1), con-
trolled by a discrete controller for the acceleration a that
changes its values at various instants in time. The figure
traces the values of the system state variables p, v, and
a over (real-valued) time t. The acceleration a changes
its value instantaneously according to some discrete con-
troller (not specified in (1)) and this effect propagates to
the velocity and position according to the relations given
by the differential equation (1).

Given a target speed vs suppose we want to build a
discrete controller that chooses a constant positive ac-
celeration of A if the current speed is too low and a
constant deceleration of −B if it is too high. (2) shows
a hybrid system that includes such a controller.(

if v ≤ vs then a :=A else a :=−B fi; (p′ = v, v′ = a)
)∗
(2)

The first statement here is a case distinction started with
if and ended with fi. It first checks whether the current
velocity v is less than or equal to the desired velocity
vs (i. e., whether v ≤ vs holds). If that is the case then
the car chooses to accelerate by executing a := A. This
means that the value of a gets updated to the value of
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A. In the following, we assume A is the maximal accel-
eration. Otherwise, i. e., if v > vs then the assignment
a := −B gets executed, assigning the maximal deceler-
ation of −B to a. The operator ; is for sequential com-
position. That is, after the first statement finishes (here,
the if statement) the next statement is executed, here
the differential equation system (p′ = v, v′ = a). Hence
after the controller chooses an acceleration, the variables
evolve according to the solution of this differential equa-
tion system. During this evolution the acceleration a is
constant. Operator ∗ denotes nondeterministic repeti-
tion like in a regular expression. That is, the sequence
of the discrete controller and the differential equation
system are repeated arbitrarily often. The loop, in our
example, enables the discrete controller to update the
acceleration.

A common and useful assumption when working with
hybrid systems is that discrete actions do not consume
time (whenever they do consume time, it is easy to trans-
form the model to reflect this just by adding explicit ex-
tra delays). Because discrete actions are assumed not to
consume time, multiple discrete actions can occur at the
same real point in time.

The model (2) does not specify when the continuous
evolution stops to give the discrete controller another
chance to react. This is because the number of loop iter-
ations as well as the evolution times are chosen nonde-
terministically (even no repetition and evolution for zero
duration are allowed). Hybrid systems with differential-
algebraic equations can introduce an upper bound on the
continuous dynamics. We model such an upper bound on
time in (3) with a clock variable c. That is, we ensure
that at least every ε time units the discrete controller
might take action.(

if v ≤ vs then a :=A else a :=−B fi; (3)

c := 0; (p′ = v, v′ = a, c′ = 1 & c ≤ ε)
)

(4)

The clock c is reset to zero by the discrete assignment
c := 0 before every continuous evolution and then evolves
with a constant slope of c′ = 1. The formula c ≤ ε that is
separated from the differential equation by & is an evo-
lution domain constraint. Evolution domain constraints
are formulas that restrict the continuous evolution of
the system to stay within that domain. This means, the
continuous evolution starts within the specified domain
and must stop before it leaves this region. Therefore, the
continuous evolution in (3) evolves for at most ε time
units, i. e., the discrete controller is invoked at least ev-
ery ε time units because any continuous evolution for
more than ε time units violates the evolution domain
constraint c ≤ ε. This model paradigm ensures that if
the controller is implemented on faster hardware, then
it will still have the same safety properties.

Note that the model (3) only puts an upper bound
on the duration of a continuous evolution, not a lower
bound. The discrete controller can react faster than ε
and, in fact, in Fig. 1, it does react more often.

The next extension to our model adds nondeterminis-
tic choice of the acceleration. If, as in (5), we replace the
assignment a :=A by a :=A∪a := 0 (read “a becomes A
or a becomes 0”), then the controller can always choose
to keep its current velocity instead of accelerating fur-
ther. We use ∪ to be a nondeterministic choice, meaning
the program can unconditionally follow either way.(

if v ≤ vs then a :=A ∪ a := 0

else a :=−B fi;

c := 0; (p′ = v, v′ = a, c′ = 1 & c ≤ ε)
)∗(5)

In summary, nondeterministic choice, repetition, and
assignment are important modeling constructs for safety
verification purposes, because they allow us to capture
the safety-critical aspects of many different controllers
all within a single model.

2.2 Hybrid Programs

The program model for hybrid systems that we have il-
lustrated by example is called hybrid programs (HP) [38–
40]. The syntax of hybrid programs is shown together
with an informal semantics in Table 1. KeYmaera also
supports an ASCII variation of the notation in Table 1.
The basic terms (called θ in the table) are either ratio-
nal number constants, real-valued variables or (possibly
nonlinear) polynomial or rational arithmetic expressions
built from those.

The effect of x := θ is an instantaneous discrete jump
assigning the value of θ to the variable x. For example in
Fig. 1, the acceleration a changes instantaneously at time
1.8 from 0 to 5, by the discrete jump a :=A when A has
value 5. The term θ can be an arbitrary polynomial. For
a car with current velocity v the deceleration necessary

to come to a stop within distance m is given by − v2

2m .
The controller could assign this value to the acceleration

by the assignment a := v2

2m .
The effect of x′ = θ&F is an ongoing continuous evo-

lution controlled by the differential equation x′ = θ that
is restricted to remain within the evolution domain F ,
which is a formula of arithmetic. The evolution is allowed
to stop at any point in F but it must not leave F . Sys-
tems of differential equations and higher-order deriva-
tives are defined accordingly: p′ = v, v′ = −B& v ≥ 0,
for instance, characterizes the braking mode of a car with
braking force B that holds within v ≥ 0 and stops any
time before v < 0. The extension to systems of differen-
tial equations is straight forward, see [38–40].

For discrete control, the test action ?F is used to de-
fine conditions. It succeeds without changing the state
if F is true in the current state, otherwise it aborts all
further evolution. For example, a car controller can check
whether the chosen acceleration is within physical lim-
its by ? − B ≤ a ≤ A. If a computation branch does
not satisfy this condition, the branch is discontinued
and aborts. From a modeling perspective, tests should
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Table 1: Simple Statements of hybrid programs (F is a first-order formula, α, β are hybrid programs)

Statement Effect

α; β sequential composition where β starts after α finishes
α ∪ β nondeterministic choice, following either alternative α or β
α∗ nondeterministic repetition, repeating α n times for any n ∈ N
x := θ discrete assignment of the value of term θ to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x(
x′1 = θ1, . . . , continuous evolution of xi along the differential equation system

x′n = θn&F
)

x′i = θi restricted to evolution domain F
?F test if formula F holds at current state, abort otherwise
if F then α fi perform α if F is true at current state, do nothing otherwise
if F then α else β fi perform α if F is true at current state, perform β otherwise

fail if a branch is not possible in the original system we
are currently modeling. Therefore, during verification we
consider only those branches of a system where all tests
succeed.

From these basic constructs, more complex hybrid
programs can be built in KeYmaera similar to regular ex-
pressions. The sequential composition α;β expresses that
hybrid program β starts after hybrid program α finishes,
as in Expression (2). The nondeterministic choice α∪β
expresses alternatives in the behavior of the hybrid sys-
tem. Nondeterministic repetition α∗ says that the hybrid
program α repeats an arbitrary number of times, includ-
ing zero. These operations can be combined to form any
other control structure.

For instance, (?v ≥ vs; a :=A) ∪ (?v ≤ vs; a :=−B)
says that, depending on the relation of the current speed v
of some car and a given target speed vs, a is chosen to
be the maximum acceleration A if v ≤ vs or maximum
deceleration −B if v ≥ vs. If both conditions are true
(hence, v = vs) the system chooses either way. Note
that the choice between the two branches is made nonde-
terministically. However, the test statements abort the
program execution if the left branch was chosen in a
state where v ≥ vs does not hold, or the right branch
was chosen in a state where v ≥ vs was not satisfied. In
other words, only one choice works out unless v = vs in
which case either a :=A or a :=−B will be run. As ab-
breviations, KeYmaera supports if-statements with the
usual meanings from programming languages. The if-
statement can be expressed using the test action, se-
quential composition and the choice operator.

if F then α fi ≡ (?F ;α) ∪ (?¬F )

if F then α else β fi ≡ (?F ;α) ∪ (?¬F ;β)

Its semantics is that if condition F is true, the then-part
α is executed, otherwise the else-part β is performed,
if there is one, otherwise the statement is just skipped.
Note that, even though we use nondeterministic choice
in the encoding, the choice becomes deterministic as the
conditions in the test actions are complementary, so ex-
actly one of the two tests ?F and ?¬F fails in any state.

The nondeterministic assignment x := ∗ assigns any
real value to x that is, every time x := ∗ is run, an arbi-
trary real number will be put into x, possibly a different
one every time. Thereby, x := ∗ expresses unbounded
nondeterminism that can be used, for example, for mod-
eling choices for controller reactions. For instance, the id-
iom a := ∗; ?a > 0 nondeterministically assigns any pos-
itive value to the acceleration a, because only positive
choices for the value of a will pass the subsequent test
?a > 0. Any negative assignments will fail.

2.3 Differential Dynamic Logic

KeYmaera implements differential dynamic logic dL [37,
38, 40] as a specification and verification language for
hybrid systems. The formulas of dL can be used to spec-
ify the properties of the hybrid systems of interest. The
logic dL also comes with a proof calculus [37, 38, 40] that
has been implemented in KeYmaera and can be used to
prove these properties and, thus, verify their correctness.

Within a single specification and verification language,
dL combines operational system models with means to
talk about the states that are reachable by system tran-
sitions. The dL formulas are built using the operators
in Table 2 where ∼ ∈ {>,≥,=, 6=,≤, <} is a comparison
operator and θ1, θ2 are arithmetic expressions in +,−, ·, /
over the reals. The logic dL provides parametrized modal
operators [α] and 〈α〉 that refer to the states reachable
by hybrid program α and can be placed in front of any
formula. The formula [α]φ expresses that all states reach-
able by hybrid program α satisfy formula φ. So [α]φ is
true in exactly those states from which running α only
leads to states that satisfy φ. Likewise, 〈α〉φ expresses
that there is at least one state reachable by α for which φ
holds. These modalities can be used to express neces-
sary or possible properties of the transition behavior
of α in a natural way. They can be nested or combined
propositionally. For example [α]φ ∧ [β]ψ is true in those
states where all executions of α lead to states satisfy-
ing φ and executing β only reaches states satisfying ψ.
Using modalities and propositional connectives, we can
express Hoare triples by φ → [α]ψ. Here the formula φ
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Table 2: Operators and (informal) meaning in differential dynamic logic (dL)

dL Operator Meaning

θ1 ∼ θ2 comparison true iff θ1 ∼ θ2 with ∼ ∈ {=, >,≥, <,≤}
¬φ negation / not true if φ is false
φ ∧ ψ conjunction / and true if both φ and ψ are true
φ ∨ ψ disjunction / or true if φ is true or if ψ is true
φ→ ψ implication / implies true if φ is false or ψ is true
φ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier true if φ is true for all values of variable x
∃xφ existential quantifier true if φ is true for some values of variable x
[α]φ [·] modality / box true if φ is true after all runs of HP α
〈α〉φ 〈·〉 modality / diamond true if φ is true after at least one run of HP α

serves as a precondition. This means that the system is
required to fulfill the postcondition ψ only when the ini-
tial state is in φ. The logic dL supports quantifiers like
∃p [α]〈β〉φ which says that there is a choice of parame-
ter p (expressed by ∃p) such that for all possible behav-
iors of hybrid program α (expressed by [α]) there is a
reaction of hybrid program β (i. e., 〈β〉) that ensures φ.
Likewise, ∃p ([α]φ ∧ [β]ψ) says that there is a choice of
parameter p that makes both [α]φ and [β]ψ true, simul-
taneously. This is, the choice makes [α]φ ∧ [β]ψ true, i. e.
the formula φ holds for all states reachable by α execu-
tions and, independently, ψ holds after all β executions.
This gives a flexible logic for specifying and verifying
even sophisticated properties of hybrid systems, includ-
ing the ability to refer to multiple hybrid systems at
once.

Note that differential equations of dL [38] constitute
a crucial generalization compared to discrete dynamic
logic [47]. Another important change is that dL is defined
over the domain R, not natural numbers. The formal
semantics of differential dynamic logic and more details
about it can be found in [38, 40].

3 Proving with KeYmaera

KeYmaera is an interactive theorem prover. It works by
decomposing the verification task into several subtasks.
The boolean structure of the input formula is stepwise
transformed into a proof tree (where applicable). Pro-
grams are handled by symbolic execution. That is for
each program construct there is a rule that calculates its
effect. For instance, assignments x := θ can be handled
by replacing every occurrence of x by θ in the postcon-
dition. Choices in the program flow are explored sepa-
rately. For loops KeYmaera uses (inductive) invariants.
An inductive invariant is a formula that is satisfied in
the current state and starting from any state satisfying
the invariant executing the loop body leads into a state
also satisfying the invariant. Hence we can do induction
and argue that starting from the state just reached we
will end up in states satisfying the invariant. In order to

use this pattern for reasoning about formulas that are
not inductive invariants themselves we add a third task:
We have to show that the property we want to show is
a consequence of the invariant.

For differential equations there are two routes to go.
If the ODE happens to have a polynomial solution, we
can replace it by a discrete assignment at each point
in time t. That is we assign the value of its solution at
time t. However, if there is no polynomial solution avail-
able this would yield formulas in an undecidable the-
ory. Thus, we go a different route in those cases. That
is, we can apply the same idea of induction in order to
strengthen the evolution domain constraint. That is we
apply differential induction [39] where we show that the
derivative of the evolution domain candidate points in-
wards w.r.t. the region it characterizes. That way, we
can be sure that if we start within that region we will
never leave it. Thus, assuming we can show that we are
initially in that region, adding it to the evolution domain
constraints does not restrict the system any further. Still,
it gives us insight in which regions are reachable by the
system. If at some point we are able to show that our
post-condition is covered by the evolution domain con-
straint we are sure that it will be satisfied by each run
of the system.

Once we have dealt with all the modalities in the for-
mulas we end up with a first-order formula over the reals.
Validity of those can be decided by quantifier elimina-
tion [50]. The original method proposed by Tarski how-
ever has non-elementary complexity. Even worse Daven-
port and Heintz have shown that the worst-case com-
plexity of such a procedure will always be doubly expo-
nential [14]. Still, we can use quantifier eliminiation in
many practical examples. Beyond that, KeYmaera inter-
faces with a number of tools and implements algorithms
to deal with special cases more efficiently.

4 Related Tools

There has been significant research on hybrid system
verification and related approaches include a number of
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hybrid systems verification tools under active develop-
ment.

The ultimate goal of these approaches is to provide
fully automated verification tools for hybrid systems.
Unfortunetely, this is provably impossible. Therefore, dif-
ferent compromises have been made. On the one hand,
fully automated tools work on restricted classes of hy-
brid systems, but the procedures might not terminate.
On the other hand, semi-automated tools that automat-
ically explore the state space and fall back to the user
where the automated search fails. For the latter the user
can then use domain knowledge to steer the tool into
a promising direction within an uncountably branching
space.

An interesting subclass of hybrid systems are real-
time systems [35] in which all continuous veriables rep-
resent clocks instead of physical motion in space. That is
the derivatives of all these variables are 1. However, no
changes to the derivative are allowed and the computa-
tions are limited to resetting variables to 0. Even though
this sounds limiting a number of interesting systems can
be analyzed in that way. The main advantage is that
reachability is decidable for real-time systems, whereas
it is undecidable for hybrid systems. Toolwise, we like
to point the reader to Uppaal [29], a model checker for
timed automata, a common model for real-time systems
basded on smart, exhaustive, set-valued simulation of
the system. Uppaal has been extended to a verification
tool for priced timed-automata [3, 8]. Priced timed au-
tomata extend real-time systems with variables that can
have constant but arbitrary and changing slopes. How-
ever, they cannot be used in any way that influences the
reachability relation. That is, they can neither restrict
evolutions nor switching. However, cost optimal reacha-
bility is decidable and implement by Uppaal CORA [7].

Model checking [12] tools are applicable to restricted
classes of hybrid systems, mostly those with linear dy-
namics. Among the first tools following this line are
HyTech [25], d/dt [5], and PHAVer [20]. PHAVer, which
superseded HyTech, was recently superseded itself by
SpaceEx [21]. SpaceEx [21] is a fully automated tool for
verification of hybrid systems with linear, affine dynam-
ics. FOMC [13] provides methods tailored to systems
with large discrete state spaces. All these tools perform
an exhaustive search of the state space fully automat-
ically. If they succeed no user interaction is necessary.
However since reachability for hybrid systems is an un-
decidable question, termination of the automated pro-
cedures is not guaranteed and there is no way for the
user to steer them into promising directions. Still, model
checking is an extremely versatile approach which is es-
pecially good in finding counter examples. Thus, it can
also be used as complementary approach to approaches
tailored to showing the absence of errors.

For non-linear hybrid systems the tools are often
based on numerical methods. That means that unlike
KeYmaera, they rely on specific numbers or bounds on

the range of the variables used to describe the problem.
Flow∗ [11] can be used for bounded model checking of
non-linear hybrid systems. That is given a time horizon
and bound on the number of jumps, the tool constructs
an overapproximation of the reachable states. The iSAT
algorithm [19] tightly couples interval constraint propa-
gation with methods from SAT solving, thereby provid-
ing a solver for boolean combinations of nonlinear con-
straints (including transcendental functions) over dis-
crete and continuous variables with bounded ranges. Its
most recent implementation [31] integrates—among other
improvements—Cylindrical Algebraic Decomposition to
boost reasoning for polynomial constaints. The iSAT-
tool can be used for Bounded Model Checking (BMC)
of hybrid systems by using overapproximations or ex-
act solution functions of the differential equations in
the finite unwinding of the transition system. The iSAT
solver has been extended to iSAT-ODE [18] by embed-
ding validated enclosure methods for the solution sets
of non-linear ordinary differential equations (ODEs), al-
lowing BMC of hybrid systems without manual overap-
proximation or solving of the ODEs. For probabilistic
discrete-time hybrid systems, the SiSAT solver [51] al-
lows the computation of reachability probabilities. For
low-dimensional systems HSolver [49] offers methods for
unbounded horizon reachability analysis of hybrid sys-
tems. It implements abstraction refinement based on in-
terval constraint propagation.

In contrast to that, KeYmaera is a semi-automated
tool for unbounded horizon, purely symbolic verification
of hybrid systems and hybrid games, which can deal
with a rich set of continuous dynamics and symbolic
parameters at the same time. It performs automated
proof search and allows the user to interact and steer the
prover in cases where the heuristics fail. A strong point
of KeYmaera is the automatated decomposition of the
original verification problem into smaller subtasks while
retaining a clear connection to the original problem. This
allows the user to focus on the difficult cases, where inter-
action is necessary and let the prover take care of those
cases where the necessary steps can be performed au-
tomatically. Still, in constrast to fully automated tools,
some knowledge about the core ideas behind KeYmaera
is necessary to apply it successfully to complex systems.
The following sections are meant to provide an easy to
follow introduction into these ideas based on a running
example from the car domain.

5 KeYmaera Tutorial

Starting from a simple example, we develop a series
of increasingly more complex systems which illustrate
how modeling and verification challenges can be han-
dled in KeYmaera. For additional and more detailed
examples, as well as step-by-step instructions to follow
along in KeYmaera, see http://symbolaris.com/info/
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Fig. 2: Simulated trace of Example 1

KeYmaera-tutorial.html. The example files in this pa-
per can also be found in the project KeYmaera Tutorial
of KeYmaera.

5.1 Example 1: Uncontrolled Continuous Car Model

First we will look at a simple system in which a car starts
at some positive velocity and accelerates at constant rate
along a straight lane. The requirement we want to prove
is that the car always travels forward in space. Example 1
captures the setup of this scenario: when starting at the
initial conditions init, all executions of the car [plant]
must ensure the requirements req. The scenario setup
is expressed using the dL formula init → [plant](req):
the initial conditions are in the antecedent of a logical
implication; the (hybrid) program and the requirement
form its consequent. We used the box modality [plant]
to express that all states reachable by the continuous
model of the system plant satisfy our requirements req.

The initial conditions are formally specified in for-
mula (7): the velocity and the acceleration must both
be positive initially (v ≥ 0 ∧ A > 0). In this example,
the plant is very simple, cf. formula (8): the derivative
of position is velocity (p′ = v) and the derivative of ve-
locity is acceleration (v′ = A). Finally, formula (9) states
that the velocity of the car is positive v ≥ 0 and, thus,
captures our requirement that the car always travels for-
ward in space. Note, that many different ways exist to
model even such a simple system: in formulas (10)–(11)
we use an additional variable to remember the initial
position of the car while still using velocity in the plant.

KeYmaera proves all these models automatically. In
Example 1 we modeled only continuous components in
the plant. In the next example we will allow a discrete
controller to interact with the system.

5.2 Example 2: Safety Property of Hybrid Systems

Example 1 had a plant but no controller. This means
that, once started, the car would drive for a possibly in-
finite amount of time without any option to ever change

Example 1 Safety property of an uncontrolled contin-
uous car model

init → [plant] (req) (6)

init ≡ v ≥ 0 ∧A > 0 (7)

plant ≡ p′ = v, v′ = A (8)

req ≡ v ≥ 0 (9)

init ≡ v ≥ 0 ∧A > 0 ∧ p0 = p (10)

req ≡ p ≥ p0 (11)

Controller Plant

Disturbances

u

Sensors

r e y

−

ym

Fig. 3: Closed-loop feedback control system principle

its initial decisions. In this example, we introduce a dis-
crete controller, ctrl, into the model of the system given
in the hybrid program Example 2. The task of the con-
troller in this example is to adjust the velocity by accel-
erating or braking, and still always drive forward.

The example follows closed-loop feedback control,
which is a typical control system principle, as depicted
in Fig. 3: a controller tries to minimize the error e (dif-
ference between a desired output response r and sensed
output measurements ym) by computing set values u as
input for a plant. The plant, depending on some distur-
bances, produces an actual output response y, which is
fed back into the controller through sensors as measure-
ments.

Example 2 shows the model, which was extended from
Example 1. The essential difference is the hybrid pro-
gram in formula (12), whose controller ctrl is repeated
together with the plant nondeterministically often in a
loop. The state transition system of this hybrid program
is depicted in Fig. 4a. The initial conditions in formula
(13) now contain a specification for braking force B > 0.
The controller has three simple options as stated in for-
mula (14): it may cause the car to accelerate with rate
A > 0, maintain velocity, or brake with rate −B <
0. We model the control options as a nondeterministic
choice (∪) in order to verify multiple concrete controllers
at once. Because the hybrid program is within a box
modality, whether the controller chooses to accelerate,
maintain velocity, or brake, req must always hold.

When a real car brakes, it decelerates to a complete
stop—it is not possible to drive a car backwards by brak-
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ing. In order to model this, in formula (15) we extended
the plant from the previous example and prevent the
continuous dynamics from evolving beyond what is pos-
sible in the real world. So, even though evolving over
time with p′′ = −B would eventually cause the car to
drive backward, we disallow these traces by adding an
evolution domain constraint of v ≥ 0 in the plant (sep-
arated by &), which restricts the model of the car to
realistic movement.

Example 2 Safety property of a hybrid car model

init → [(ctrl; plant)∗] (req) (12)

init ≡ A > 0 ∧B > 0 ∧ v ≥ 0 (13)

ctrl ≡ a :=A ∪ a := 0 ∪ a :=−B (14)

plant ≡ p′ = v, v′ = a & v ≥ 0 (15)

req ≡ v ≥ 0 (16)

We also want the discrete controller to be able to
change the acceleration of the vehicle at any time. Like
in a regular expression, the nondeterministic repetition ∗

creates a loop over the ctrl and plant. The plant evolves
for an arbitrary amount of time (it may even evolve for
zero time) as long as it satisfies the evolution domain.
When the plant completes, the program loops back to
the ctrl which is again allowed to choose between accel-
erating, maintaining velocity, or braking. All the states
that are reachable by this program must satisfy the re-
quirement req of formula (16), which is the same as in
the previous example.

Fig. 4b shows a sequence of control choices that gov-
ern the plant for varying plant execution duration. The
resulting sample trace of the continuous change of the
car’s velocity v and position p, which follows from these
control decisions, is shown in Fig. 4c.

In order to prove properties of a loop, we need to
identify an invariant, which is a formula that is true
whenever the loop repeats. That is, a formula inv that
is initially valid (init→ inv), that implies the postcon-
dition (use case inv→ req), and where the loop body
preserves the invariant (here inv→ [ctrl; plant]inv). In-
variants are critical parts of the system design. As such,
they should always be communicated as part of the sys-
tem, for which KeYmaera provides annotations:

init → [(ctrl; plant)
∗
@invariant(v ≥ 0)](req)

The @invariant(inv) annotation for a loop indicates that
inv is a loop invariant candidate. KeYmaera uses this
annotation to find proofs more efficiently. KeYmaera,
otherwise, tries to compute an invariant automatically
[43] as it does in Example 2.

As a guideline for finding such invariants manually,
we may use the following heuristics inspired by model-
predictive control.

Guideline 51 (Invariant) We start at our safety
condition, which states that all possible dynamics
have to fulfill the safety constraint.

[p′ = v, v′ = a & v ≥ 0] (v ≥ 0)

Then we choose the worst-case branch from our con-
troller that is most likely to violate the safety con-
straint, which in this example is braking:

[p′ = v, v′ = −B & v ≥ 0] (v ≥ 0)

We solve the dynamics ODE and get

[v −Bt ≥ 0 ∧ v ≥ 0] (v ≥ 0) .

Since in any case either evolution for zero time or
the evolution domain ensure v ≥ 0, this is a likely
candidate for a good invariant.

5.3 Example 3: Safety Property of an Event-Triggered
Hybrid System

Now we will add some complexity to the system and
the controller. We want to model a stop sign assistant:
while the car is driving down the lane, the controller
must choose when to begin decelerating so that it stops
at or before a stop sign. This means that it is no longer
sufficient to let the controller run at arbitrary points
in time as in Example 2, since the controller now must
brake when it approaches a stop sign. Thus, we have
to change our model to prevent the plant from running
an infinite amount of time. We can do this by adding
an additional constraint to the evolution domain of the
plant. Depending on the nature of this additional con-
straint we either speak of an event-triggered system or a
time-triggered system. The former interrupts the plant
when a particular event in the environment occurs (e. g.,
when the car is too close to a stop sign), while the latter
interrupts the plant at periodic times (e. g., every 50 ms).

We will start with an event-triggered system, since
those are often easier to prove than time-triggered sys-
tems. A time-triggered model will be discussed in Ex-
ample 5 in the next section.

Example 3a Stop sign controller (event-triggered)

init → [(ctrl; plant)∗](req) (17)

init ≡ Safe ∧A > 0 ∧B > 0 ∧ v ≥ 0 (18)

Safe ≡ p+
v2

2B
≤ S (19)

ctrl ≡ (?Safe; a :=A) ∪ (?v = 0; a := 0) ∪ (a :=−B)
(20)

plant ≡ p′ = v, v′ = a & v ≥ 0 ∧ Safe (21)

req ≡ p ≤ S (22)
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ctrl plant
a :=A

a := 0

a :=−B

p′ = v, v′ = a

& v ≥ 0

∗
(a) Transition system
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1

a = −B

a = 0

a = A

varying durations of continuous dynamics

t

a

(b) Control decisions: coast, accel-
erate and brake; nondeterministic
duration of continuous dynamics
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(c) Sample trace: velocity
and position per acceleration
choice

Fig. 4: A hybrid car controller (Example 2)

ctrl

plant

?p+ v2

2B
≤ S

?v = 0

a :=−B

a :=A

a := 0

p′ = v, v′ = a

& v ≥ 0 ∧ p+
v2

2B
≤ S

∗
(a) Transition system

0 1 2 3 4 5 6 7 8 9
−0.5

0

1

a = −B

a = 0

a = A

Event: evolution domain p+ v2

2B ≤ StopSign violated

t

a

(b) Control decisions: first coast, then accelerate until evolution
domain constraint is violated, brake, and finally stay stopped

0 1 2 3 4 5 6 7 8 9
−1

0

1

t

Acceleration

Velocity
Position
Safety Margin

(c) Sample trace: velocity and position per acceleration choice;
distance to stop sign |p− S| gives the remaining safety margin

Fig. 5: Event-triggered stop sign controller (Example 3a)

The stop sign assistant is modeled in Example 3a and
depicted in Fig. 5a. The basic setup of the model in for-
mula (17) is the same as in Example 2. However, we have
to adapt the initial condition in (18) such that the car
starts at a position that is still sufficiently distant from
the stop sign (Safe). Intuitively, the car is at a safe po-
sition, if it can still stop before it exceeds the position of
the stop sign. Using kinematic equations, we derive that
the stopping distance of the car when decelerating at

rate −B is v2

2B ; thus, the proposition Safe is true when

the current position plus the stopping distance of the car
does not exceed the position of the stop sign, as specified
in formula (19).

The controller in formula (20) still chooses between
accelerating, maintaining velocity, and braking, but the
first two options are not allowed if the car is too close to
the stop sign. We restrict the choice of accelerating by
adding the test ?Safe, so that the car may only accel-
erate if it is still sufficiently distant from the stop sign.
We also only allow the car to maintain velocity (a := 0)
when it is already stopped, since otherwise the car could
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coast through the intersection. The proposition Safe is
added as event trigger to the evolution domain, cf. (21).
This ensures that the controller executes if the car comes
within the minimum stopping distance of the stop sign;
however, the controller is free to execute at any time be-
fore this point is reached to adapt acceleration as needed.
Finally, the requirement req in formula (22) defines that
in all states, which are reachable by the event-triggered
hybrid program, the position of the car must not exceed
the position of the stop sign p ≤ S.

An example for event-triggered control and its ef-
fects is shown in Fig. 5b and 5c: the car accelerates until
the evolution domain constraint triggers braking, which
causes the car to stop smoothly at the stop sign.

Guideline 52 (Evolution domain) In order to
derive the evolution domain for event-triggered con-
trol, again, we can rely on model-predictive control.
We start at the safety condition and the kinematic
equations of the car.

[p′ = v, v′ = a & v ≥ 0] (p ≤ S)

To be safe, we have to interrupt the continuous dy-
namics at the latest when the car can still stop in
the remaining distance to the stop sign with braking
power −B: [p′ = v, v′ = −B & v ≥ 0] (p ≤ S). In
order to determine the distance, we first need to find
out how long it will take to stop from the current ve-
locity: t = v

B , which follows from v +
∫

(−B) dt =
v − Bt = 0. The distance that the car will travel
until it comes to a full stop from its current veloc-

ity thus is
∫ v/B

0
(v − Bt)dt = v2

2B , which yields our

evolution domain constraint p+ v2

2B ≤ S.

In this model, deriving the stopping distance of the
car to come up with the appropriate equation for the
ctrl was not difficult; however, for more complex models,
the solution may not be so apparent. We may get hints
about what ctrl should be by first trying to prove safety
in a system that is obviously unsafe or that we merely
suspect to be safe in some scenarios.

To illustrate this method, in Example 3b we start
with a simpler version of Example 3a. We remove the
nondeterministic repetition (23), so that we do not yet
have to worry about loop invariants. For lack of a better
understanding, in init (24) we just strive to not vio-
late our requirement p ≤ S and place the car somewhere
in front of the stop sign. Finally, we replace the safety
condition of Example 3a, such that ctrl allows the car
to choose acceleration without any restrictions, which
cannot always be correct. The plant (27) and the re-
quirement (28) remain the same as in Example 3a. At-
tempting to prove property (23) of Example 3b results
in several open goals in which there are formulas which,
had they been in the antecedent, the property would
have held. Some of these formulas contradict our as-

0 0.5 1

0.5

0

1

t

Acceleration

Velocity
Position
Safety Margin

Fig. 6: Sample trace of Example 3b; safety margin becomes
negative immediately due to unsafe controller

sumptions in init (24), so we ignore them. However,
there is one remaining formula which does not contra-
dict any assumption: B ≥ v2(2S + −2p)−1. The failed
proof attempt indicates that we should change our de-
sign to obey this constraint. With some algebraic manip-
ulation, we see that this constraint is almost identical to
the restriction we added to the ctrl in Example 3a.

Example 3b Unsafe stop sign controller design to dis-
cover safety constraints

init → [ctrl; plant](req) (23)

init ≡ p ≤ S ∧A > 0 ∧B > 0 ∧ v ≥ 0 (24)

Safe ≡ true (25)

ctrl ≡ (?Safe; a :=A) ∪ (?v = 0; a := 0) ∪ (a :=−B)
(26)

plant ≡ p′ = v, v′ = a & v ≥ 0 ∧ Safe (27)

req ≡ p ≤ S (28)

It is not uncommon for the first attempt at proving the
safety of a system to be unsuccessful because the model
is in fact unsafe. KeYmaera allows the user to exam-
ine a trace of the hybrid program which obeys the ini-
tial conditions, and follows the execution of the hybrid
program, but violates the given safety requirement. In
Example 3b, there are infinitely many such counterexam-
ples that could be generated; however, one counterexam-
ple (which KeYmaera automatically generates) sets the
position of the stop sign to be S = 0, the initial posi-
tion and velocity of the car to be p = −23 and v = 986,
and maximum acceleration A = 38. These assignments
of values to the symbolic parameters are all permissi-
ble by the initial conditions. The transition then has the
car accelerate at rate A and allows the system to evolve
for .1 time steps, at which point the position of the car
is p = 75.79, so the car has run the stop sign and the
requirement p ≤ S has been violated, showing that the
system is unsafe.
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5.4 Example 4: Pitfalls when modeling event triggered
systems

Note that there are some pitfalls when modeling event
triggered systems. That is, we have to make sure that
our model does not restrict the physical behavior unnec-
essarily in order to react to certain events. Consider a
cruise control with the goal of reaching and maintaing a
certain velocity, say vs. A simple event triggered model
for this is shown in Example 4. Certainly, we can prove
that this controller ensures that the velocity never ex-
ceeds the set-value vs as every time the car reaches ve-
locity vs it will set the acceleration to 0.

Example 4 Event triggered cruise-control

init → [(ctrl; plant)∗](req) (29)

init ≡ v ≤ vs ∧A > 0 (30)

ctrl ≡ if v = vs then a := 0 else a :=Afi (31)

plant ≡ p′ = v, v′ = a & v ≤ vs (32)

req ≡ v ≤ vs (33)

init → [(ctrlf ; plant)∗](req) (34)

ctrlf ≡ a :=A (35)

init → [(ctrl; plantr)∗](req) (36)

plantr ≡ (p′ = v, v′ = a & v ≤ vs)

∪ (p′ = v, v′ = a & v ≥ vs) (37)

init → [(ctrlf ; plantr)∗](req) (38)

Unfortunatly, it this is not the reason why we can
prove this property. Replacing the controller by one that
always chooses to accelerate reveals that the validity of
the formula does not depend on our control choices, i.e.,
formula (34) is valid as well. This stems from the fact
that any continuous evolution is already restricted to
the domain we consider critical. Thus, there is no tran-
sition leaving this domain once we reach its border which
makes the property trivially true. However, safety in real
world system crucially relies on correct functioning of
our controllers. Thus we have to adopt the model to re-
flect the fact that the car could in some scenarios exceed
the velocity we want to maintain and then show that our
controller makes sure that it does not do so.

Consider the plant model given in (37). Here we re-
fine the plant in such a way that time may evolove re-
gardless of the relation of v and vs. Still, the controller
will be evidently be invoked and able to update the ac-
celeration once the velocity reaches vs. However, now
since there are transitions that might invalidate our re-

quirement that we never exceed the velocity vs we can
observe a difference between our original controller (31)
and the faulty one (35). That is, the formula (36) is valid
whereas the formula (38) is not.

5.5 Example 5: Safety Property of a Time-Triggered
Hybrid System

Event-triggered systems like the one in Example 3a make
proving easier, but they are difficult (if not impossible)
to implement. In order to implement Example 3a faith-
fully, it would require a sensor which would send position
and velocity data continuously, so that it could notify the
controller instantaneously when the car crosses the final
braking point. A more realistic system is one in which
the sensors take periodic measurements of position and
velocity and the controller executes each time those sen-
sor updates are taken. However, if we don’t restrict the
amount of time between updates, then there is no way
to control the car safely, since it would essentially be
driving blind. Instead, we require that the longest time
between sensor updates is bounded by ε. To account for
imperfect timing, the controller can also handle updates
that come in before the ε deadline. In this section, we
implement this system and prove it is safe.

Fig. 7b shows control decisions that follow this princi-
ple. Every ε time units the controller senses the velocity
and position of the car and makes a new decision to ac-
celerate, stay stopped, or brake. A sample trace of the
continuous dynamics resulting from these control deci-
sions is sketched in Fig. 7c.

With this change, we must create a more intelligent
controller. There are two essential differences between
Example 3a and Example 5 with its transition system de-
picted in Fig. 7a: Example 5 introduces a clock into the
plant (43) that stops continuous dynamics before c ≤ ε
becomes false. (42) uses the upper bound on that clock
in the safety condition that allows the car to acceler-
ate. In Example 3a we used the formula Safe to deter-
mine whether it was safe for the car to accelerate at the
present moment. Now, we must have a controller which
not only checks that it is safe to accelerate at present,
but also that doing so for up to ε time will still be safe.
We use the formula Safeε in Example 5, which checks
that while accelerating for ε time, the car will always be
able to come to a complete stop before the stop sign.

Guideline 53 (Safeε for time-triggered control)
In the case of time triggered control, a decision (e. g.,
accelerating with A) is safe when after ε time brak-
ing is still safe.

[c := 0] ;

[p′ = v, v′ = A, c′ = 1 & v ≥ 0 ∧ c ≤ ε] ;

[p′ = v, v′ = −B & v ≥ 0] (p ≤ S)
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ctrl plant

?v = 0

a :=−B

a :=A

a := 0 c := 0

p′ = v, v′ = a, c′ = 1

& v ≥ 0 ∧ c ≤ ε

∗

?p+ v2

2B
+

(
A
B

+ 1
) (

A
2
ε2 + εv

)
≤ S

(a) State transition system
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(b) Control decisions: despite nondeterministic loop duration
ci ≤ ε, the system was simulated with c = ε
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(c) Sample trace: velocity and position per acceleration choice;
distance to stop sign |p− S| gives the remaining safety margin

Fig. 7: Time-triggered stop sign controller (Example 5)

First, we need to determine the distance traveled
while accelerating with A for ε time:∫ ε

0

(v +At)dt = A
2 ε

2 + εv .

As a next step we need to determine the distance
for braking to a full stop from the increased velocity
v +Aε:∫ (v+Aε)/B

0

(v +Aε−Bt)dt = v2

2B + A
B

(
A
2 ε

2 + εv
)
,

with braking time following from v +Aε−Bt = 0.
Since we already know the distance for braking

to a full stop from Guideline 52 ( v2

2B ), we could al-
ternatively find the distance needed to compensate
the increased velocity:∫ Aε/B

0

(v +Aε−Bt)dt = A
B

(
A
2 ε

2 + εv
)

with braking time following from Aε−Bt = 0.
When we add the distance traveled while accel-

erating with the distance needed to stop afterwards,

we get p+ v2

2B +
(
A
B + 1

) (
A
2 ε

2 + εv
)
≤ S as defini-

tion for Safeε.

Because we have already proven a very similar system
in Example 3a, it may be tempting to simply add a safety

margin for how much the position of the car can change
in time ε. Since the proof holds for symbolic values which
can be arbitrarily large, however, there is no constant
error margin large enough that is safe for all controllers.

Example 5 Stop sign controller (time-triggered)

init → [(ctrl; plant)∗](req) (39)

init ≡ p+
v2

2B
≤ S ∧A > 0 ∧B > 0 ∧ v ≥ 0 ∧ ε > 0

(40)

ctrl ≡ (?Safeε; a :=A) ∪ (?v = 0; a := 0) ∪ (a :=−B)
(41)

Safeε ≡ p+
v2

2B
+

(
A

B
+ 1

)(
A

2
ε2 + εv

)
≤ S (42)

plant ≡ c := 0; p′ = v, v′ = a, c′ = 1 & v ≥ 0 ∧ c ≤ ε
(43)

req ≡ p ≤ S (44)

5.6 Sequential Composition vs. Nondeterministic
Choice

In the previous models we considered a loop (ctrl; plant)
∗

over the sequential composition of controller and plant.
Using sequential composition seems natural when com-
paring HPs to block diagrams. However, we could use
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nondeterministic choice (ctrl ∪ plant)
∗

instead. This al-
lows more execution orders, for instance, executing the
controller twice without checking the evolution domain,
or skipping the controller altogether. Using choice has
the advantage that the resulting branches can be ex-
plored independently by KeYmaera. However, the model
complexity might grow as it is necessary to ensure the
controller runs sufficiently often. For Example 5 this could
be done by moving the reset of the clock c into the con-
troller. Then at some point no further time can pass
until the controller was executed again. Further, in the
sequential model the information about the possible con-
trol actions is propagated to the plant automatically by
the symbolic execution performed by KeYmaera. In the
model using choice, it is necessary to transport sufficient
information about the control actions using the loop in-
variant.

5.7 Example 6: Guarded Nondeterministic Assignment

In previous examples, we have only represented con-
trollers which can choose from a discrete choice of ac-
celerations (either A, 0, or −B).

A more realistic controller would be able to choose
any acceleration within a range of values representing the
physical limits of the system. In Example 6 and Fig. 8a
we introduce guarded nondeterministic assignment to
represent an arbitrary choice of a real value within a
given range. In this example, we only need to change
the ctrl to introduce nondeterministic assignment, while
the rest of Example 6 is identical with Example 5: Line
(47) of Example 6 assigns an arbitrary real value to a
(a := ∗). The subsequent test checks that the value of
a is in the interval [−B,A]. This operation eliminates
all traces which do not satisfy the test, so only traces in
which a is in [−B,A] are considered. As a result, when we
prove the property in Example 6, we are proving safety
for all values of a within [−B,A]. Fig. 8b shows an ex-
ample sequence of the control choices made by such a
controller. The resulting trace of the car’s velocity and
position is depicted in Fig. 8c.

5.8 Example 6: Nondeterministic Over-approximation

A good technique to prove properties that involve com-
plicated formulas is to use nondeterministic over-approx-
imation. If the value of a variable ax is given by a func-
tion ax = f(x), but the value of f(x) is contained en-
tirely in some interval [f1, f2], the proof can often be
greatly simplified by omitting the expression for f(x)
and simply allowing ax to nondeterministically take any
value in [f1, f2] by using guarded nondeterministic as-
signment as discussed in Section 5.7.

For instance, in Example 6 the car’s braking mecha-
nism is modeled simply as choosing a negative accelera-
tion, and is always fixed. Consider a more realistic brak-
ing model, like the one outlined in [26]. There, braking

Example 6 Stop sign controller (guarded nondetermin-
istic assignment)

init → [(ctrl; plant)∗](req) (45)

init ≡ p+
v2

2B
≤ S ∧A > 0 ∧B > 0 ∧ v ≥ 0 ∧ ε > 0 (46)

ctrl ≡ (?Safeε; a := ∗; ?−B ≤ a ≤ A) (47)

∪ (?v = 0; a := 0) ∪ (a :=−B) (48)

Safeε ≡ p+
v2

2B
+

(
A

B
+ 1

)(
A

2
ε2 + εv

)
≤ S (49)

plant ≡ c := 0; p′ = v, v′ = a, c′ = 1 & v ≥ 0 ∧ c ≤ ε (50)

req ≡ p ≤ S (51)

is modeled as

v′ =
1

M

(
−c1Tb − f0 − c2v − c3v2

)
where Tb is the braking torque, c1Tb is the braking force,
M is the mass of the car, f0 is the static friction force,
c2v is the rolling friction force, and c3v

2 is aerodynamic
drag. This model has five more variables than the previ-
ous one. KeYmaera uses quantifier elimination as a de-
cision procedure for first order real arithmetic, which is
doubly exponential in the number of variables. Thus, it
helps to avoid unnecessary variables. In Example 7, we
use a simpler model in which only one new variable is
added. In this model, the car’s maximum total braking
capability is between some symbolic parameters b and B,
as modeled in (56). This means that we can only guar-
antee b as the car’s braking capability. In comparison to
Example 6, thus, we have to adapt init (53) and Safeε
(57) so that both consider the new braking bounds.

Since the controls of real systems are usually deter-
ministic and often complex, it can be useful to prove
that the implemented controller is a deterministic re-
finement of the proved nondeterministic controller. This
area is rich with possibilities for future research, but for
preliminary methods on refinement, see [4].

5.9 Example 7: Differential Inequality Models of
Disturbance

In this section we introduce differential inequality mod-
els as a technique to consider external disturbance, such
as the influence of road conditions on braking. If the
value of a variable v changes nondeterministically ac-
cording to acceleration a, as in the previous examples,
and some disturbance d, we can use differential inequal-
ity models of disturbance. For example, the differential
inequality v′ ≤ ad models the effect of disturbance d
on the acceleration a of our car, i. e., in the worst case
the effective braking force may be reduced and the ac-
celeration increased depending on a disturbance factor
d.
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ctrl
plant

?v = 0

a :=−B

a := ∗ ?−B ≤ a ≤ A

a := 0 c := 0

p′ = v, v′ = a, c′ = 1

& v ≥ 0 ∧ c ≤ ε

∗

?p+ v2

2B
+

(
A
B

+ 1
) (

A
2
ε2 + εv

)
≤ S

(a) State transition system

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
−0.5

0

1

a = −B

a = 0

a = A

t = 5ε t = 10ε

t

a

(b) Control decisions: nondeterministically chosen acceleration
constrained with guard −B ≤ a ≤ A

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3
−1

−0.5

0

0.5

1

t

Acceleration

Velocity
Position
Safety Margin

(c) Sample trace: velocity and position per acceleration choice;
distance to stop sign |p− S| gives the remaining safety margin

Fig. 8: Time-triggered controller with nondeterministic assignment (Example 6)

Example 7 Stop sign controller with nondeterministic
braking

init → [(ctrl; plant)∗](req) (52)

init ≡ p+
v2

2b
≤ S ∧A > 0 ∧ b > 0 ∧B ≥ b ∧ v ≥ 0 ∧ ε > 0

(53)

ctrl ≡ (?Safeε; a := ∗; ?−B ≤ a ≤ A) (54)

∪ (?v = 0; a := 0) (55)

∪ (a := ∗; ?−B ≤ a ≤ −b) (56)

Safeε ≡ p+
v2

2b
+

(
A

b
+ 1

)(
A

2
ε2 + εv

)
≤ S (57)

plant ≡ c := 0; p′ = v, v′ = a, c′ = 1 & v ≥ 0 ∧ c ≤ ε
(58)

req ≡ p ≤ S (59)

Example 8 introduces such a differential inequality
model of disturbance on top of Example 7. The specific
differential inequality v′ ≤ ad used in this example mod-
els that the effective braking force and the effective ac-
celeration force are subject to disturbance d; the dis-
turbance is negligible when the acceleration or braking
force is small, but it grows with increasing force. This
model avoids disturbance when the car does not accel-
erate (a = 0), which means that disturbance alone will
not cause the car to move.

Example 8 Stop sign controller with braking distur-
bance

init → [(ctrl; plant)∗](req) (60)

init ≡ p+
v2

2bd
≤ S ∧A > 0 ∧ b > 0 ∧B ≥ b (61)

∧ v ≥ 0 ∧ ε > 0 ∧ d > 0

ctrl ≡ (?Safeε; a := ∗; ?−B ≤ a ≤ A) (62)

∪ (?v = 0; a := 0) (63)

∪ (a := ∗; ?−B ≤ a ≤ −b) (64)

Safeε ≡ p+
v2

2bd
+

(
A

b
+ 1

)(
Ad

2
ε2 + εv

)
≤ S (65)

plant ≡ c := 0; p′ = v, v′ ≤ ad, c′ = 1 & v ≥ 0 ∧ c ≤ ε
(66)

req ≡ p ≤ S) (67)

Example 8 uses the same loop of sequential execution
of controller and plant as Example 7, cf. (60). We adapt
the initial condition in formula (61) to reflect that dis-
turbance affects the braking force of the car to b(1 + d),
but does not exceed the braking force (0 ≤ d < 1).
The controller itself remains the same as in Example 7,
cf. (62)–(64). The main difference is in the controller’s
safety condition given in formula (65), which considers
the fact that disturbance may reduce the effective brak-
ing force of the car and increase its acceleration (e. g.,
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when driving downhill). Finally, the plant (66) replaces
the differential equation of Example 7 with the differen-
tial inequality model.

5.10 System Energy and Invariants

An important challenge when proving properties of hy-
brid systems is proving properties of the continuous com-
ponents, i. e., the part of the system specified as a system
of differential equations.

One strategy to handle differential equations is to
solve them and continue the proof with their solutions.
This can be an effective approach in many cases, es-
pecially when the differential equations have polynomial
solutions. In this case, quantifier elimination can be used
to reason about the resulting polynomials. Many dif-
ferential equations (even simple ones), however, do not
have polynomial solutions. For example, the differential
equation x′ = −x for exponential decay has solution
x(t) = e−t, and the equations of motion of a simple har-
monic oscillator involve trigonometric functions. These
functions cannot be handled directly by quantifier elim-
ination, and it can be very challenging to prove interest-
ing properties about them. In general, the solutions of
differential equations are more complex than the equa-
tions themselves, and indeed many differential equations
do not have closed-form solutions.

Instead, KeYmaera provides proof rules to reason
about differential equations without solving them. These
rules fit neatly with standard techniques in science and
engineering for working with differential equations. An
important and useful idea from physics is that an iso-
lated system will conserve energy over time (in the ab-
sence of relativistic effects). If there are “loss” effects due
to things like friction or air resistance, the energy of the
system will decrease over time, until the system runs out
of energy and settles into an “equilibrium”.

In the example below, a car starts to cruise without
accelerating, but it experiences wind resistance, which
slows it down. We use an energy argument to show that
its velocity cannot increase past its initial velocity. Let
m be the mass of the car, and suppose it starts with ve-
locity v = v0. The initial kinetic energy of the car is then
E0 = 1

2mv
2
0 . At any future time t, the kinetic energy of

the car will be given by Et = 1
2mv

2
t . The kinetic energy

may not increase, so the condition Et ≤ E0 ensures that
the car’s velocity cannot increase. After arithmetic can-
cellations, the energy condition is equivalent to v2t ≤ v20 ,
which we use to prove the example below. In KeYmaera,
the energy condition is entered through the “differential
invariant” rule.

The idea of conservation of energy can be general-
ized to more complex scenarios. We observe that the fol-
lowing characteristics of energy were important to the
applications described in the section above:

Example 9 Car velocity cannot increase, proved via an
energy argument

init→ [plant] (req) (68)

init ≡ v = v0 ∧ v0 ≥ 0 ∧ δ > 0 (69)

plant ≡ p′ = v, v′ = −δv (70)

req ≡ v ≤ v0 (71)

1. A system cannot have negative energy. Energy must
be either positive, or zero if it is at an equilibrium
position.

2. The energy of the system cannot increase over time.
If there are dissipation effects (such as fricition or air
resistance), energy must decrease, but will otherwise
remain constant.

In what follows, we will use the term generalized en-
ergy function to denote any function that is nonnegative
over all system states and never increases as the system
evolves. A related notion in the engineering literature
is that of Lyapunov functions, which have a rich theory
and important applications [27] [54] [23].

The following example, adapted from Example 5 of
[16], is a system with switching that is proven using a
generalized energy function.

The equations below represent a model of a car with
automatic transmission controlled by a PI controller to
track a constant velocity vref . The difference between
the car’s velocity and the desired velocity is ∆v = v −
vref . The state of the integrator of the PI controller is
∆TI = TI − 0, since when the car is cruising at the de-
sired velocity, we would like the integrator state to be
zero. The mass of the car is represented by m, and Gp

is one of four possible gears the car can be in, Gp(t) ∈
{G1, G2, G3, G4}. The angular velocity of the engine, ω,
can be computed from the car’s velocity from knowl-
edge of the current gear by ω = Gp(t)v. The propor-
tional gain of the controller is Kp(t), and it changes when
the car changes gears, so that the car handles smoothly,
Kp(t) ∈ {K1,K2,K3,K4}. TR is a constant gain chosen
so that the controller converges quickly to the desired ve-
locity, while avoiding over corrections that could cause
undesired oscillations. The car dynamics are given by

∆v̇ = −(Gp(t)Kp(t)/m) ·∆v − (Gp(t)/m) ·∆TI (72)

∆Ṫl = (Kp(t)/TR) ·∆v (73)

The automatic transmission switches between gears
according to the following rule. Gi denotes the current
gear of the car, ωhigh is an engine velocity at which the
transmission decides to switch to a higher gear, and ωlow

is an engine velocity at which the transmission decides
to switch to a lower gear.

Gp(t+) =


Gi+1 if i 6= 4 and v ≥ 1

Gi
ωhigh

Gi−1 if i 6= 1 and v ≤ 1
Gi
ωlow

Gi otherwise

(74)
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The verification task will be to ensure that when the
cruise control system is engaged within some interval
around the desired velocity, the engine speed ω will not
exceed a certain redline speed, ωmax. If the engine runs
above the redline speed, damage can result.

A hybrid program for this example is shown in .

Example 10 Tracking a constant velocity with gear
shifting

init→ [(transmission; dynamics)∗] (req) (75)

init ≡ ∆TI = 0 ∧ −∆vengage ≤ ∆v (76)

∧ v ≤ ∆vengage ∧ Gp = G1 (77)

ctrl ≡ v := ∆v + vref ; (78)

(?Gp 6= G4; ?v ≥ 1

Gp
ωhigh; (79)

((?Gp = G1;Gp := G2) ∪ (?Gp = G2;Gp := G3) (80)

∪ (?Gp = G3;Gp := G4))) (81)

∪ (?Gp 6= G1; ?v ≤ (
1

Gp
)ωlow; (82)

((?Gp = G4;Gp := G3) ∪ (?Gp = G3;Gp := G2) (83)

∪ (?Gp = G2;Gp := G1)));Kp :=
187.5

Gp
(84)

plant ≡ {∆v′ = (−Gp
Kp

m
)∆v − Gp

m
∆TI , (85)

∆T ′I =
Kp

TR
∆v (86)

&((∆v + vref ≤
1

Gp
ωhigh ∨Gp = G4) (87)

∧ (∆v + vref ≥
1

Gp
ωlow ∨Gp = G1))} (88)

req ≡ Gp(∆v + vref ) ≤ ωmax (89)

In [16], the gains K1,K2,K3,K4 and the constant TR
are chosen for specific gear ratios, car mass, and reference
velocity. The values of the gear ratios are G1 = 50, G2 =
32, G3 = 20, and G4 = 14—note that they are unit-
free because they are ratios of gear sizes. The propor-
tional gains are chosen so that the product Kp(t)Gp(t) =
187.5, to ensure that the car handles smoothly across
gear switches. The reference velocity is chosen vref =
30m/s(≈ 67mph), and the mas of the car is assumed to
be m = 1500kg.

For the parameter values specified above, the authors
in [16] find that the following is a generalized energy
function of the system.

40.822(∆TI)2 + 144.524∆TI∆v + 255.589(∆v)2 (90)

For the verification task, we use the following induc-
tive invariant

40.822(∆TI)2 + 144.524∆TI∆v + 255.589(∆v)2 ≤ 58000 (91)

∧ (Gp(t)(∆v + vref ) > omegahigh− > Gp(t) = G4 (92)

This invariant specifies that the generalized system en-
ergy, as represented by the generalized energy function,

never exceeds 5800. This number is chosen such that the
initial energy of the system is less than it. The additional
condition states that if the angular velocity is larger than
ωhigh, then the car is currently in gear G4. This is done
to ensure that the engine speed ω is computed with the
correct gear when checking that the engine speed is less
than the redline speed ωmax.

In general, it is a difficult problem to find general-
ized energy functions for arbitrary systems. Efficient al-
gorithms exist, however, for the case of linear systems
[10].

An additional complication that may exist is that the
model may not admit the existence of a quantity that
is always decreasing—in particular, some state may be
always increasing. For example, a car that continuously
accelerates will have unbounded position and velocity.
These types of systems are called “unstable”. A good
treatment of of stability theory can be found in [10],
[27], [54].

5.11 Differential Invariants, Differential Cuts, and
Differential Induction

Differential invariants define an induction principle for
differential equations: instead of solving a differential
equation system, we show that some expression F is
true throughout the dynamics specified in the differen-
tial equation system (i. e., is a differential invariant for
the differential equation system). A simple proof rule
for differential invariants is differential weakening. Dif-
ferential weakening replaces a differential equation sys-
tem with a nondeterministic assignment subject to the
evolution domain constraints. This proof rule, although
being obviously sound since the differential equation sys-
tem cannot leave the evolution domain by definition, is
only useful when the evolution domain constraints are
very informative.

We can use differential cuts to make the evolution do-
main sufficiently informative. By successively applying
differential cuts we can increasingly strengthen the evo-
lution domain until eventually the differential equation
can be resolved by differential weakening. Since addi-
tional evolution domain constraints actually change the
system dynamics, we have to prove that these additional
constraints are themselves differential invariants. We can
do this by differential induction. Differential induction
defines induction for differential equations much in the
sense of induction for discrete loops. Intuitively, differ-
ential induction shows that a formula is getting “more
true” when following the differential equation system.
More in-depth information about differential weakening,
cuts, and induction can be found in [42].
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5.12 Example 8: Car controller for non-linear
dynamics

In the previous examples we have reduced the stop-sign
controller to a one-dimensional problem. In the next
step, we introduce non-linear dynamics to model the be-
havior of a car on a two-dimensional but still straight
lane. As a first safety property, we want to prove that
the car controller manages to stay within the bounds of
the lane when it drives a sequence of circular arcs as
trajectory.

In a two-dimensional world, the car has a vector state
variable describing its current position p = (px, py) and
scalar r that describes the radius of the car’s current
trajectory. The car makes a sharp turn if the radius r
is small. If the radius becomes larger then the curve be-
comes increasingly straightened; the car drives a perfect
straight line if the radius is infinite (r = ∞). We can
specify the orientation of the car w.r.t. the center of the
curve o = (ox = cos θ, oy = sin θ). Its angular velocity is
then a scalar ω = θ′. To avoid undecidable arithmetic,
the orientation vector o encodes sine and cosine functions
in the dynamics [32, 39]. A car follows unidirectional mo-
tion along its orientation, that is the orientation vector
o gives the orientation and reduces the velocity vector
to a scalar v as in the previous examples. This distinc-
tion not only represents the control choices of a car with
separated steering and acceleration, it also reduces proof
complexity, since we can introduce separated differential
invariants. The translational and rotational velocities are
linked w.r.t. the rigid body planar motion by the formula
rω = v.

In our model, steering changes the rotational velocity
and with it the radius of the trajectory. Note, that the
constraints on the radius and on the direction vector
select the drive variant [9] of our car:

Omnidirectional drive modeled with positive radius r ≥
0 and instantaneous orientation jumps r := (p−pc)⊥
around a trajectory center pc.

Differential drive modeled with positive radius r ≥ 0
and disallowing instantaneous orientation jumps.

Ackermann drive, Dubin’s car modeled with strictly pos-
itive radius r > 0 and disallowing instantaneous ori-
entation jumps.

The continuous dynamics of the car can then be de-
scribed by the differential equation system of ideal-world
dynamics of the planar rigid body motion, as in p′x =
vox, p

′
y = voy, v

′ = a, (rω)′ = a, o′ = ωo⊥. The con-
dition (rω)′ = a encodes the rigid body planar motion
rω = v and o′ = ωo⊥ adjusts the orientation towards the
trajectory center according to the rotational velocity ω
with ortho-normal vector o⊥.

In Ex. 11 the car is initially stopped at the center of
the lane. As in the previous models, the car has three
control choices (95)–(99): (i) it may choose a new tra-
jectory when it is safe to do so, (ii) it may stay stopped,

and (iii) it may brake on its current trajectory to stay
on the lane.

Example 11 Car controller with non-linear dynamics

init→ [(ctrl; plant)∗] (req) (93)

init ≡ lw > 0 ∧ py = ly ∧ v = 0 ∧ r > 0 ∧ ‖o‖ = 1 (94)

∧A > 0 ∧ b > 0 ∧B ≥ b ∧ ε > 0

ctrl ≡ (?Safeε; a := ∗; ?−B ≤ a ≤ A); (95)

ω := ∗; (96)

r := ∗; ?r > 0 ∧ |ω|r = v (97)

∪ (?v = 0; a := 0;ω := 0) (98)

∪ (a := ∗; ?−B ≤ a ≤ −b) (99)

Safeε ≡ |py − ly|+
v2

2b
+

(
A

b
+ 1

)(
A

2
ε2 + εv

)
< lw

(100)

plant ≡ c := 0; (101)

p′ = vo, v′ = a, o′ = ωo⊥, ω′ =
a

r
, c′ = 1 (102)

& v ≥ 0 ∧ c ≤ ε (103)

req ≡ |py − ly| < lw (104)

The proof of Ex. 11 uses differential cuts, differential
weakening and differential induction.

6 Advanced Modeling Concepts and Pitfalls

6.1 PID controllers

Smoother control is possible with analog proportional-
integral-derivative (PID) controllers. In addition to the
current error, these use the accumulated error, i. e., the
integral over the error, and the slope of the error func-
tion, i. e., its derivate, to steer the system. These more
complex controllers can be presented as differential equa-
tions and used for the verification in KeYmaera as well.
We refer the reader to [4, 46] for details on this encoding.

6.2 Hybrid Time

A common assumption in hybrid systems, as already
mentioned, is that discrete actions do not consume time.
Because discrete actions are assumed not to consume
time, multiple discrete actions can occur at the same
real point in time. To reflect this, we augment the time
domain by a natural number that counts the number of
discrete actions that have happened already. That is, a
hybrid point in time is a pair (r, n) ∈ R≥0×N. For each
real-valued point in time r there is a discrete time axis
that reflects the order of discrete actions. Hence the time
model for hybrid systems, called hybrid time, is given by
R≥0 × N.
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6.3 Disjoint Tests and Evolution Domains

When combining choices and test it is important to make
sure that the model does not get blocked in an unnatural
way. For example, the program

(?v < 3; v′ = A) ∪ (?v > 5; v′ = −B)

cannot evolve if v is between 3 and 5. Therefore, it is
good modeling practice to have at least one branch for
each case. Evolution domain constraints also need to be
designed with care. For example, the HP

((v′ = −B & v ≥ 0) ∪ (v′ = −b & v < 0))
∗

has disjoint evolution domain constraints. When v = 0,
the system cannot switch to the second choice, because
its evolution constraint v < 0 is not satisfied for the
initial state.

6.4 Non-Existence of Systems

Tests outside nondeterministic choices must be used care-
fully, since they potentially entail non-existence of the
modeled system. For example, the dL statement

v > 0→ [(v′ = A) ; ?v = 0] (v = 0)

results in an empty set of executions, since none of the
values of v will satisfy the test ?v = 0. Thus, the property
v = 0 can be proven trivially. Such issues can be detected
by liveness proofs using the diamond modality 〈α〉: the
dL statement v > 0→ 〈(v′ = A) ; ?v = 0〉 (v = 0) is only
true, if at least one run satisfies the requirement.

6.5 Safety Throughout vs. Safety Finally

The evolution of a differential equation system is al-
lowed to nondeterministally stop at any time (even zero)
before the evolution domain becomes false. Thus, dL
properties of the form [(x′ = θ & H)]φ usually verify
safety throughout system execution. A subsequent test,
as in [(x′ = θ & c ≤ ε) ; ?c = ε]φ, however, means that
all traces that end before the clock reached its maximum
time will not be considered during the proof. Thus, we
only verify that the requirement φ will be true at the end
of the evolution, which is weaker than safety throughout.

7 Outlook

In this tutorial, we presented the basic proof techniques
provided by KeYmaera to verify parametric hybrid sys-
tems. In this tutorial we focused on safety properties.
However, KeYmaera is able to show liveness properties as
well. These can be expressed using the diamond modal-
ity 〈·〉. Where in the proofs of safety properties invariants
were necessary to prove properties of loops now variants

are required [38]. A variant can be seen as a formula en-
coding progress (cf. a termination function in discrete
program verification). KeYmaera can also be used to
prove general formulas of dL with arbitrary nestings of
quantifiers and modalities. Due to space constraints, we
refer to previous work [38, 40, 46] for such examples. Ex-
tending these ideas even further, KeYmaera can be used
to reason about hybrid games by means of differential
dynamic game logic [48]. Here, the number of interac-
tions between box and diamond modalities is not fixed
a priori but instead statements about arbitrary alterna-
tions of these can be made. Therefore, this extension can
be used to reason about the existence of a controller for
examples rather than the correct functioning of a specific
one.

In addition KeYmaera can be used to reason about
distributed hybrid systems with an a priori unknown
number of interacting agents. For this hybrid programs
can be extended to quantified hybrid programs and quan-
tifiers over additional countable domains may be added.
The resutling logic is called quantified differential dy-
namic logic [41]. This allows, among other things, to
make reasoning about the number of cars to consider
during a lane change maneuver explicit during the proof
instead of having to apply some argument why it is suf-
ficient to consider only a certain limited number of cars.

Recently, there has been significant work on the auto-
matic generation of promising differential invariant can-
didates [22].

Furthermore, we have been investigating proof-aware
refactorings [34]. There, the idea is to perform transfor-
mations on the hybrid programs in a structured way in
order to minimize the effort when reproving properties
about these programs. This specifically supports itera-
tive development of hybrid systems.
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