
Verification of partial-information probabilistic
systems using counterexample-guided

refinements

Sergio Giro1? and Markus N. Rabe2

1 Department of Computer Science – University of Oxford
2 Department of Computer Science – Saarland University

Abstract. The verification of partial-information probabilistic systems
has been shown to be undecidable in general. In this paper, we present a
technique based on inspection of counterexamples that can be helpful to
analyse such systems in particular cases. The starting point is the obser-
vation that the system under complete information provides safe bounds
for the extremal probabilities of the system under partial information.
Using classical (total information) model checkers, we can determine op-
timal schedulers that represent safe bounds but which may be spurious,
in the sense that they use more information than is available under the
partial information assumptions. The main contribution of this paper
is a refinement technique that, given such a scheduler, transforms the
model to exclude the scheduler and with it a whole class of schedulers
that use the same unavailable information when making a decision. With
this technique, we can use classical total information probabilistic model
checkers to analyse a probabilistic partial information model with in-
creasing precision. We show that, for the case of infimum reachability
probabilities, the total information probabilities in the refined systems
converge to the partial information probabilities in the original model.

1 Introduction

Verification algorithms for formalisms like Markov Decision Processes and their
variants have been studied extensively in the last 20 years, given their wide
range of applications. In these systems, there are two kinds of choices: non-
deterministic and probabilistic (with probability values specified in the model).
Non-deterministic choices are resolved using the so-called schedulers: by restrict-
ing a system to the choices of the scheduler, the restricted system collapses to
a Markov chain, and probability values for properties can be calculated. Worst-
case probability values are then defined by considering the maximum/minimum
probability over all schedulers. In consequence, a counterexample is a scheduler
that yields greater/less probability than allowed by the specification.

? This work was supported by DARPA and the Air Force Research Laboratory under
contract FA8650-10-C-7077 (PRISMATIC). Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of AFRL or the U.S. Government.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24067009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Background. In recent years, considerable attention has been paid to prob-
abilistic systems in which the non-deterministic choices are resolved according
to partial information (see [2, 3, 5, 9] and references therein). The formalisms in
these works can be seen as generalized versions of Decentralized Partial Observa-
tion Mdps. Using these formalisms we can model, for instance, a game in which
players keep some information hidden.

The quantitative model checking problem was shown to be undecidable in
general for partial information Mdps [10]. Some techniques are available for
finite-horizon properties or to obtain over-approximations [11]. To the best of
our knowledge, the technique for quantitative analysis in this paper is the first
one in which the amount of information available is gradually refined. As a
work in a similar direction, the first abstraction refinement technique for non-
probabilistic partial-information games was proposed quite recently [6]. A recent
work concerning qualitative properties in a setting similar to ours is [2].

Contribution. We present an iterative technique that allows to improve the
accuracy of the values obtained using total information analysis on partial infor-
mation systems. In order to do this, we present an algorithm to check whether a
total information scheduler complies with the partial information assumptions.
We also present a transformation (called refinement) that, given a scheduler
that does not comply with the assumptions, modifies the model to exclude this
scheduler and a whole class of schedulers that use the same unavailable infor-
mation when making a decision. This transformation can be carried out using
different criteria. For the case of infimum reachability probabilities, we show a
criterion under which, by successively applying the refinements, the total infor-
mation probabilities in the refined systems converge to the partial information
probabilities in the original model.

Introductory example. We illustrate the problem we address, and the useful-
ness of our technique, using the players A and B in Fig. 1 (the automaton A ‖ B
will be used later). To simplify, we assume that they play a turn-based game
(the systems we consider in the rest of the paper allow for non-deterministic ar-
bitrary interleaving). When the game starts, player A tosses a coin whose sides
are labelled with 0 and 1. Then, B tosses a similar coin keeping the outcome
hidden. In the next turn, A tries to guess if both outcomes agree: in the state
a0, the guess of A is that an agreement happened, and his outcome has been
0 (the meaning of the other states is similar). After the guess, a synchronized
transition (depicted with a dashed line) takes both A and B to the initial state,
where another round starts. Player B wins if A fails to guess at least once. The
problem under consideration is to calculate the minimum probability that B
wins. Intuitively we can think that player A wants to prevent the system from
reaching one of the states in which B wins. An example strategy for the first
round for player A would be “if A’s outcome is 0, then A guesses an agreement.
Otherwise, it guesses a disagreement”. In this scheduler/strategy, B wins iff its
outcome is 1. Hence, for this scheduler/strategy, the probability that B wins is
the probability that B’s outcome is 1, that is, 1/2. It is easy to see that, for
every scheduler, B wins in the first round with probability 1/2. In subsequent

2

rounds, player A might try different schedulers, but since all of them lead B to
win the round with probability 1/2, the probability that B has won after round
N is 1 − (1/2)N . Hence, the probability that B wins the game in some round
is 1. The minimum probability that B wins, quantifying over all schedulers, is
then 1.

This result is not, however, the one yielded by standard tools for probabilistic
model checking such as Prism [12] or LiQuor [4]. Such tools verify this model
by constructing the parallel composition A ‖ B shown in Fig. 1 (double-framed
boxes indicate the states in which B wins) and considering all schedulers for
the composed model under total information. The problem with this approach
(sometimes called the compose-and-schedule approach) is that there exist some
unrealistic schedulers as the one shown in Fig. 2: in this scheduler, the proba-
bility of reaching a state in which B wins is 0. The scheduler simply guesses an
agreement in case an agreement happened, and a disagreement otherwise. This
is unrealistic, as in the original model A is unable to see the outcome of B.

��
s 1/2

((QQQQQQQQQ1/2
vvmmmmmmmmm

0
�� !!DDDD 1

}}zzzz
��

a0

=={
{

{
{

{
{

d0

FF�
�

�
�

a1

XX0
0

0
0

d1

aaC
C

C
C

C
C

A

��
s 1/2

��>>>1/2
�����

0

OO

C L �

�
�

1

OO

{r0
�
�

��
s | s

1/2

((QQQQQQQQQQQ1/2

vvmmmmmmmmmmm

0 | s
1/2

vvmmmmmmmmmmm 1/2
!!DDDDD

1 | s
1/2

}}zzzzz 1/2

((QQQQQQQQQQQ

0 | 0

�� !!DDDDD
0 | 1

}}zzzzz
��

1 | 0

�� !!DDDDD
1 | 1

��}}zzzzz

a0 | 0
?

S W Z \] ^ _ _ ` ` `

d0 | 0
5

N
W \] ^ _ ` `

a0 | 1
*

?
Q Z ^ ` `

d0 | 1

#

O a a

a0 | 1
�

�
o]]

d0 | 1
�

�md`^^

a1 | 1
	

pgba`_^^

d1 | 1
�

kgdba`__^^^

OO�
�
�
�
�
�
�
�
�
�
�
�

B A ‖ B

Fig. 1. Player A tries to guess if the choices agree

The problem illustrated by the example led to the definition of partial-
information schedulers or distributed schedulers (in which a scheduler of the
compound system is obtained by composing schedulers for each player). However,
the verification of properties under partial-information schedulers was proven to
be difficult, and several hardness and undecidability results are known (see [10,
2], just to name a few).

��
s | s

1/2

((PPPPPPPPPP1/2

vvnnnnnnnnnn

0 | s
1/2
~~}}}}} 1/2

 AAAAA
1 | s

1/2
~~}}}}} 1/2

 AAAAA

0 | 0

��

0 | 1

��

1 | 0

��

1 | 1

��
a0 | 0

3
L

W \ ^ ` `

d0 | 1

#

O a a

d0 | 1
�

�
p]]

a1 | 1
�

rgb`^^

OO�
�
�
�
�
�
�
�
�
�
�
�

Fig. 2. An unrealistic scheduler for the parallel composition

The result considering all schedulers can be seen as a safe (although overly
pessimistic) bound on the minimum/maximum probability. In this paper, we
present a technique to obtain tighter safe bounds. This technique works through

3

a series of refinements: it starts by verifying the system as if total information
were available, using standard algorithms for the total-information case. If the
system is deemed correct, then it is also correct under partial information, as
the set of schedulers under partial information is a subset of the ones under total
information. If the system is deemed as incorrect, it can be checked whether the
counterexample obtained is valid under partial information: that is, if all choices
are resolved using only available information. If the scheduler is indeed valid,
then we can conclude that the system under consideration is incorrect, and we
can use the counterexample obtained as witness. For the case in which the coun-
terexample is not valid under partial information (that is, the case in which there
is a decision that is resolved according to information not available) we present
a transformation that produces a system in which the spurious counterexample
is less likely to occur in a new analysis under total information. We can analyse
the resulting system by repeating this refinement each time we get a spurious
counterexample, in the hope that eventually we find the system correct or we
get a real counterexample. We show that, for infimum reachability probabilities,
the refinements can be carried out in such a way that the results converge to the
actual value for all systems.

��
s

1/2~~}}}}}}}1/2

tthhhhhhhhhhhhhhhhhhhh

1/2 BBBBBBB 1/2

**VVVVVVVVVVVVVVVVVVVVVV

a′0

��

1

��~~||||||| d′0

��

1

��~~|||||||

a0
4

L
V [\ ^ ^ _ `

a1
)

;
O X] _ `

d1�
"

H _ `

d0
�

�
t_^

a1
�

�nfa_^

d1

qhcb``__

OO�
�
�
�
�
�
�
�
�

(a) Refined model of A

��
s | s

1/2

''OOOOOOOOOOO
1/2

wwnnnnnnnnnnn

a′0 | s
1/2

 BBBBBB
1/2

��

1 | s
1/2

��~~~~~~
1/2
��

a′0 | 0

��

a′0 | 1

��

1 | 0

��

1 | 1

��
a0 | 0

+
>

O X \ ^ _

a0 | 1

#
G ^ _

d1 | 0
�

�
y`_

a1 | 1
�

�pgb`_

OO�
�
�
�
�
�
�
�
�
�
�
�
�
�

(b) A scheduler after the first re-
finement

Fig. 3.

We can explain our counterexample-based transformation of the system by
following our previous example: we first detect that, in the counterexample
in Fig. 2, the player A performs a choice using unavailable information while
in state 0, by noticing that its choices differ for the state (0, 0) and the state
(0, 1) (the player also cheats in state 1, but can tackle one state at a time). The
transformation forces (the refined model of) A to choose beforehand what the
move will be in state 0, this choice being resolved during the coin toss. If the state
reached is 0, player A must adhere to its previous decision. The refined model
of A is shown in Fig. 3(a). Roughly speaking, the non-determinism at state 0
has been “pulled backwards”. If we apply the compose-and-schedule approach,
the compound system still has some unrealistic counterexamples, as A can still
cheat in state 1. One of such unrealistic counterexamples is shown in Fig. 3(b).
However, the minimum probability that B wins is now 1 for all schedulers (as

4

eventually A passes through state 0, in which A cannot cheat). Since our trans-
formation ensures that 1 is a lower bound for the minimum probability, we know
that the result is 1 and the verification finishes.

This verification, calculating the exact result after one refinement, can be
contrasted with the näıve approach of computing the minimum probability pN
that B wins before round N , increasing N successively. These probabilities can
be computed by considering each of the schedulers for A up to round N . The
value of pN is 1 − (1/2)N , and so this approximation never reaches the actual
value 1. In addition, as general schedulers depend on the local history of A,

computing pN involves computations for 22
N

different schedulers.

2 The model

In this section we introduce Markov Decision Processes, together with a notion
of parallel composition suited to define partial-information schedulers.

Markov Decision Processes. Let Dist(A) denote the set of discrete proba-
bility distributions over the set A. The support of A is denoted by supp(A).

A Markov Decision Process (Mdp) M is a quadruple (S,Q,Σ, T) where S
is a finite set of states, Q ⊆ S is a set of initial states, Σ is the finite alphabet
of the system, each element in Σ is called a label, and T ⊆ S × Σ × Dist(S) is
a transition structure: if µ = (s, α, d) ∈ T then there is a transition µ with label
α enabled in s, and the probability of reaching t from s using this transition
is d(t). When no confusion arises, we write µ(t) instead of d(t). We write en(s)
for the set of transitions (t, α, d) with t = s. The label of µ is written label(µ).
We assume that subindices and superindices map naturally from Mdps to their
constituents and so, for instance, Sp is the set of states of Mp.

A path in an Mdp is a (possibly infinite) sequence ρ = s0.µ1.s1. · · · ..µn.sn,
where µi ∈ en(si−1) and µi(si) > 0 for all i. If ρ is finite, the last state of ρ is
denoted by last(ρ), and the length is denoted by len(ρ) (a path having a single
state has length 0). Given two paths ρ, σ such that last(ρ) is equal to the first
state of σ, we denote by ρ ·σ the concatenation of the two paths. The set of finite

paths of anM is denoted by PathsM. We write s
µ−→t to denote µ ∈ en(s)∧µ(t) >

0. Overloading the notation, we write s
α−→t iff ∃µ : label(µ) = α ∧ s µ−→t. Given a

set of target states U , the set reach(U) comprises all infinite paths w such that
at least one state in w is in U .

The standard semantics of Mdps is given by schedulers. A (total informa-
tion) scheduler η for an Mdp is given by a state initη ∈ Q and a function
η : PathsM → T such that, if en(last(ρ)) 6= ∅, then η(ρ) ∈ en(last(ρ)). In words,
the scheduler chooses an enabled transition based on the previous path. For
simplicity, in case en(last(ρ)) = ∅ we define η(ρ) = ςlast(ρ), where ςlast(ρ) is a fic-
titious transition representing the fact that, after ρ, the system remains in last(ρ)
forever. Accordingly, we define ςs(s) = 1 for all s. The set of all schedulers for
M is denoted by Sched(M).

The set Paths(η) contains all the paths s0.µ1.s1. · · · .µn.sn such that s0 =

initη, η(s0.µ1.s1. · · · ..µi−1.si−1) = µi and si−1
µi

−→si for all i. We say that two

5

schedulers η, ζ are equivalent (denoted η ≡ ζ) iff Paths(η) = Paths(ζ) (note that
this implies η(ρ) = ζ(ρ) for all ρ ∈ Paths(η)).

The probability Prη(ρ) of the path ρ under η is
∏n
i=1 µ

i(si) if ρ ∈ Paths(η).
If ρ 6∈ Paths(η), then the probability is 0.

We are interested on the probability of (sets of) infinite paths. Given a finite
path ρ, the probability of the set ρ↑ comprising all the infinite paths that have
ρ as a prefix is defined by Prη(ρ↑) = Prη(ρ). In the usual way (that is, by
resorting to the Carathéodory extension theorem) it can be shown that the
definition on the sets of the form ρ↑ can be extended to the σ-algebra generated
by the sets of the form ρ↑. Since the measure of any set in the σ-algebra is
determined by the measure in the sets ρ↑, it follows that for all measurable sets
H: η ≡ ζ =⇒ Prη(H) = Prζ(H) .

Composition of variable-based Mdps. The systems we compose exchange
information through the use of shared variables. In consequence, we assume that
the state of an Mdp is given by a valuation on a set of variables V . The variables
in the set W ⊆ V are the write variables. The set of all valuations on a set V
is denoted by V[V]. The value of variable v in state s is denoted by s(v). Given
a state s and a set V ′ ⊆ V , we define the restriction [s]V ′ as the valuation on
V ′ such that [s]V ′(v) = s(v) for all v ∈ V ′. Given an Mdp Mp whose set of
variables is Vp, we write [s]p for [s]Vp

and [s]Wp for [s]Wp
.

The set of states of a variable-based MdpMp is the set V[Vp]. We assume,
however, that the transitions of variable-based Mdps are of the form (s, α, d)
where d is a distribution on V[Wp] (instead of of V[Vp]). In order to comply with
the definition of Mdp given in the previous subsection, we can lift d to V[Vp]
in the obvious way by defining d′(t) = 0, if t(v) 6= s(v) for some v 6∈ Wp; and
d′(t) = d([t]Wp), otherwise. In what follows, when writing µ(t), we mean d(t) if
t ∈ V[Wp], or d′(t) if t ∈ V[Vp].

We say that the Mdps M1, · · · ,MN , are compatible if ∀p 6=q : Wp ∩Wq = ∅.
Given a set of compatible Mdps {M1, · · ·MN}, let M(α) be the subset com-
prising the modules such that α ∈ Σp, W (α) be ∪Mp∈M(α)Wp and ¬W (α)

be V \ W (α). We define the parallel composition M = ‖Np=1Mp as the Mdp
(S,Q,Σ, T) such that:

– S is the set of valuations on
⋃
p Vp

– Q is the set of states s such that [s]Wp ∈ Qp for all p

– Σ =
⋃N
p=1Σp

– µ = (s, α, d) ∈ T iff for all Mp ∈ M(α) there exists µp ∈ enp([s]p) such
that label(µp) = α, µ(t) =

∏
Mp∈M(α) µp([t]

W
p) if [s]¬W (α) = [t]¬W (α) and

µ(t) = 0 whenever [s]¬W (α) 6= [t]¬W (α) .

Given a transition µ = (s, α, d) in M, we define [µ]p = ([s]p, α, d
′), where

d′(t′) =
∑
{t|[t]Wp =t′} d(t) for all t′ ∈ V[Wp]. Note that µ∈en(s)=⇒[µ]p∈en([s]p).

Control functions. The definitions introduced so far map easily to modelling
languages with shared variables such as Prism, but in order to consider partial
information we also need to introduce a concept resembling input/output as in
Probabilistic I/O Automata (PIOA [3]): the control function.

6

The technique we present considers a composition ‖Np=1Mp together with a
function control : Σ → {Mp}p ∪ {⊥}. If control(α) = Mp, the intended meaning
is that Mp decides to execute the transitions with this label, while the other
modules Mq with α ∈ Σq react to this transition. We formalize this meaning
when introducing partial-information schedulers. Labels with control(α) = ⊥
are not controlled by any module (it can be thought that they are controlled by
an external entity that has full knowledge). For the previous definition to make
sense, we require control(α) 6= ⊥ =⇒ α ∈ Σcontrol(α). We impose the follow-
ing condition, analogous to the input-enabledness condition for Input/Output
Automata [3]:

α ∈ Σp ∧ control(α) 6= ⊥ ∧ control(α) 6= Mp =⇒ ∀sp ∈ Sp : ∃tp : sp
α−→tp . (1)

In other words, whenever the module control(α) chooses to execute a transition,
it will not be blocked because of other modules not having an α transition
enabled. Given a transition µ we write control(µ) instead of control(label(µ)).

The control/reaction mechanism is similar to the PIOA, but our definition
for Mdps is simpler, as it does not need input and output schedulers as in
Switched PIOA [3] nor tokens [3] (or interleaving schedulers [9]) for interleaving
non-determinism.

If the model is specified in a language that does not allow control specifica-
tions (such as Prism), we can take control(α) = Mp if Mp is the only module
with α ∈ Σp, and control(α) = ⊥ if α ∈ Σp ∩Σq for some p 6= q.

Partial-information schedulers for Mdps. Our partial-information sched-
ulers require the choices of a module to be the same in all paths in which the
information observed by such module is the same. Given a path ρ the information
available to Mp is called the projection of ρ over Mp (denoted [ρ]p). In order to
define projections, we say that a transition µ affects module Mp iff label(µ) ∈ Σp
or s

µ−→t for some s, t such that [s]p 6= [t]p. Projections are defined inductively as
follows: the projection of the path s0 is [s0]p. The projection [ρ.µ.s]p is defined
as [ρ]p.[s]p if µ affects Mp or [ρ.µ.s]p = [ρ]p, otherwise. Alternatively, projections
might have been defined to include also information about the transitions. Our
definition is simpler and, in addition, it is easy to emulate the (apparently) more
general definition by keeping the last transition executed as part of the state of
the module.

Definition 1 (Partial-information scheduler). Given M = ‖ Np=1Mp, the
set PISched(M) comprises all schedulers η such that for all modules Mp, paths
ρ, σ ∈ Paths(η) with [ρ]p = [σ]p the two following conditions hold:

label(η(ρ)) = label(η(σ)) ∈ Σp =⇒ [η(ρ)]p = [η(σ)]p (2)

control(η(ρ)) = control(η(σ)) = Mp =⇒ label(η(ρ)) = label(η(σ)) . (3)

To understand (2), recall that in a state s there might be different transitions
enabled, say µ, λ, with label(µ) = label(λ) = α. Hence, (2) ensures that, if the
module Mp synchronizes in a transition labelled with α after both ρ and σ, then
the particular transition used in the synchronization must be the same after both

7

ρ and σ. In Eq. (3) we require that, if Mp is the module that chooses the label
in both ρ and σ, then the chosen label must be the same.

Given an MdpM = ‖Np=1Mp, a set H of infinite paths and B ∈ [0, 1], we are
interested in the problem of deciding if Prη(H) ≤ B for all η ∈ PISched(M).
The inequality holds iff supη∈PISched Prη(H) ≤ B. This problem has been proven
undecidable, even in the particular case in which H is the set of paths that reach
a particular state [10]. In contrast, it is well-known that the model-checking
problem under total information is solvable in polynomial time on the size of
the model for logics such as Pctl∗ and Ltl [7].

3 Refinement

In this section we show how a system can be verified under partial information
by using total-information techniques on successive refinements of the original
system. Our technique starts by verifying the system M under total informa-
tion, that is, by calculating STot = supη∈Sched Prη(H). If STot is less than or
equal to the allowed probability B then the inclusion PISched ⊆ Sched implies
SPar = supη∈PISched Prη(H) ≤ B, and hence the system is correct under partial
information. In case that STot > B, model-checking algorithms can provide a
representation of a scheduler η such that Prη(H) > B (see [7]). If η ∈ PISched,
then M is not correct under partial information, and η is a counterexample. If
η 6∈ PISched, then we perform a transformation on the system that prevents
the particular counterexample and with it a class of schedulers that violate the
partial information assumption in a similar way.

We start the description of our technique by showing how to check if a sched-
uler η is in PISched.

3.1 Detection of partial-information counterexamples

Under total information, for minimum/maximum reachability it suffices to con-
sider only globally Markovian (Gm) schedulers. A scheduler η is Gm iff η(ρ) =
η(σ) for all ρ, σ ∈ Paths(η) with last(ρ) = last(σ). Moreover, the verification of
general Ltl and Pctl∗ formulae is carried out by reducing the original problem
to problems for which Gm schedulers are sufficient [7].

We address the problem of checking whether η ∈ PISched for a given Gm
scheduler η. The method here resembles the well-known technique of self-com-
position [1]. We denote by η>0(s) the value of η(ρ) for all ρ ∈ Paths(η) with
last(ρ) = s. Note that a Gm scheduler is completely determined by the value
of η>0(s) in the states s reachable in η, in the sense that if two schedulers η, ζ
reach the same states and η>0(s) = ζ>0(s) for all reachable states, then η ≡ ζ.

We reduce the problem to that of checking whether η has conflicting paths.
Given a Gm η, we say that two states s, t with [s]p = [t]p are η-conflicting for
the module Mp iff either of the following holds

label(η>0(s)) = label(η>0(t)) ∈ Σp ∧ [η>0(s)]p 6= [η>0(t)]p or (4)

control(η>0(s)) = control(η>0(t)) = Mp ∧ label(η>0(s)) 6= label(η>0(t)) . (5)

8

We say that two paths ρ, σ ∈ Paths(η) are η-conflicting for Mp if [ρ]p = [σ]p,
last(ρ) = s, last(σ) = t and the states s, t are η-conflicting. From the definition
of η-conflicting and the definition of PISched, we have the following equivalence
for all Gm η:

η ∈ PISched ⇐⇒ η has no conflicting paths . (6)

Now we show how to check the (in)existence of conflicting paths for Mp. For

all s, t ∈ S, rp ∈ Sp, we define the relation s
rp
 t, that holds iff there exist paths

ρ, σ such that ρ · σ ∈ Paths(η), last(ρ) = s, last(σ) = t and [σ]p = rp. This
relation can be extended naturally to the sequences πp = r1p · · · rkp , so we can

write s
πp
 t. By the definition of , if s

πp
 t then there exists a path π from s

to t in η such that [π]p = πp. Consider the non-deterministic finite automaton

Nfap(η) that represents the relation
rp
 . In this automaton, each word starting

in s and ending in t corresponds to a πp such that s
πp
 t.

The problem of checking whether η has conflicting paths is now that of

checking whether initη
πp
 s and initη

πp
 t for some η-conflicting s, t. This can be

done by constructing the synchronous product automaton

Nfa2p(η) = Nfap(η)×Nfap(η) (7)

and checking whether it has a path from (initη, initη) to some η-conflicting (s, t).

Superfluous conflicts. We show that some conflicts can be ignored. For in-
stance, consider that we are calculating supη Prη(reach(U)), and we find that s,
t are η-conflicting, and the probability Prηs(reach(U)) to reach U starting from
s is 0. We say that this conflict is superfluous. Intuitively, one might think that
η could be changed so as to not cheat in s, and the probabilities would not
decrease, as the probability from s was already 0 in η: if all the conflicts are su-
perfluous, then, we should be able to construct a partial-information scheduler
yielding the same probabilities. This intuitive reasoning can be proven, and we
state it formally in the theorem below. For minimum probabilities, we say that
the conflict is superfluous if Prηs(reach(U)) = 1.

Theorem 1. Let η be such that Prη(reach(U)) = supη′ Prη
′
(reach(U)) (or,

resp., Prη(reach(U)) = infη′ Prη
′
(reach(U))). If all conflicts in η are superfluous,

then there exists η∗ ∈ PISched such that Prη
∗
(reach(U)) = Prη(reach(U)).

3.2 Refining a system for a conflict

According to Eq. (6), if a counterexample η does not comply with the partial-
information constraints, there exist two η-conflicting states s and t for a module
Mp. Since these states are conflicting, we have that [s]p = [t]p and either (4)
or (5) holds. In words, two different transitions µ, λ are chosen in Mp while,
because of the partial-information constraints the choices must coincide. Next,
we show how to refine the module Mp. The refinement is modular, in the sense
that only Mp is affected.

9

As illustrated in the example in the introduction, the idea is to split [s]p in
such a way that µ and λ are not enabled in the same state. We present a general
way to split states, that will be useful to develop a splitting criterion that ensures
convergence for the case of the infimum probabilities (see Thm. 3).

In order to ensure input-enabledness, the transitions enabled in each of the
split states must comply with a certain condition: given a state sp of Mp, a
minimal choice set is a set F of transitions such that, for each label α not
controlled by Mp there is transition labelled with α in F and, if there is a
controlled transition enabled in sp, then F has at least one controlled transition.
Intuitively, when a module restricts its choices to a minimal choice set F , it fixes
the reactions for all non controlled transitions, and fixes the controlled transition
to execute (if any). In the following, let T1, · · · , TZ be sets of transitions such
that for every minimal choice set F there exists i such that F ⊆ Ti. These sets
are called choice sets. As an example, the simplest splitting criterion is, given
two states s, t being η-conflicting for Mp, take T1 = en([s]p) \ {[η(s)]p} and
T2 = en([s]p) \ {[η(t)]p} as choice sets.

The overall idea of the transformation is then simple: the state sp being split
is replaced by Z states s1p, · · · , sZp in such a way that the transitions enabled

in si correspond to Ti. We construct the refined module Mq in the following
definition.

Definition 2. Given a module Mp in M, u ∈ Sp, and choice sets {Ti}Zi=1, the
refinement Mq(η, u, {Ti}Zi=1) is defined as:
– Vq = Vp ∪ {x} where x 6∈ Vp is a fresh variable name. The domain of x is
{1, · · · , Z}. In addition, W ′q = Wp ∪ {x}

– Sq is the set of valuations on Vq
– Qq = {v | [v]p = u ∧ [v]p ∈ Qp} ∪ {v | [v]p 6= u ∧ v(x) = 1 ∧ [v]p ∈ Qp}
– Σq = Σp ∪ {α | ∃u′ : [u′]Wp

α−→[u]Wp }
– for all v ∈ Sq, we have µq ∈ enq(r) iff some of the following conditions hold:
• label(µq) ∈ Σq \Σp and µq(v

′) = 1 for some v′ such that [v′]Wp = [v]Wp .
• label(µq) ∈ Σp,

∀v′, v′′ ∈ supp(µq) : v′(x) = v′′(x) (8)

and there exists µp ∈ enp([v]p) such that µp([u]Wp) > 0 and

∀v′ : µq(v
′) = µp([v

′]p) and (9)

[v]p 6= u ∨ (v(x) = i ∧ µp ∈ Ti) . (10)

• label(µq) ∈ Σp, and

∀v′ ∈ supp(µ) : v′(x) = 1 (11)

and there exists µp ∈ enp([v]p) such that µp([u]Wp) = 0 and (9) and (10)
hold.

Next we explain this transformation informally. If u ∈ Qp, then in Qq we have
Z states corresponding to up, the variable x having different values in each state

10

(note that these two states constitute the set of all states v such that [v]p = u).
For all the other initial states, we just set the value of x arbitrarily to 1 (we
could have chosen any value in {1, · · · , Z}), since the transitions that lead to u
will update the variable regardless of the initial value.

Notice that the alphabet of the module is extended in order to synchronize
in all transitions that might change the variables of Mp, and lead it to u.

The transitions in Mq that synchronize on the newly added labels only change
the value of x in a non-probabilistic fashion. The transitions in Mq having labels
that were already in Σp correspond to transitions µp that were already in Mp.
We have two cases: first we consider the case in which µp reaches u. Each of
the corresponding transitions µq changes the value of x in a non-probabilistic
fashion (condition (8)) so that there are Z transitions corresponding to µp: each
one setting x to a value in {1, · · · , Z}. Wrt. the other variables, the transitions
µq behave in the same way as in Mp (condition (9)). In addition, condition (10)
ensures that, if µq is enabled in a state corresponding to u, then µq corresponds
to a transition in Mp that is consistent with the value of x. In case µp does reach
not u, condition (11) specifies that the transition µq set the value of x to 1 (for
the same reason that some initial states were set to such an arbitrary value).
Note that the transitions µq must also respect the probabilities in µp, and be
consistent with the value of x (as we require the conditions (9) and (10)).

If the module Mp in M = ‖ rMr is refined to Mq(u, {Ti}Zi=1), the refined
systemM(u, {Ti}Zi=1) is Mq(u, {Ti}Zi=1) ‖r 6=pMr. control(α) remains unchanged.

Given a set of infinite paths H in an MdpM with variables V , we can obtain
the corresponding set in M(u, {Ti}Zi=1):

H′ = {s′0.µ′1.s′1. · · · | [s′0]V .[µ
′1]V .[s

′1]V · · · ∈ H} .

The following theorem ensures that we can apply refinements without chang-
ing the partial-information extremal probability values.

Theorem 2. sup
η∈PISched(M)

Prη(H) = sup
η∈PISched(M(u,{Ti}Zi=1))

Prη(H′)

3.3 Convergence

In the beginning of this section we introduced the problem of computing SPar, in
order to know whether SPar ≤ B. Depending on the particular system and prop-
erty being checked, and on how the choice sets are chosen, the probabilities in
the refined systems might actually converge or not to SPar. The next subsection
shows that, when calculating infimum values for reachability properties, there
exists a sequence of choice sets that ensures that the probabilities converge.

Suppose the variables in the original system are x1, · · · , xN , and that given
a system with N variables, the new variable introduced in Definition 2 is xN+1.
Given M, we write N(M) for the number of variables in M. Let V ↓ i be
the set of variables {x1, · · · , xi}. An i-state is an element of V[V ↓ i]. We say
that two transitions are an i-choice in state sp if they are enabled in sp and
1 ≤ i ≤ N is the minimum value such that [µ]Wp∩V↓i 6= [λ]Wp∩V↓i. Exceptionally,

11

if label(µ) 6= label(λ) and control(label(µ)) = control(label(λ)) = Mp, we say
that µ, λ are a 0-choice. When refining a system with N variables, we eliminate
(at least) one i-choice, where trivially i ≤ N , and for each transition leading
to the refined state we create new (N + 1)-choices: the different transitions µq
corresponding to a transition µp in Definition 2 can be distinguished only by the
values they assign to xN+1.

Consider a scheduler η 6∈ PISched. By Eq. (6), it has at least two conflicting
states s, t. We say that µ, λ, is an i-conflict in η iff there exist s, s′, sp, such that
[s]p = [s′]p = sp, [η(s)]p = µ, [η(t)]p = λ, and µ, λ are an i-choice in sp. We say
that µ, λ is a minimum conflict if it is an i-conflict with minimum i, quantifying
over all conflicts in η.

Informally, the following theorem states that, if every time we search for a
minimum conflict, and we refine all the states having such a conflict, then the
infimum probabilities under total information (in the refined systems) converge
to the infimum probability under partial information (in the original system).

Theorem 3. Given an Mdp M and a set of states U , consider the sequence
of Mdps defined inductively as follows: M0 is ‖ pMp. Given Mk and ηk 6∈
PISched(Mk), we defineMk+1 by defining intermediate systemsMk,l. Let Smin

be the states with a minimum conflict µ, λ for Mp in ηk. The system Mk,0 is
Mk; given Mk,l, if there exists sl+1 such that [sl+1]V↓N(Mk) ∈ Smin then we let

Mk,l+1 = Mk,l([s
l+1]p, {T1, T2}) , where T1 = en([sl+1]p) \ {µ′ | [µ′]Vp↓N(Mk) =

µ} and T2 = en([sl+1]p) \ {λ′ | [λ′]Vp↓N(Mk) = λ}. If no such sl+1
p exists, we let

Mk+1 =Mk,l. There exists l such that Mk+1 =Mk,l. Moreover, we have
lim
k→∞

inf
η∈Sched

PrηMk
(reach(Uk)) = inf

η∈PISched
PrηM(reach(U)) ,

where Uk is the set of all states s in Mk such that [s]V↓N(M) ∈ U .

For simplicity, in the theorem above we assume that we are unlucky and we
never find a partial information counterexample. In case we do, we can simply
makeMk+1 =Mk. We also preserve indices across refinements: if Mp is refined
in Mk,l, then Mp is the refined module in Mk,l+1.

There is no similar convergence for upper bounds of supremum probabili-
ties: together with the computable lower bounds limn→∞ Prη(reach(Un)) (where
reach(Un) is the set of paths reaching U before n steps) such upper bounds would
turn the approximation problem for the supremum decidable, and it is not [10].

4 Experimental results

In spite of Thm. 3, we do not have an upper bound on the number of refine-
ments needed to get a probability ε-close to the actual one. In consequence, we
implemented a preliminary prototype of the refinement technique in Prism, to
check whether some improvements in worst-case probabilities can be found in
practically acceptable times.

Variants implemented. We found that, in some cases, the criterion for se-
lecting conflicts in Thm. 3 (which we refer to as “minimum variable conflict”
or MVC) does not improve the probabilities quickly enough. An explanation for

12

this behaviour can be seen in a small example: in a system with N variables,

suppose that in a module we have s
µ−→t λ−→r, and in r there is a non-deterministic

choice that the fictitious counterexamples resolve according to a hidden coin that
is tossed by another module in a transition than synchronizes with µ. In the first
refinement, we pull the non-determinism backwards to s′. For the scheduler not
to cheat any longer, we need to pull the non-determinism to s but, in the first
variant, this only occurs after all the N -conflicts have been refined, as the choices
introduced in s′ are (N + 1)-choices.

We implemented a second variant (which we refer to as “shortest projection
conflict” or SPC) that performs a breadth-first search on the automaton Nfa2p(η)
in Eq. (7), in order to obtain the shorter projection ρp for which the partial
information restrictions are violated. In the previous example, if s.µ.t.λ.r is the
smallest conflicting path in the first counterexample, then s.µ.t is the smallest
conflicting path in the second counterexample, and the cheating is eliminated in
the second refinement. In addition, in this variant we split each state into several
states: if the conflict concerns controlled transitions, then each choice set has a
single controlled transition (and also has all non-controlled transitions); if the
conflict concerns a reaction to a certain label α, then each choice set has a single
transition labelled with α (and also all controlled transitions, and transitions
with labels other than α). This is easy to implement and yields better results in
practice. Examples can be constructed to show that SPC does not converge in
all cases.

SPC MVC

N k |S| initial
Initial
prob.

|S| final
Final
prob.

Time
(s)

Superf.
conflicts

|S| final
Final
prob.

Time
(s)

Light 3 4 712 0.44 2376731 0.30 * 2973 10 8506371 0.44 12418
bulb 3 5 1042 0.62 5774983 0.50 16762 0 7592182 0.62 11317

4 4 2069 0.09 893665 0.05 * 1561 80 2015056 0.09 19983
4 5 3453 0.23 7708257 0.15 26363 156 8294102 0.23 14182

Crowds 3 - 109 1.00 6393 0.40 * 6 0 17705 0.40 * 54
4 - 237 1.00 163634 0.30 * 530 0 308510 0.55 20050

Afs 20 7 6600 1.00 6978 0.23 * 197 0 6978 0.23 * 198
25 8 10125 1.00 10719 0.22 * 710 0 10719 0.22 * 728

Table 1. Experimental results

Experiments. We analysed three systems: (1) the crowds protocol [14]: a group
of N entities tries to deliver a message to an evil party in an anonymous way. We
ask for the maximum probability that the evil party guesses the sender correctly.
(2) the protocol for anonymous fair service (Afs) in [11] (precisely, the variant
called Afs1 in [11]), which involves two clients and a server. We ask for the
worst-case probability that one of the clients gets k services more than the other
one before the first N services happen; (3) the problem of the light bulb and
the prisoners [15]: there is a group of N prisoners. In each round, a prisoner is
selected at random and taken to a room where he can switch the light bulb. The
only information available to each prisoner is the state of the light bulb when
he enters the room. The prisoners win the game if one of them can, at some

13

point, guess that all of them have been in the room (they lose in case of a wrong
guess). We ask for the maximum probability that the prisoners lose the game in
k steps. For (2), we reused in [10]; the other models were written specifically, as
there are no existing Prism models with partial information constraints.

The results are shown in Table 1. The experiments were ran on a six-core
Intel Xeon at 2.80 GHz with 32Gb of memory, in order to be able to analyse the
problem of the light bulb and the prisoners for as many refinements as possible.
The table shows the number of states in the initial system, and in the final
system after the last refinement, and similarly for the probability values. We
set a time-out of 8hs. for experiments: the cases where the last scheduler had
no conflicts (or all of them were superfluous) are marked with a ∗. In these
cases we also indicate the number of superfluous conflicts in the last scheduler,
as a measure of the usefulness of Thm. 3. For timed-out experiments, the time
reported is the time spent to compute the last probability computed.

The two criteria have similar performance for Afs, but SPC outperforms
MVC in the other systems. Even when SPC cannot find the realistic probability,
in the light bulb case study, it is able to obtain improvements for the probabil-
ities. It is also remarkable that, for Afs, we ran the experiments for the same
parameters as in [11] (N = 20, k = 1..20, not shown in the Table 1) and the
probabilities obtained using our technique coincide with the ones in [11]: these
were known to be safe bounds, but thanks to our technique now we know that
they were in fact exact values.

5 Concluding remarks

Decidability. Although Thm. 3 ensures that the successive values converge to
the infimum reachability probability, we found no way to check if a given ap-
proximation is within a certain error threshold: although the bounds get tighter,
there is no way to know when we are close enough to the actual value. These
approximations are still valuable, as it is not known whether the approximation
problem is decidable for infimum probabilities. It is undecidable for the supre-
mum [10], but the infimum/supremum problems are not trivially dual to each
other: in fact, for probabilistic finite automata (which are a particular case of
the models in [3, 10] and here) the approximation problem is undecidable for the
supremum [13] and decidable for the infimum [8].

Complexity. Our result of convergence (Thm. 3) concerns the computation of
the infimum reachability probability. The problem of, given a system such that
the infimum is 0 or 1, determining which of the cases holds, can be shown to be
NP-hard using a similar argument as in [9, Thm. 5.5]. This NP-hardness result
implies that, unless P = NP , for each error threshold ε there is no polynomial
algorithm to approximate the value within relative error ε (these problems are
often called inapproximable). We do not have any bounds on the amount of
refinements needed to get an approximation: however. Given this hardness result,
the best we can expect is that our technique is useful in practical cases, as shown
in Sec. 4.

14

Further work. We are particularly interested in linking this approach with
existing ones. For instance, we plan to study if it can be applied to the game-like
setting in [6], or whether it can be adapted for qualitative properties as studied
in [2]. In addition, we plan to consider conflict selection criteria other than
“minimum-variable-first” and “shortest-projection-first”, to find better results in
practical cases. Given that our results are appealing to quantitative verification,
a natural step forward would be to extend the results here to consider discounts
and rewards.

References

1. Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by
self-composition. In CSFW, pages 100–114. IEEE Computer Society, 2004.

2. Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Qualitative
analysis of partially-observable markov decision processes. In MFCS, volume 6281
of LNCS, pages 258–269. Springer, 2010.

3. Ling Cheung, Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Switched
pioa: Parallel composition via distributed scheduling. TCS, 365(1-2):83–108, 2006.

4. Frank Ciesinski and Christel Baier. Liquor: A tool for qualitative and quantitative
linear time analysis of reactive systems. In QEST, pages 131–132. IEEE CS, 2006.

5. Luca de Alfaro, Thomas A. Henzinger, and Ranjit Jhala. Compositional methods
for probabilistic systems. In CONCUR, pages 351–365, 2001.

6. Rayna Dimitrova and Bernd Finkbeiner. Abstraction refinement for games with
incomplete information. In FSTTCS, volume 2 of LIPIcs, pages 175–186, 2008.

7. Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Au-
tomated verification techniques for probabilistic systems. In SFM, pages 53–113,
2011.

8. Sergio Giro. An algorithmic approximation of the infimum reachability probability
for probabilistic finite automata. CoRR, abs/1009.3822, 2010.

9. Sergio Giro. On the automatic verification of distributed probabilistic automata
with partial information. PhD thesis, FaMAF – Universidad Nacional de Córdoba,
2010. Available at http://cs.famaf.unc.edu.ar/˜sgiro/thesis.pdf.

10. Sergio Giro and Pedro R. D’Argenio. Quantitative model checking revisited: Nei-
ther decidable nor approximable. In Jean-François Raskin and P. S. Thiagarajan,
editors, FORMATS, volume 4763 of LNCS, pages 179–194. Springer, 2007.

11. Sergio Giro and Pedro R. D’Argenio. On the verification of probabilistic i/o au-
tomata with unspecified rates. In SAC, pages 582–586. ACM, 2009.

12. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV’11, pages 585–591. Springer, 2011.

13. Omid Madani, Steve Hanks, and Anne Condon. On the undecidability of proba-
bilistic planning and related stochastic optimization problems. Artif. Intell., 147(1-
2):5–34, 2003.

14. Michael K. Reiter and Aviel D. Rubin. Anonymous web transactions with crowds.
Commun. ACM, 42(2):32–38, 1999.

15. Hans P. van Ditmarsch, Jan van Eijck, and William Wu. One hundred prisoners
and a lightbulb - logic and computation. In KR, 2010.

15

