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Abstract

Contours are a powerful cue for semantic image under-
standing. Objects and parts of objects in the image are de-
lineated from their surrounding by closed contours which
make up their boundary. In this paper we introduce a new
bottom-up visual operator to capture the concept of closed
contours, which we call the ’Torque’ operator. Its compu-
tation is inspired by the mechanical definition of torque or
moment of force, and applied to image edges. The torque
operator takes as input edges and computes over regions of
different size a measure of how well the edges are aligned
to form a closed, convex contour. We explore fundamental
properties of this measure and demonstrate that it can be
made a useful tool for visual attention, segmentation, and
boundary edge detection by verifying its benefits on these
applications.

1. Introduction
A problem central to visual scene interpretation is the lo-

calization and segmentation of objects and detection of their
boundaries in the visual scene. All visual processing starts
with the cluttered two-dimensional image(s), which are
formed as the projections of the three-dimensional world.
Psychologists of the early twentieth century. argued that hu-
man vision organizes the image clutter at the early stages of
interpretation through a process of figure ground segmen-
tation by identifying the image regions which are object-
related for further processing. They suggest that certain
principles are applied to group pieces of image and locate
borders of figures. Most theorists of Vision will argue that
scene interpretation involves processes at different levels of
abstraction, which are categorized into low, mid, and high
level vision. Low level processes compute features, such
as local edges, color, texture and image motion. Mid-level
processes combine the features into larger coherent patches
to obtain surfaces, and other information such as 3D motion
and lighting, and high level processes utilize semantic infor-
mation to recognize objects, actions and scenes. Many will
agree that mid-level vision to a large degree is about imple-

menting organizational principles, some of which have been
proposed by the Gestalt theorists.

Few studies have explored mid-level cues as a tool for
boundary detection and segmentation. Most studies start
with clean, segmented contours to explore cues such as
junctions [24], parallelism, line continuity [32] and con-
vexity [4, 39, 11]. To deal with cluttered images, recently
the focus has shifted to data-driven approaches [34]; for
example [38] learns mid-level cues from low level cues.
Segmentation approaches are usually based on local cues
(edges and intensity) as input to a global optimization, but
recently many methods first compute super-pixels [35] by
over-segmenting the image into perceptual uniform regions
based on the statistics in neighborhoods or affinity between
points.

In this paper we introduce a new semi-global operator of
mid-level vision called the ’torque’, that captures the orga-
nizational concept of ’closure’. This operator is defined on
oriented edges and provides a measurement of how well the
local edges in a patch fit a contour. Its function is to provide
a tool for collecting edge information from regions of dif-
ferent extent in order to enforce edges that form boundaries
and discard edges due to texture. The reader can skip ahead
to Fig. 7 to get an intuition for a map computed with the
torque operator.

After a description of related work, we present an anal-
ysis and description of the properties of this operator. Then
we apply the operator to a few problems of image process-
ing on single images, specifically the problems of boundary
detection, visual attention, and foreground segmentation, in
order to verify its usefulness as a tool that can improve ex-
isting techniques. Finally, we conclude with a discussion on
extending this operator to multiple view data, where contour
orientation can be defined on the basis of geometric infor-
mation (motion and depth).

2. Related Work
Segmentation involves combining information from the

interior of surfaces which are smooth in some quantities,
such as color, intensity, texture [1], motion [8, 30, 12],
depth [22], and the discontinuities in these quantities, which
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are reflected as luminance edges and discontinuities in the
texture and the geometric cues. Most approaches treat the
problem of segmentation as dividing the image into multiple
regions using different clustering techniques [10, 7]. Our
focus here is to segment objects, and methods closer related
to this concept are those that consider the problem of seg-
mentation as separating one foreground object from back-
ground. The problem is usually modeled as optimizing for
a binary labeling that assigns each pixel a label such that the
labeling is both consistent with the observed data and piece-
wise smooth. One sets up an energy model, which either is
formulated probabilistically and solved using belief propa-
gation or graph cut methods [22], or continuous and refor-
mulated with differential equations and solved using active
contours and variational approaches [6, 29]. An interesting
biological motivated formulation was introduced in [28],
which segments in the polar coordinate system by minimiz-
ing for a closed contour surrounding a fixation point using a
graph cut formulation defined on edges only. However, all
approaches have the problem of being biased, usually to-
wards small regions with small and smooth boundary. This
is because of texture edges, which in real images are always
present, in conjunction with minimizations biased towards
certain shapes. For example graph cuts [22] are known to
favor small areas, the polar coordinate representation favors
circular blobs, and variational minimizations [37] explic-
itly minimize the length and/or smoothness of the bounding
contour. The torque operator can help alleviate the bias, as
it can be used to locate the regions surrounded by contours,
locate contours of larger extent, and separate texture edges
from boundary edges.

Contours are an important cue for segmentation and
recognition. By the term contour, we generally refer to ex-
tended curve or edge fragments which present some mean-
ingful geometric concept. As a tool for recognition, so
called contour patches, which are local descriptors of spatial
edge distributions have been developed. For example, the
shape context descriptor [5] encodes the spatial distribution
of edge points in log polar space, or [21] defines a feature
detector based on the saliency of local convexity. Recently,
data driven approaches have become popular, which acquire
contour fragments and their detectors [23, 31] using sophis-
ticated learning techniques from large amounts of data.

In the context of segmentation, one is interested in the
contours that form the boundaries which separate fore-
ground from background. Great advances in contour de-
tection have been achieved through data-driven approaches,
championed in the work of Martin et al. [27]. In this work,
local cues, such as brightness, color, texture, and their gra-
dients are combined, and weights for each cue are learned
using image data sets with ground truth contours [27, 25].
In similar spirit [13] learns edge classifiers from simple fea-
tures in image patches, Ren [33] combines information of

local operators from multiple scales, and the high perfor-
mance contour detection algorithm in [3] includes a global-
ization process to combine local edges based on the affinity
of distant pixels. While all these techniques are based on
learning approaches, the torque mechanism achieves con-
tour localization in a bottom-up fashion.The operator could,
however, also be used as input to a learning approach.

Visual attention or saliency can be used as pre-process of
foreground segmentation. Attention mechanisms are clas-
sified into bottom-up and top-down processes. Top-down
attention is more complex because it represents objects in
memory [17] and uses the memory to detect likely objects
in an attended visual scene. Bottom up attention is driven
by low level processes. Probably the best known model
of visual attention is the one proposed by Itti et al. [19].
In this model, first local feature maps are computed from
color, intensity and orientation information as the difference
of Gaussian filters at multiple scales, which approximate
the ’center-surround’ differences of neurons. Larger cen-
ter surround differences are considered more ’conspicuous’.
Then a combined saliency map is constructed by adding
the normalized feature maps. Related approaches differ in
the choice of feature vectors and combination of features.
In our experimental section we will compare against the
method of Harel et al. [16], which computes a saliency
map based on the dissimilarity of features in regions us-
ing a graph-based approach. Harel et al. evaluated the per-
formance of their detector on its ability to predict human
attention using the human fixation data of Einhäuser et al.
[14], and reported to achieve 98% of the ROC area of human
based control, while the model by Itti et al. achieved only
84%. Recent works in fixation and attention [18, 15] of-
fers an alternative to the traditional ”early” feature saliency
theories. Based on systematic psychophysical experiments
[18] suggests that observers look at objects as if they knew
them before they became aware of their identity, and [15]
shows that the hypothesis that humans attend to objects has
a better predictive power in the data than any other the-
ory. In our paper we will use the torque measure to de-
rive a saliency map for visual attention. The extrema of the
torque measure often appear at the locations in the image
where objects are surrounded by edges. Thus the torque ap-
pears to be a good measure to model object driven visual
attention.

3. Torque Measure

3.1. Definition

Torque is a measure used in physics to express how much
a force acting on an object causes that object to rotate. It is
defined as:

~⌧ = ~r ⇥ ~

F , (1)



where ⌧ is the torque vector, ~r is the displacement vector
from the axis of rotation to the point where the force is ap-
plied, and ~

F is the force vector. Based on this concept we
define a torque measure for images. It is treated as if a force
is applied at a point on an image edge along the tangent of
the edge. For an arbitrary point, which we call the center
point, the rotation axis for the torque is imagined as if it is
going through that point in three-dimensional space. Then,
we can measure the torque at any point in the image with
respect to the rotation axis as illustrated in Figure 1. Since
the displacement vector and the force vector are on the im-
age surface, the torque vector is always perpendicular to the
image surface. Therefore, we call the value of the torque
vector along the axis perpendicular to the image simply the
torque or torque value hereafter.

F
r

τ

Figure 1. Torque for images: Consider a center point p and an edge
point q, to which we assign a force vector ~F along the tangent of
the edge. Denoting as ~r the vector from p to q, the torque vector at
q is defined as ~⌧ = ~r ⇥ ~F . Its value along the axis perpendicular
the image will be called the torque.

In general, an image edge is represented by a function
C 2 R2 with parameter t as follows:

C (t) = (C

x

(t) , C

y

(t))

T

. (2)

The derivative of C is treated as the force applied at an edge
point. Thus we can define the torque for points on edge
curves as:

⌧

p

(t) = (C (t)� p)⇥ C

0
(t) , (3)

where p is the point where the rotation axis pierces the im-
age. For simplicity, the cross product of two dimensional
vectors is obtained by cross-multiplying the vectors. (This
is equivalent to adding a zero as a third element to the two
dimensional vectors and considering only the third compo-
nent of the cross product of the such obtained 3D vectors.)
Figure 2 gives an illustration of the geometric relation of
the two vectors in eq. (3). Based on the definition of the
torque for a point, we define the torque of an image patch
as the sum of the torque values of all edge points in the im-
age patch. A rigorous definition of the torque of an image
patch of arbitrary shape is as follows:

⌧

P

=

NX

i

M

iX

j

1

2 |P |

Z
t

i,j

1

t

i,j

0

⌧

i

p

(t) dt, (4)

( ) ptC −

( )tCʹ′

p

( )p

( )

( )

Figure 2. Torque for point on edge curve

where P denotes an image patch, and p is a point inside the
patch. |P | is the area of the patch, N is number of edge
curves overlapping the image patch, and ⌧

i

p

(t) is the torque
at value t of the i-th edge curve. The i-th edge curve has
M

i segments within the image patch, and the j-th segment
of the i-th edge curve is between value t

i,j

0 and t

i,j

1 in pa-
rameter t.

Since our images are discrete, edges are represented by
a set of pixels in the image. Then, the force is defined by
an oriented unit vector in the direction of the edge, and the
torque value of an edge pixel amounts to:

⌧

pq

= k~r
pq

k sin ✓
pq

, (5)

where p is the point on the image through which the rotation
axis passes. q is an edge point. ~r

pq

is the displacement vec-
tor from p to q, and ✓ is the angle between the displacement
vector and the tangent vector.

Note that in our definition edges are oriented. Thus, the
value of the torque can have positive and negative values. If
multiple images are available we can define the orientation
on the basis of depth. If we have a single image only, we de-
fine it on the basis of intensity, as perpendicular clockwise
to the image gradient, such that the brighter side is on the
right of the edge and the darker side on the left.

Similarly to the definition on edge curves, the discrete
torque of an image patch is defined as:

⌧

P

=

1

|P |
X

q2E(P )

⌧

pq

, (6)

where E (P ) is a set of edge points in the patch P , and p is
a point inside the patch.

In principle the shape of the patch could be arbitrary, but
in this paper we will use either disk or square patches, and
p will be the center of the disk or square.

3.2. Properties of the torque

Next we discuss how the value of the torque is related to
the contours in the image patch. We describe some proper-
ties of the torque in order to motivate how the torque will
be used.



Torque and Area: Since the torque is defined by the cross
product of vectors, it is essentially related to the area defined
by these vectors as shown in figure 3. This relationship can
be easily extended to edge curves. Assuming the edges are
clean continuous curves, the magnitude of the torque in a
patch is related to the position of the curves in the patch and
their shape. The torque of a closed curve, completely inside
the patch, is proportional to its area. Taking the normaliza-
tion factor in definition of torque into account, the closer the
patch boundaries surround the curve, the larger the torque.
For curve segments intersecting the boundary of the patch
with center p at two intersection points q1 and q2, the torque
is proportional to the area enclosed by the edge curve and
the two line segments pq1 and pq2. This is depicted in fig-
ure 4.
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Figure 3. Cross product and area: The triangle enclosed by vector
~r and ~F is equivalent to

���~r ⇥ ~F
��� /2.
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Figure 4. Relationship between torque and area: Two cases are
shown: (a) the disk patch is smaller than the object and covers
only part of the object boundary. (b) the disk patch covers the
whole object boundary.

Texture vs Boundary: The torque will be larger when it
contains extended contours and will be largest if the con-
tours are closed. On the other hand, the torque will be small
if the edges are random. Thus, intuitively texture edges lead
to small torque values and boundary edges to large values.

Extrema in Torque: The torque value tends to be large in
magnitude if the patch contains extended contours close to
the boundaries of the patch. Therefore, it is expected that
the torque measure can be used to find the locations in the
image where edges are structured, that is, forming extended
contours. Furthermore, it will give us the scale of the region
of these edges. Figure 5 gives an example to illustrate this
property. Referring to the figure, the torque was computed
at every point in the image using disk patches of four dif-

ferent sizes. The location of the structured edges, i.e. the
triangle, can be inferred from the extremum of the torque
value over space and patch sizes. The patch size of the ex-
tremum of the torque indicates the size of the triangle. Fig-
ure 6 gives another example, this time for a circular contour.
The torque values were computed at the center of the circle
using disk patches with diameter in the range of 1 to 120.
The extremum in the plot of the torque values over scale
indicates the size of the circle. From these examples it can
be seen that the extremum of torque indicates the existence
of structured edges, and the corresponding patch size indi-
cates the scale of the structured edges. Furthermore, it is
worth noting that the torque value tends to be of same sign
inside closed contours, and of opposite sign outside. The
sign depends on whether the edge direction is clock-wise or
counter-close-wise.

2 10 21 30

Figure 5. Torque maps for a triangle computed over four patch
sizes: Torque values are color coded with red color assigned to
positive and blue to negative torque values. Dark red corresponds
to high positive torque values. The numbers below the torque maps
denote the radius of the disk patch in pixels. The image is of size
101⇥ 101 pixels, and the height of the triangle is 40 pixels.
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Figure 6. Torque values for a circle computed over a range of patch
sizes: (a) is the example image, and (b) is the edge map of the im-
age. The circle is located in the middle of image, and its diameter
is 61 pixels. The torque values are computed at the center point of
the image over different patch sizes. Plot (c) shows that the max-
imum torque at the center of image is obtained when the patch
tightly circumscribes the circle.

3.3. Representation of the torque

First, let us get an intuition for the torque on a real image.
Referring to the figuree 7, for the image on the upper left
from the Berkeley data set, the torque map was computed
using patches of three sizes ( 5⇥ 5, 21⇥ 21 and 45⇥ 45 ),
i.e. for every pixel p we computed the torque with patches of
different sizes and centered at p. We used the color coding



explained in the second row. Pixels of blue color correspond
to negative torque value, and pixels of red color correspond
to positive torque value. The negative values originate from
dark regions surrounded by lighter background and the pos-
itive values from bright regions surrounded by dark values.
As one can see from the figure, for small patch sizes, the
large torque values are near the image edges, and as the size
of the patch increases the larger torque values move to the
center of object regions. We then define data structures that
combines all patch sizes, which can be described by the fol-
lowing equations:

V (x, y) = ⌧ (x, y, ŝ (x, y)) , (7)
S (x, y) = sgn (V (x, y)) · ŝ (x, y) , (8)
ŝ (x, y) = argmax

s

|⌧ (x, y, s)| . (9)

where ⌧ (x, y, s) is the torque value at point (x, y) with
patch size (scale) s. We call this three-dimensional vol-
ume of ⌧ the torque volume, and V and S the torque value
map and scale map, respectively. The torque value map, at
every pixel codes the value of largest absolute value over
all scales, and the scale map codes the corresponding scale.
Referring to figure 7, the second row shows the torque value
map of the image. Looking at this structure, it becomes in-
tuitively clear that the torque can be used as a mid level tool.
Large (positive and negative) values of torque at a point
indicate the likelihood of large structures around it. This
makes this structures useful as basis for an attention mech-
anism. The edges contributing to large values in the torque
map are likely parts of extended contour, and we thus can
use the torque mechanism for boundary localization. Then
these boundaries in addition with the torque value can be
used for segmentation.

Figure 7. Illustration of the torque: Upper row: For the image
on the upper left, the torque is computed with three patches of
increasing size. Lower row: Combination of the torque values
from all patch sizes into one map, which we call the value map.

4. Application
It is reasonable to expect, on the basis of current knowl-

edge, that the visual processing necessary to find an ob-
ject in a scene consists of three modules: visual attention,
boundary detection, and foreground segmentation, as de-
picted in Fig. 8. Such an active approach is especially well
suited for mobile robot applications. The attention mecha-
nism is important for focusing the processing to the conspic-
uous region - the region of interest. In biological systems
the attention is indicated by the fixation point. Segmenting
foreground from background then requires that we detect
edges surrounding the fixation point. The torque mecha-
nism can be used to link the edges into contours and bias
the segmentation towards these contours. In this section,
we evaluate how much the proposed torque operator can im-
prove each of the three steps mentioned above by comparing
it against other methods in standard database settings.

Figure 8. Visual processing using the image torque operator

4.1. Visual Attention
The torque measure tends to have extrema at points sur-

rounded by boundary edges and at patch sizes correspond-
ing to object size. This property is expected to be useful
as a cue for bottom-up visual attention. In our experiment
we computed two torque-based saliency maps. The first is
generated as a mixture of Gaussians, with the Gaussian ker-
nels centered at the extremum values in the torque volume.
The second is the weighted sum of the first saliency map
and the graph-based visual saliency (GBVS) by Heral et al.
[16]. As weights we used 0.3 for the torque-based saliency
map and 0.7 for the GBVS, where the weight values were
found empirically from a few trials using a small subset of
the dataset. The computed torque-based saliency maps were
normalized in the range [0, 1].

The torque-based saliency maps were compared quan-
titatively against the saliency maps of Itti et al. [19] and
Harel et al. using the eye tracking data by Judd et al. [20]
to generate ground truth saliency maps. For all methods,
fixation points were extracted from the data, and saliency
maps were generated as mixture of Gaussian distributions
with the Gaussians centered at the fixation point, and the
maps were normalized.

The ground truth saliency maps were binarized by a
threshold (of value 0.5). To compute the ROC curves for
the different methods, we used a set of thresholds equally
distant in [0, 1]. For each threshold the saliency map was
binarized. We then measured precision and recall of the



such estimated saliency maps as follows:

P =

TP

TP + FP

, R =

TP

FP + FN

, (10)

TP = |S \ G| , FP =

��
S \ G

��
, FN =

��
S \ G

��
, (11)

where S is the computed saliency map binarized by a
threshold, and G is the binarized ground truth saliency map.
P and R denote precision and recall, and TP , FP , FN

denote true positive, false positive, and false negative, re-
spectively.

We resized the test images so that the length of the
shorter side of the images was 150 pixels. The standard de-
viations of the Gaussian distributions used to generate the
ground truth and torque-based saliency maps, were both set
to 25 pixels.

Fig. 9 shows the ROC curves and maximum F-measures
computed from the 898 test images in the dataset. Examples
of the computed saliency maps along with the ground-truth
are shown in Fig. 10.

The quantitative comparison shows that the torque-based
attention by itself doesn’t outperform GBVS. This does not
come as a surprise, as GBVS is a sophisticated method that
includes a series of features, including texture, and it codes
relations between different parts of the image. Attention is
related to recognition, and texture plays a very important
role in recognition and has been shown by current Com-
puter Vision applications to be more powerful than contour.
However, the torque measure as an additional mid-level vi-
sual cue improves the quality of GBVS.

Method F-measure
Itti 0.53

GBVS 0.59
Torque 0.54

GBVS+Torque 0.60

(a) (b)
Figure 9. Evaluation of attention models. (a) ROC curves. (b)
F-measure.

4.2. Boundary Detection
The contribution of edge points to torque values of dif-

ferent patches can be written as follows:

�

q

=

X

{P |q2P}

⌧

p(P )q, (12)

where p (P ) denotes the center of the patch P , and q de-
notes an edge point. Extrema of the torque value in the

Itti GBVS Troque GBVS+Torque Ground truth

Figure 10. Visual attention results for two test images. The
saliency maps obtained from four different methods and the
ground-truth are visualized by overlaying them on the test images.

torque volume indicate the existence of edges surrounding
the center of the patch at the corresponding scale. There-
fore, an edge point’s contribution in eq. (12) to an extremum
is expected to be high for structured edges corresponding to
extended contours. In our method, edges are strengthened
by combining the original edges with this contribution value
as follows:

d

s

=

1

1 + e

�(c0+c1do

+c2dt

)
, (13)

where d

o

is the original edge intensity, and d

t

is the nor-
malized torque contribution. c0, c1, and c2 are constant
parameters, that were learned using training images from
the Berkeley dataset. The such strengthened edges are ex-
pected to represent object boundaries. Examples are shown
in Fig. 11. Edges were computed using the Canny edge de-
tector as shown in (b), which were then used to compute the
torque. As can be seen from (c), the strengthened edges tend
to be stronger at boundary edges of objects, and weaker at
texture edges.

We used the Berkeley dataset [26] to compare quantita-
tively the improvement of boundary detection by the torque.
While the Canny edge method scores 0.57, the torque-based
edge strengthening method increases the score to 0.59 in
the F-measure of the Berkeley benchmark. We also tested
with the state-of-art boundary detection method known as
gPb [3]. The improvement by combining our method with
the proposed torque operator was about 0.2% in F-measure.
The improvement was very minor. However, this is ex-
pected, as the torque is not meant to localize general salient
edges, but to detect closed contours. On the other hand, the
gPb method, which integrates higher level semantic infor-
mation about contours from learning with visual cues in a
globalization step, is designed for this task.
4.3. Segmentation

The strengthened edges are expected to be useful for
figure ground segmentation, because object boundaries are
emphasized. It is not difficult to imagine various ways of
using the torque information in different techniques to bias
the segmentation towards the edges. Here we simply uses
the strengthened edges ( Sec. 4.2) in an edge-based graph-
cut algorithm.



(a) (b) (c)
Figure 11. Examples of Strengthened Edges: (a) Test images. (b)
Canny edges. (c) Strengthened edges. The Canny edges shown in
(b) are used to compute strengthened edges in (c).

For a quantitative evaluation of figure-ground segmenta-
tion, we used the dataset by Stein et al. [36]. For each ref-
erence image in the data set we selected a single foreground
object, and used the centroid of the object as a fixation point.
Then we applied the fixation based segmentation algorithm
by [28]. This algorithm separates foreground from back-
ground using a graphcut on a probability map of edges in
a polar coordinate system . We compared four edge maps
using different edge detection methods in the graph-cut seg-
mentation: the Canny edge map, the boundary probability
map (Pb) by Martin et al. [27], a strengthened edge map
based on Canny edges, and a strengthened edge map based
on Pb edges. In addition, we also compared with the non-
edge based level-set segmentation by Chan and Vese [9]. A
small rectangular region centered at the given fixation point
was used as seed region in this method. To strengthen the
edges we used directly the normalized torque contribution
d

t

in eq. (13). The quality of the segmentation was evalu-
ated by the segmentation covering defined as follows [2]:

C =

|S \ G|
|S [ G| , (14)

where S and G are the computed segmentation and the
ground truth segmentation, respectively. Both S and G are
represented by binary labels.

Table 1 shows the results of quantitative comparison. For
each visual cue the average covering over 28 test images is
given. The label ’Torque’ in the table refers to the edge
strengthening with the torque using Canny edges in the left
part of the table, and Pb edges in the right part of the ta-
ble. As can be seen, introducing the torque measure as a
mid-level visual cue significantly improves the segmenta-
tion. We can also see from the performance of the Chan-
Vese method, that the segmentation of objects for this data
set, given only the fixation point, is a challenging task. Ex-
amples of segmentation results are shown in Fig. 12.
5. Conclusion

We introduced the ”Torque Operator”, a new mid-level
visual operator, and explored some of its fundamental prop-
erties, using both theory and experiments. The basic tenet
of the torque operator is that it tends to generate large val-

Table 1. Covering of Foreground Segmentation
Visual Cue Covering

Canny 0.32
Torque 0.47

Visual Cue Covering
Pb 0.40

Torque 0.48
Chan-Vese 0.21

(a) (b) (c) (d)
Figure 12. Examples of segmentations: (a) Segmentation using
Canny edges. (b) Segmentation using strengthened edges by the
torque. (c) Segmentation by Chan-Vese method. (d) Ground truth.
The green dots denote the fixation points.

ues when edges are aligned in a way surrounding the center
of the patch, and their scale matches the size of the patch.
Therefore, torque extrema are expected to indicate contours
surrounding a point, and this point often is the center of
an object. These properties were utilized in three applica-
tions: attention, boundary detection, and segmentation. It
was shown quantitatively that for all three applications the
torque operator enhances the performance.

6. Extension and Outlook
We have only begun to scratch the surface of a new visual

operator. Being between local operators (like the derivative
operators) and global operators (like the multidimensional
histogram of features), it has the potential to support many
computer vision applications. In the experiments of this pa-
per, we haven’t utilized the benefit of torque operator in the
most efficient way yet. Only strengthened edges were used
in the experiments on segmentation, but the torque value
itself also is expected to be a useful visual cue for segmen-
tation. Furthermore, since the torque operator indicates the
scale of the surrounding edge structure, e.g. objecthood, it
also could be used in conjunction with segmentation to de-
termine the region of attention. In this paper we applied
the torque operator only to rectangular and circular patches.
Further extension of this work could be using patches of
other shapes such as elliptic patches, so that the torque op-
erator could be adapted to elongated objects, for example.
Another direction of extension is applying the torque oper-
ator to different cues. While we applied it to edges in single
images in this paper, the torque operator can also be applied
to geometric edges such as depth edges and motion edges,
where we expect it to perform better for detecting objects.
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[2] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. From con-
tours to regions: An empirical evaluation. In CVPR, 2009.
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