
QUANTIZATION NOISE ESTIMATION FOR LOG-PCM
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ABSTRACT

ITU-T G.711.1 is a multirate wideband extension for the well-

known ITU-T G.711 pulse code modulation of voice frequen-

cies. The extended system is fully interoperable with the

legacy narrowband one. In the case where the legacy G.711
is used to code a speech signal and G.711.1 is used to decode

it, quantization noise may be audible. For this situation, the

standard proposes an optional postfilter. The application of

postfiltering requires an estimation of the quatization noise.

In this paper we review the process of estimating this coding

noise and we propose a better noise estimator.

Index Terms— Postfilter, quantization noise

1. INTRODUCTION

Noise suppression methods have routinely been used to re-

duce acoustic background noise and coding noise. The pro-

cess to reduce these two types of noise has traditionally been

different due to their different nature. Usually, when reducing

coding noise, a postfilter is used and when reducing back-

ground noise, a speech enhancer is used (often as a prefilter

before coding).

Conventional linear prediction based postfilters are used

in many speech coding standards today to reduce the percep-

tual effect of coding noise. They are composed of short-term

and long-term adaptive filters. The short-term filter empha-

sizes the formants and deemphasize the spectral valleys of a

given speech frame. The long-term filter emphasizes the fine

structure of the speech.

Speech enhancers are used to reduce acoustic background

noise. The noise is estimated during non-speech intervals.

This estimation usually occurs in the frequency domain. A

filter is then estimated in the frequency domain based on the

estimated noise amplitude at each frequency. Typical speech

enhancers use simple spectral subtraction or Wiener filtering.

ITU-T G.711.1 [1] is a multi-rate wide-band extension

for the well-known ITU-T G.711 pulse code modulation of

voice frequencies. It is interoperable with the legacy G.711 at

64kbps. This means that a signal that is encoded with the

legacy narrowband G.711 can be decoded by G.711.1 and

vice-versa. It is easy to notice that a signal that was encoded

by G.711.1 and decoded by G.711 is qualitatively better than

one that was encoded and decoded by the legacy codec. This

is due to the quantization noise shaping feature offered by

G.711.1 coder. On the other hand though, the noise of a sig-

nal that was encoded by G.711 is not shaped. Therefore, the

quantization noise can be heard when the signal is decoded

by either system. G.711.1 proposes an optional postfilter to

remedy this problem. This postfilter borrows ideas from en-

hancement systems. It estimates the coding noise using the

noisy speech received at the decoder and generates adaptive

Wiener filters to attenuate it. Such an estimation is possible

because the quantization methods (A-law or µ-law) used by

the coder have quantization noise with known properties.

The estimation of the quantization noise is important to

optimize the performance of the postfiltering process. In this

paper, we analyze the noise estimation method proposed in

the G.711.1 standard. We then propose an improved quanti-

zation noise estimator.

2. LOG-PCM

Let x(n) be the input signal to the quantizer and y(n) be its

output. The quantization error can be defined as:

q(n) = x(n)− y(n). (1)

The variance of a signal u(n) will be denoted σ2
u. The signal

u(n) can be x(n), y(n) or q(n). The signal to noise ratio

(SNR) is defined by:

SNR =
σ2
x

σ2
q

. (2)

2.1. Uniform Quantizers

For a uniform quantizer, the SNR is:

SNRunif = 3
σ2
x

x2
max

22b, (3)
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where b is the number of bits used by the quantizer. In dB, the

SNR is:

SNRunif ≈ 6.02b+ 4.77− 20 log Γ [dB] (4)

where Γ = xmax/σx is the load factor. We can see from

Eq. (4) that if the standard deviation of the signal is such that

the signal uses the full dynamic range of the quantizer, the

SNR is maximized. On the other hand, if the standard devi-

ation is small relative to xmax, the SNR quickly decreases.

Uniform quantizers do not handle different intensity levels

within a speech signal and different speaker volumes too well.

2.2. Nonuniform Quantizers

If one knows the probability distribution function (PDF) of

the input signal, one can design a quantizer that will generate

a better SNR than the simple uniform quantizer. The result-

ing quantizer is nonuniform: the quantization intervals are

smaller where the signal’s probability is the highest and they

are bigger where the signals probability is smallest. A model

that achieves such a nonuniform quantization is one that con-

sisted of a compressor function C(x) and a uniform quantizer

at the encoder and then a dequantizer and an expander func-

tion at the decoder to recover the signal. The effect of ap-

plying the compressor on the input signal is that it renders its

PDF uniform within its dynamic range. Jayant and Noll have

shown in [2] that when the PDF p(x) of the input is smooth,

the quantization noise variance is given by:

σ2
q ≈

x2
max

3 · 22b

∫ xmax

−xmax

p(x)

|Ċ(x)|2
dx (5)

where Ċ(x) represents the derivative of C(x).
One can also find the companding functionC(x) that min-

imzes σ2
q . The resulting SNR is maximized in this case but it

still depends on the variance of the signal. For signals such as

speech where the variance is time-varying, this is not always

the best approach. This led to the development of methods

where the SNR is constant for a large range of the signal vari-

ance. Two popular examples of such quantizers, A-law and

µ-law, are logarithmic quantizers. They were standardized by

ITU as G.711.

2.3. A-law and µ-law Quantizers

G.711 is a standard for a log-pcm speech coder which uses

either A-law or µ-law quantizers. The compression function

for the A-law compander is given by:

C(x) =





A|x|/xmax

1 + lnA
sgnx 0 ≤ |x|

xmax

< 1/A

xmax

1 + lnA|x|/xmax

1 + lnA
sgnx 1/A ≤ |x|

xmax

≤ 1

(6)

The compression function has a linear portion for small sig-

nals and a logarithmic portion for signals whose norms are

greater than xmax/A. In the standard, A = 87.56.

The compression function for the µ-law compander is given

by:

C(x) = xmax

ln(1 + µ|x|/xmax)

ln(1 + µ)
sgnx (7)

We can notice that the µ-law companding function is linear

for small signals since ln(1 + ax) ≈ ax. It is logarithmic for

large signal values. When µ|x| ≫ xmax, Eq. (7) becomes:

C(x) = xmax

ln(µ|x|/xmax)

ln(1 + µ)
sgnx (8)

3. QUANTIZATION NOISE ESTIMATION IN G.711.1

In G.711.1, the A-law properties are used to estimate both

the quantization noise generated in the A-law case and the

quantization noise generated in the µ-law case[1][3].

Using Eq. (5), we can approximate the SNR when A-law

is used. For small signals (linear portion of the companding

law), we get:

Ċ(x) =
A

1 + lnA
(9)

Therefore,

σ2
q ≈

x2
max

3 · 22b( A
1+lnA

)2
(10)

which gives us an SNR of:

SNR = 3 · 22b
(

A

1 + lnA

)2
σ2
x

x2
max

(11)

In dB, the SNR when b = 8 bits for the uniform portion is

given by:

SNRunif ≈ 77.02− 20 log Γ [dB] (12)

For large signals (logarithmic portion of the companding law),

we get:

Ċ(x) =
xmax

(1 + lnA)x
(13)

This gives us a constant SNR:

SNR = 3 · 22b
(

1

1 + lnA

)2

(14)

In dB, the SNR when b = 8 bits for the logarithmic portion is

given by:

SNRlog ≈ 38.16 [dB] (15)
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The transition between the two portion can be obtain by equat-

ing equations Eq. (12) and Eq. (15) and solving for Γ. This

gives us the transition threshold Γ2
th = 38.86 dB.

Unfortunately, a mistake in [3] has propagated to the stan-

dard and to the reference code accompanying the standard.

The error is the omission of the square on the bracketed term

in Eq. (11). The consequence of this mistake is a different

transition threshold. An additional error in the standard and

the reference code is the presence of a factor of 40 (the frame

length) in the computation of the SNR in the uniform portion.

This creates a discontinuity of the SNR at the transition point.

In Fig. 1, we represent the SNR in the standard specifications

with a thin line and the correct version of the A-law SNR with

a bold and dotted line. The change shown at the −50 dB sig-

nal level will be explained below.
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Fig. 1. Comparison of G.711.1 SNR a the correct A-law SNR

We see from Fig. 1that with a good estimate of the signal,

the SNR can be determined. Given the latter and an estimate

for the signal variance, we can estimate of the noise variance.

This is the approach taken in the G.711.1 postfilter.

We will use “ˆ” to denote estimated values. In A-law

and µ-law, the quantization noise level is usually lower than

the signal. An estimate for the variance of the signal can be

achieved by getting an estimate of the variance of the decoded

signal: σ̂2
x ≈ σ̂2

y .

The variance of the decoded signal is estimated on a frame

by frame basis. For a frame of length L, the estimation is

given by:

σ̂2
x =

1

L

L−1∑

n=0

y2(n) (16)

Assuming xmax = 1, the load factor is then estimated by:

Γ̂2 =
1

σ̂2
x

(17)

Now that a load factor has been estimated, we can easily

determine the portion of the signal that was used to code the

signal. When the estimated load factor Γ̂2 is greater than Γ2
th,

we conclude that the uniform part of the quantizer was used.

This means that the SNR in this case is SNRunif and this leads

to a constant noise variance:

σ̂2
q =

1 + lnA

3 · 22b ·A
(18)

When the signal energy becomes comparable to that of the

quantization error, the approximation σ̂2
x ≈ σ̂2

y is no longer

valid. In such cases, the postfilter in G.711.1 forces the es-

timated σ̂2
q to be 15 dB lower than the signal variance. This

explains the discontinuity at the −50 dB in Fig. 1.

When the estimated load factor Γ̂2 is smaller than Γ2
th, we

conclude that the logarithmic part of the quantizer was used.

This means that the SNR in this case is SNRlog and this leads

the following noise variance:

σ̂2
q =

σ̂2
x

3 · 22b
(

1
1+lnA

)2
(19)

4. IMPROVED QUANTIZATION ESTIMATION

A better estimate of the quantization noise can be obtained.

Due to space constraints, we will only explain the method

based on A-law coding. A similar approach can be done with

µ-law.

In practice, the compression function is not directly used

when coding with A-law or µ-law. Rather, a piecewise lin-

ear approximation to the function is used. For A-law, the ap-

proximation consists of 16 linear segments. To each segment

is associated a uniform quantizer of 16 levels (4 bits). The

quantization is symmetric. Therefore, 3 bits are used to iden-

tify one of 8 segments and 1 bit is used to identify the sign

which result in the 8-bit representation for a coded level:

• Bit 1: sign

• Bit 2 to 4: segment number

• Bit 5 to 8: level within segment (mantissa)

The decoded signal is available at the input of the postfil-

ter. Using it, one can easily determine the segment in which

each sample was coded. Each segment corresponds to a uni-

form quantizer with uniformly distributed noise on its dy-

namic range. Therefore, it is easy to estimate the quantization

noise energy for each decoded sample.

For A-law, each segment corresponds to a uniform coder

with a step size. For segment is[0− 7], the step size is:

∆(is) =




1 is = 0, 1

2is−1 is > 1
(20)
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For each segment, this yields to an estimated noise variance

of:

σ2
q (is) =

∆2(is)

12
(21)

For dynamic signals, it is reasonable to assume that noise

is independent on a sample-to-sample basis. Therefore, for a

frame of length L, the noise variance in G.711 can simply be

estimated as:

σ̂2
q =

1

L

L−1∑

n=0

σ2
q (is(n)) (22)

where σ2
q (is(n)) is the variance from Eq. (21) for each sam-

ple n in the frame.

5. WINDOWING EFFECT

The postfilter is implemented in the frequency domain. The

decoded signal is first windowed in time domain and then

transformed into its frequency form:

yw(n) = w(n)y(n) (23)

Yw(k) = FT{yw(n)} (24)

where y is defined as in Eq. (1), yw(n) is the windowed de-

coded signal, w(n) is the window and FT{·} is the Fourier

Transform. The window thus affects both the signal portion

and the quantization noise.

In frequency domain, the postfilter gain G(k) is computed

by the two-step noise reduction method [1] [3]. This gain

calculation is based on the SNR:

SNR =
|Yw(k)|

2

|N̂(k)|2
(25)

where|N̂(k)|2 is the estimated Power Spectral Density (PSD)

of the noise. Since the windowed decoded signal is used, win-

dowing effects must be accounted for in the noise estimate.1

Assume that we have obtained an estimate for the vari-

ance of the noise σ̂2
q through one of the methods discussed

above. This estimate is for the “unwindowed” signal. Since

the noise is white, the corresponding PSD has a constant value

across all frequencies in frequency domain. From Parseval’s

theorem, one can show that for any white signal (and here

particularly for the quantization noise), we get:

|Q(k)|2 =
L−1∑

n=0

E{|q(n)|
2} (26)

Therefore, the estimated quantization noise is given by:

|Q̂(k)|2 =

L−1∑

n=0

σ̂2
q (27)

1The postfilter in G.711.1 does not account for this windowing effect

Let qw(n) be the windowed version of q(n) i.e. qw(n) =
w(n)q(n). We then get:

E{q
2
w(n)} = E{w

2(n)q2(n)}

= w2(n) · E{q
2(n)}

(28)

Therefore,

L−1∑

n=0

E{q
2
w(n)} =

L−1∑

n=0

w2(n) · E{q
2(n)} (29)

Since qw is a windowed version of q, it is also white. So, from

Eq. (27) and Eq. (29), we have:

|Qw(k)|
2 =

L−1∑

n=0

w2(n) · E{q
2(n)} (30)

For E{q2(n)}, we can use the estimated σ̂2
q by either method

discussed previously:

|Q̂w(k)|
2 = σ̂2

q

L−1∑

n=0

w2(n) (31)

For both methods, the window energy can be pre-computed

and stored. The complexity of each method therefore de-

pends on the computation of σ̂2
q . In the method proposed in

G.711.1, one has to compute the energy of the decoded signal

has shown in Eq. (16). This operation takes L multiplications

and L− 1 additions. Having that value, one can immediately

get the estimated σ̂2
q . In our method, one needs to compute σ̂2

q

as shown in Eq. (22). The variances associated to each seg-

ment can all be pre-computed and stored in a table. Therefore,

the computation of our estimate takes L additions.

6. RESULTS AND DISCUSSION

We implemented both the noise estimation proposed in the

G.711.1 standard and the noise estimation we proposed in

Section 4. We applied both methods on a speech signal (8kHz

sampling frequency). Fig. 2 shows the two noise estimates

relative to the true noise which was computed on a frame by

frame basis as:

σ2
q =

1

L

L−1∑

n=0

(x(n)− y(n))2 (32)

We can see that the noise estimate that we get with our method

is more accurate than the one proposed by the G.711.1. In

Fig. 2, windowing is not taken into consideration.

The second experiment we ran accounted for the window.

We used the same window that is used in the G.711.1 stan-

dard. The results are shown in Fig. 3. Here, we observe that

the windowed noise has less energy than the unwindowed sig-

nal. This is expected as the window is tapered. Our estimate
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Fig. 2. Estimated noise comparison
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Fig. 3. Estimated noise with windowing

coincides well with the true windowed quantization error vari-

ance. This experiment confirms that the window should be

taken into account. Otherwise, the noise would be overesti-

mated.

The third experiment we conducted consisted of the re-

placement of the noise estimator in G.711.1 with the one we

proposed in this paper. Our test signals consisted of 6 differ-

ent speakers (3 females and 3 males). The original signals use

most of the dynamic range of the quantizer. For the purpose

of plotting, we gathered statistics of the signal energy for each

frame. These values are assigned to 2 dB bins. For each bin

of signal values, we calculated the average noise variance.

To test for the case of quiet talkers, we also attenuated the

signal by 20 dB and 40 dB. We computed the average MOS

(Mean Opinion Score) using the PESQ (Perceptual Evalua-

tion of Speech Quality) methodology [4]. For each attenu-

Table 1. Results of PESQ Test

Attenuation No Postfilter G.711.1 A-law Windowed Estimate

dB MOS MOS MOS MOS

None 4.359 4.372 4.375 4.374

20 3.415 3.559 3.561 3.560

40 1.740 1.822 1.822 1.822

ation level, we computed 4 values of PESQ: No postfilter,

G.711.1 postfilter, A-law postfilter without windowing, and

our estimate with windowing. The results are summarized in

Table 1.

The 3 postfilters studied give MOS values which are close.

For the 40 dB case, all three postfilters give the same result

because they all use the 15 dB “fix” when the signal energy

is below −50 dB. For the no-attenuation and 20 dB cases, we

do note a slightly better result for the A-law and our version

compared to the G.711.1 postfilter as we would expect. Fig. 2

and Fig. 3 show that this postfilter tends to underestimate the

noise. However, this underestimation is partly offset by the

failure to consider the effect of the windowing. As we have

shown in experiment 2, the noise estimation in our system is

more accurate. The scores we obtained can be explained by

the fact that we used the same handling procedure for low

energy signals that the one used by G.711.1.

7. CONCLUSION

This paper has suggested a noise estimation process which is

demonstrably a better estimate that the one proposed in the

G.711.1 standard. Additionally, the suggested method has a

smaller complexity. However, the effective benefit in term of

perceptual quality is small.
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