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We consider a sequential information collection problem where a risk-averse decision-maker updates a
Bayesian belief about the unknown objective function of a linear program. The information is collected
in the form of a linear combination of the objective coefficients, subject to random noise. We have the
ability to choose the weights in the linear combination, creating a new, nonconvex continuous optimiza-
tion problem, which we refer to as information blending. We develop two optimal blending strategies: an
active learning method that maximizes uncertainty reduction, and an economic approach that maximizes an
expected improvement criterion. Semidefinite programming relaxations are used to create efficient convex
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1. Introduction. Consider planning problems that can be reformulated as linear programs
(LPs) in standard form:

maximize c⊤x subject to Ax= b, x� 0 . (1)

Suppose, however, that the vector of objective coefficients is unknown, and is modeled as a random
vector following some multivariate probability distribution. Problems where c is random are well
studied in the field of stochastic optimization, covering applications such as production problems
with unknown profit margins, or logistics and network problems with uncertain costs. The model
with random coefficients can also be applied to characterize the optimal policy solving a finite-
state Markov decision process (MDP) [34], where randomness in c corresponds to the situation of
a one-period reward function that is not perfectly known.
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There are several standard techniques for converting (1) with random c into a well-defined and
tractable optimization problem. For instance, the problem max E{c⊤x} over x∈X , that is,

max
x∈X

c̄⊤x , where X = {x ∈R
n :Ax= b, x� 0} , c̄=E{c} , (2)

optimizes the original objective function c⊤x in expectation. This approach may be reasonable when
the decision-maker is risk-neutral with respect to performance. However, in many applications,
the decision-maker is likely to be risk-averse, preferring to sacrifice some performance on average
while hedging against worst-case scenarios. In such situations, robust optimization [4] offers a way
to obtain computationally tractable, conservative decisions. Typically, one would infer a bounded
uncertainty set C with good geometric properties from the distribution of c, and then optimize the
worst-case bilinear objective maxx∈X minc∈C c

⊤x. For instance, suppose that c follows a multivariate
normal distribution with covariance matrix Σ, an assumption that will hold throughout the paper:

c∼N (c̄,Σ) . (3)

As we show in this paper, under some assumptions on the choice of C, we can reformulate the
worst-case maximization as the second-order cone program (SOCP) [1]

max
x∈X

c̄⊤x−α
√
x⊤Σx, (4)

for some α> 0. This problem is polynomially solvable to a fixed precision by interior-point methods.
Note that, if α= 0, the robust formulation (4) reduces to the risk-neutral formulation (2).
It is possible to reinterpret the distribution in (3) as a Bayesian prior representing the decision-

maker’s subjective beliefs about c. To emphasize this interpretation, we use the notation ctrue to
represent the unknown vector of objective coefficients, indicating that the decision-maker wishes
to estimate some fixed but unknown “true” value. The multivariate normal prior N (c̄,Σ) is a
convenient way to incorporate correlations in the decision-maker’s beliefs about the unknown ctrue.
Correlations reflect a belief about the similarity of the unknown coefficients. For example, the
unknown profit margins for two similar products can reasonably be assumed to be correlated.
With this interpretation, we consider situations where the decision-maker has the ability to

collect additional information about ctrue before implementing a solution x ∈ X in production. A
single piece of information about ctrue will change the parameters of the belief distribution (3),
thus changing the optimal solution of (4). Simply put, the uncertainty set from which we draw
the worst-case scenario is now itself subject to change. Moreover, if we have multiple opportunities
to collect information, we face a new problem of optimal multi-stage information collection. In
this problem, the goal is to guide the evolution of the uncertainty set in a way that improves the
performance of the robust solution to
A single piece of information about ctrue will change the parameters of the belief distribution

(3), thus changing the optimal solution of (4). Simply put, the uncertainty set from which we draw
the worst-case scenario is now itself subject to change. Moreover, if we have multiple opportunities
to collect information, we face a new problem of optimal multi-stage information collection. In
this problem, the goal is to guide the evolution of the uncertainty set in a way that improves the
performance of the robust solution to

vα(c̄,Σ)= max
x:Ax=b, x�0

c̄⊤x−α
√
x⊤Σx. (5)

We seek to develop sequential, adaptive information collection policies with the ability to learn
from the outcomes of previous observations.
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The work by [41] studies the information collection problem in the context of the risk-neutral
decision made in (2), under the assumption that the decision-maker collects information in the
form of scalar noisy measurements of individual objective coefficients ctruej . The present study adds
the dimension of risk-averse decision-making, and makes the following major generalization: we
study systems where information on the full vector ctrue ∈R

n can be acquired by observing

y= u⊤ctrue+w, (6)

where u ∈R
n is a measurement vector chosen in the ball B= {u ∈R

n : ||u||2 ≤ 1}, w∼N (0, σ2
w) is

an independent Gaussian noise of variance σ2
w > 0, and y is the noisy observation that depends on

the measurement vector. Given the observation y, by Bayesian updating, c follows the posterior
distribution N (c̄′,Σ′) given by

c̄′ = c̄+
Σu

u⊤Σu+σ2
w

(y− c̄⊤u), (7)

Σ′ =Σ− Σuu⊤Σ

u⊤Σu+σ2
w

, (8)

and the optimal value vα(c̄,Σ) in (5) is updated to vα(c̄
′,Σ′). Instead of requiring measurements of

individual objective coefficients, which can be done by restricting u= ej where ej is the j-th unit
vector in R

n, we allow a “blended” observation that provides information about multiple unknown
values simultaneously. To motivate this approach, suppose that u is a feasible solution in X ; that
is, the decision-maker can only collect information about ctrue by implementing a particular feasible
solution of the LP and observing the outcome.
In this paper, we develop policies for choosing u that are optimal with respect to various criteria.

First, we analytically derive a policy that achieves the optimal rate of uncertainty reduction in
our beliefs about ctrue. We show that this policy chooses u to be a dominant eigenvector of the
posterior covariance matrix of c at each time step. Second, we develop a different policy that trades
uncertainty reduction against the performance of the robust solution in (5) using the expected
improvement criterion:

Kα(u, c̄,Σ)=Ey{vα(c̄′,Σ′) | u, c̄,Σ}− vα(c̄,Σ), (9)

u∗ ∈ argmax
u∈B

Kα(u, c̄,Σ). (10)

The problem (10) takes the nonlinear update equations (7,8) into account. Inside the expectation,
there is a change of optimal x for each outcome y, so as to obtain vα(c̄

′,Σ′).
Although (10) defines a nonconvex optimization problem, we develop computationally tractable

convex relaxations that reformulate (10) as a semidefinite program. We then show numerically that
the SDP relaxation enables us to find directions u that achieve higher expected improvement than
the unit-vector policy of [41]. The key theoretical insight of these results is that the information
content of a scalar observation can be significantly improved by optimally blending information,
instead of observing individual problem parameters.
The paper is organized as follows. Section 2 discusses related work. Section 3 derives the robust

objective (5) from the definition of uncertainty sets for c. Section 4 applies the framework to
Markov decision processes. Section 5 establishes properties of optimal solutions for the measure-
ment selection problem (10). Section 6 studies the measurement policy that maximizes the rate of
uncertainty reduction. Section 7 presents the main results of the paper on the optimization of (10).
Section 8 presents numerical work, and Section 9 concludes.
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2. Context and related work. The present paper relates primarily to two different streams
of literature. The first is the literature on statistical learning and sequential information collection,
usually known in different communities by the name of a particular problem. Examples include
ranking and selection in simulation [27], multi-armed bandits in applied probability [20] and com-
puter science [2], and global optimization [26]. This paper is closest to the simulation perspective,
in which the information collection process (“ranking”) is usually separated from the final imple-
mentation decision (“selection”). We also assume that the decision-maker first collects a number
of observations of the form (6), before committing to a solution of the problem (2) or (4). The
implementation decision in ranking and selection typically consists of choosing the largest value
in a finite set; by contrast, our model is closer to [40, 41], where the ranking and selection frame-
work is generalized to allow implementation decisions that optimize a mathematical program with
unknown parameters. We also adopt the Bayesian framework for information collection; see [7] or
[33] for a survey of Bayesian learning methods in simulation optimization.
The second major stream of literature is the work on robust optimization [4, 6]. Robust solutions

to linear programs with uncertainty have been extensively studied [5], and the theory of robust
optimization has also been developed for Markov decision processes [30, 25, 36]. See also [38] for
recent work connecting the robust solution and the uncertainty set to a risk measure chosen by
the decision-maker. Particularly relevant to the present paper is [11], which derived an expression
of the form (5) applied specifically to MDPs. However, the notion that sequential information
collection may change the uncertainty set over time, thus also changing the robust solution, has
received much less attention. To give an example, equation (9) for measurement selection in robust
MDPs was previously stated in [10] for u ∈ {e1, . . . , en}; however, the computational approach in
this study was based on an approximation that did not take into account the change of the optimal
solution from argmaxx vα(c̄,Σ) to argmaxx vα(c̄

′,Σ′). In Section 4, we discuss this approach in
more detail, in the perspective of contrasting it with our new results, which use SDP relaxations
to approximate (9) more closely, while also allowing information blending.
Previous work in sequential learning has generally assumed that we always collect scalar obser-

vations of individual unknown parameters, even when such observations can be used to learn about
a set of parameters [17, 35]. In [29], the unknown values of a finite set of alternatives are expressed
as a linear combination of parameters via a linear regression model, producing the same Bayesian
update as in (7-8). However, in this case, the vector u is pre-specified by the regression features.
To our knowledge, the continuous optimization problem of choosing an optimal u is completely
new. We use the term “information blending” to describe this new type of decision.
We choose the information blend u in two ways. Our first policy maximizes the rate of uncer-

tainty reduction achieved by each measurement. This approach is along the lines of active learning
in statistics [9], where the objective is to minimize uncertainty (i.e. improve the accuracy of a
statistical model), with no regard for the economic value of a set of estimates. Conversely, our sec-
ond policy is based on the expected improvement criterion, previously developed by [26] for global
optimization and [24] for ranking and selection. This approach, also known by the names “value
of information” [7] or “knowledge gradient” [18], provides an economic valuation of information in
terms of the average improvement contributed by a single measurement to the optimal value of (2)
or (4). This computation balances the expected value of the current solution to (2) or (4) against
the decision-maker’s uncertainty about that solution (and therefore the potential to improve it).
In the simulation literature, the decision-maker is almost always assumed to be risk-neutral

[8], and the expected improvement criterion is defined in terms of the risk-neutral problem (2).
Recently, however, there has been some interest in integrating concepts of risk-aversion and robust
optimization into simulation optimization [43, 12]. To our knowledge, the work by [39] is the first to
formally link ranking and selection with robust optimization. This work provides a theoretical jus-
tification for using the expected improvement criterion to learn about the risk-averse problem (4).
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Essentially, a brief experiment on a possible solution is less expensive than a final implementation
of that solution; thus, the decision-maker is assumed to be risk-neutral with respect to the mea-
surement decision, but risk-averse with respect to the implementation decision. The present paper
also adopts this approach, and the formulation in (5) covers both the risk-neutral and risk-averse
cases.
To summarize, our work contributes to the literature on sequential learning as well as robust

optimization. We show how two types of optimal information blends can be computed via an SDP
reformulation, which also enables us to improve on a heuristic previously developed for robust
Markov decision processes.

3. Robust optimization criterion. In statistics, confidence intervals can describe uncertain
scalar parameters. The intervals are often mean-centered, although nonsymmetric choices are pos-
sible. The width of the interval is chosen to achieve a given confidence level 1− ǫ. For c∼N (c̄,Σ)
with Σ positive definite (Σ≻ 0), we consider for some α> 0 the confidence ellipsoid

C = {c ∈R
n : (c− c̄)⊤Σ−1(c− c̄)≤α2}. (11)

Choosing α2 = F−1
χ2
n
(1− ǫ), where F−1

χ2
n
(·) is the inverse cumulative distribution function (cdf) of the

chi-square distribution with n degrees of freedom, ensures that c∈ C with probability 1− ǫ.
By selecting C as the uncertainty set for c, tractable robust optimization programs can be

obtained.

Lemma 1. With X = {x ∈ R
n : Ax = b, x � 0} and C given by (11), the problem

maxx∈X minc̃∈C c̃
⊤x is equivalent to maxx∈X c̄⊤x−α

√
x⊤Σx.

Proof. If α = 0, C = {c̄} and the result is trivially verified. If α > 0, for any fixed x, the inner
minimum minc̃∈C c̃

⊤x is computed by applying the change of variable z =Σ−1/2(c̃− c̄), which yields
minz:z⊤z≤α2(Σ1/2z+ c̄)⊤x where c̄⊤x is fixed. The minimum is attained at z∗ =−βΣ1/2x for β such

that ||z∗||22 =α2, that is, β =α/
√
x⊤Σx. In terms of c̃ the optimal solution is c̃= c̄−αΣx/

√
x⊤Σx,

hence the value for the inner minimum, c̄⊤x−α
√
x⊤Σx. �

If Σ is only positive semidefinite (Σ� 0 but Σ 6≻ 0), we consider the confidence ellipsoid

C̃ = {c=Q0Q
⊤
0 c̄+Q+c+ ∈R

n : c+ ∈ C+} (12)

C+ = {c+ ∈R
p : (c+−Q⊤

+c̄)
⊤Σ−1

+ (c+ −Q⊤
+c̄)≤ α2},

where Q+ ∈R
n×p and Q0 ∈R

n×(n−p) come from the singular value decomposition (svd)

Σ=QSQ⊤ = [Q+ Q0]

[
Σ+ 0
0 0

]
[Q+ Q0]

⊤, (13)

Σ+ being the diagonal matrix containing the p positive singular values of Σ.

Lemma 2. With X = {x ∈ R
n : Ax = b, x � 0} and C̃ given by (12), the problem

maxx∈X minc∈C̃ c
⊤x is equivalent to maxx∈X c̄⊤x−α

√
x⊤Σx.

Proof. Using (13), c can be reexpressed as

c=Q0Q
⊤
0 c̄+Q+c+, c+ ∼N (Q⊤

+c̄,Σ+).

Then,

max
x∈X

min
c∈C

c⊤x=max
x∈X

min
c+∈C+

(Q0Q
⊤
0 c̄+Q+c+)

⊤x
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=max
x∈X

{c̄⊤Q0Q
⊤
0 x+ min

c+∈C+
c⊤+(Q

⊤
+x)}

=max
x∈X

c̄⊤Q0Q
⊤
0 x+(Q⊤

+c̄)
⊤(Q⊤

+x)−α
√
(Q⊤

+x)
⊤Σ+Q⊤

+x

=max
x∈X

c̄⊤(Q0Q
⊤
0 +Q+Q

⊤
+)x−α

√
x⊤Q+Σ+Q

⊤
+x,

which reduces to maxx∈X c̄⊤x − α
√
x⊤Σx using (13) and Q0Q

⊤
0 + Q+Q

⊤
+ = [Q0 Q+][Q0 Q+]

⊤ =
Q⊤Q= I. �

Under the Bayesian modeling assumptions on ctrue, the random variable x⊤ctrue follows
N (x⊤c̄, x⊤Σx). In particular, if x̄ attains vα(c̄,Σ), we have

P{x̄⊤ctrue ≥ vα(c̄,Σ)}= 1−Φ

(
vα(c̄,Σ)− x̄⊤ctrue√

x̄⊤Σx̄

)
=Φ(α) ,

where Φ is the cumulative distribution function (cdf) of N (0,1). Thus if we want to ensure with
confidence 1− ǫ that x̄⊤ctrue ≥ vα(c̄,Σ), we can choose α = Φ−1(1− ǫ), which is less conservative
than the choice α2 = F−1

χ2
n
(1− ǫ).

Finally, let us mention that (5) can be solved by commercial solvers as a quadratic program with
quadratic constraints (QCQP):

Lemma 3. If Σ≻ 0, a dual formulation to (5) is

vα(c̄,Σ)=min
c,z

b⊤z subject to c∈ C, A⊤z � c ,

using C given by (11). Otherwise, using C̃ given by (12),

vα(c̄,Σ)=min
c+,z

b⊤z subject to c+ ∈ C+, A⊤z �Q0Q
⊤
0 c̄+Q+c+ .

Proof. A dual problem to maxx∈X c̄⊤x − α
√
x⊤Σx or equivalently maxx∈X minc∈C c

⊤x is
minc∈C maxx∈X c⊤x. The dual to maxx∈X c⊤x is minz∈Z b⊤z for Z = {Rm : A⊤z � c}, hence the
overall problem. The version with C̃ can be established similarly. �

4. Application to Markov decision processes. Let the tuple (S,A,P,R) define a Markov
decision process [34] where S is a finite state space with |S| states, A is a finite action space with
|A| actions, P : S ×A× S 7→ [0,1] with values p(s′|s, a) is a transition probability function, and
R : S×A 7→R is a reward function with bounded values r(s, a). Let 0< γ < 1 be a discount factor,
and let b(j) = P{s0 = j} specify an initial state distribution, states being labeled from 1 to |S|. The
maximization of the expected discounted cumulated reward

vπγ =E
π{∑∞

t=0 γ
tr(st, at)} (14)

by the choice of a stochastic policy π : S×A 7→ [0,1] with values π(s, a) = P{at = a|st = s} admits
a dual linear programming formulation [13]

maximize
∑

s∈S

∑

a∈A

r(s, a)x(s, a) (15)

subject to
∑

a∈A

x(j, a)−
∑

s∈S

∑

a∈A

γ p(j|s, a)x(s, a) = b(j) for j ∈ S,

x(s, a)≥ 0 for s ∈ S,a∈A,
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which is of the form (1). Given an optimal x∗ ∈R
|S|×|A|,

π∗(s, a) = x∗(s, a)/
∑

a′∈A x∗(s, a′) (16)

is an optimal stochastic policy. The optimization variables x(s, a) (occupation measures) represent
the total discounted probability of being in state s and choosing action a, when the system starts
from state j with probability b(j). The optimal policy (16) will be independent of the initial
distribution.

4.1. MDP with Bayesian prior. In our framework, we assume that the rewards r(s, a)
are unknown but endowed with a prior N (r̄,Σ), where r̄ collects the means r̄(s, a) and Σ is the
covariance matrix collecting elements Σ(s, a;s′, a′). The framework is less general than (Bayesian,
model-based) reinforcement learning (RL), where transition probabilities would also be endowed
with a prior. Nonetheless, the framework is already a valuable step for studying model ambiguity
in Markov decision processes from a Bayesian standpoint.
Under the risk-neutral approach (α = 0), the rewards r(s, a) in (15) are set to their Bayesian

mean r̄(s, a). The optimization problem has still the structure of a MDP, implying the existence
of an optimal deterministic policy. To see that from (15), note that the simplex algorithm returns
a vertex solution x∗ defined by |S| · |A| linear equations, |S| coming from the equality constraints
and |S| · |A| − |S| coming from active inequalities x(s, a) = 0. Hence x∗ has at most |S| nonzero
coordinates. The definition of a proper policy requires one nonzero coordinate being assigned to
each state, implying that the policy (16) is in fact deterministic.
When the robust optimization approach is used (α > 0), the program for finding an optimal

policy becomes

maximize
∑

s∈S

∑

a∈A

r̄(s, a)x(s, a)−α

√∑

s∈S

∑

a∈A

∑

s′∈S

∑

a′∈A

x(s, a)Σ(s, a;s′, a′)x(s′, a′) (17)

subject to
∑

a∈A

x(j, a)−
∑

s∈S

∑

a∈A

γ p(j|s, a)x(s, a) = b(j) for j ∈ S,

x(s, a)≥ 0 for s ∈ S, a∈A.

Generically, optimal solutions to SOCPs are not vertex solutions. Thus more elements x∗(s, a)
will be nonzero, and the resulting stochastic policy (16) does not necessarily degenerate into a
deterministic one.
The program (17) is a tractable robust MDP obtained by applying generic robust linear pro-

gramming techniques. The covariance matrix Σ(s, a;s′a′) allows one to model worst-case reward
dependencies among state-action pairs.

4.2. Optimal measurements with fixed decisions. Consider now the measurement selec-
tion problem based on the maximization over u of Kα(u, c̄,Σ) as defined by (9). An approximation
proposed in [10] for robust MDPs with the measurement u valued in {e1, . . . , en} assumes that,
inside the expectation in (9), for each outcome y, the optimal solution x′ attaining vα(c̄

′,Σ′) is
replaced by the solution x̄ attaining vα(c̄,Σ). By doing so, Kα(u, c̄,Σ) is approximated by

K̃α(u, c̄,Σ)=Ey{[c̄′⊤x̄−α
√
x̄⊤Σ′x̄]− [c̄⊤x̄−α

√
x̄⊤Σx̄] | u, c̄,Σ}=α(

√
x̄⊤Σx̄−

√
x̄⊤Σ′x̄) , (18)

where Ey{c̄′}= c̄ has been used.

Note that K̃α(u, c̄,Σ)= 0 for all u if α= 0, suggesting that this approximation is uninformative
in the risk-neutral case. Despite this undesirable behavior, we can still investigate the problem of
maximizing K̃α(u, c̄,Σ).
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Proposition 1. Let x̄ ∈ argmaxx∈X c̄⊤x− α
√
x⊤Σx, and let K̃α(·, c̄,Σ) be the approximation

relative to x̄. Then either Σx̄= 0 and any u ∈ B is optimal for maxu∈B K̃α(·, c̄,Σ), or Σx 6= 0 and
the maximum of K̃α(·, c̄,Σ) over B is attained by selecting

ū∈
{
± (Σ+ Inσ

2
w)

−1Σx̄

||(Σ+ Inσ2
w)

−1Σx̄||

}
, (19)

where In is the identity matrix in R
n×n.

Proof. The proof relies on techniques used in Section 5. It can be found in the appendix. �

From (19), we can better understand the effect of the fixed-decision approximation. If we assume
momentarily that σ2

w is small with respect to the eigenvalues of Σ, then (Σ+ Inσ
2
w)

−1Σ is close to
In, so ū is close to x̄/||x̄||. Therefore, ū tends to measure the coordinates of ctrue according to the
magnitude of their believed contribution to the objective value given the current optimal solution
x̄. For any value of σ2

w, if Σ is diagonal, the coordinates cj for j ∈ {i : x̄i = 0} are not measured.
This analysis suggests that using the approximation (18) would lead to a measurement policy

that is not asymptotically consistent, in the sense that wrong beliefs would not necessarily be
corrected by an infinite sequence of measurements.

5. Structural properties for optimal measurements. Convex functions have their supre-
mum on the boundary of their effective domain [37]. A similar result holds for the nonconvex
function Kα(·, c̄,Σ).

Theorem 1. Let U be an arbitrary nonempty closed convex bounded set. Let ∂U denote the
boundary of U . We have

max
u∈U

Kα(u, c̄,Σ)=max
u∈∂U

Kα(u, c̄,Σ).

Proof. Fix u in the interior of U . Define u+ by extending u to ∂U as follows: define t∗ =max{t≥
0 : tu/||u|| ∈ U}, τ = t∗/||u||, u+ = τu ∈ ∂U . Necessarily, τ ≥ 1. Essentially, we show that the mea-
surement based on u+ dominates the measurement based on u, so that optimal measurements are
on ∂U .
Define

β =
u⊤Σu+σ2

w

u⊤Σu+(σw/τ)2
, Λ=

Σuu⊤Σ

u⊤Σu+σ2
w

.

Note that 1≤ β ≤ τ 2. From the update of Σ after measurements yu = c⊤u+w or yu+
= c⊤u++w, we

deduce the ordering of the two updated covariance matrices in the cone of the positive semidefinite
matrices:

Σ′
u+ =Σ− Σu+u

⊤
+Σ

u⊤
+Σu+ +σ2

w

=Σ− τ 2Σuu⊤Σ

τ 2[u⊤Σu+(σw/τ)2]
= Σ−βΛ�Σ−Λ=Σ′

u,

meaning (informally) that the residual uncertainty is “smaller” with u+. From the update of c̄ after
the observations yu or yu+

,

c̄′u = c̄+
Σu

u⊤Σu+σ2
w

(yu − c̄⊤u), c̄′u+ = c̄+
Σu+

u⊤
+Σu+ +σ2

w

(yu+
− c̄⊤u),

and from the distribution of the observations,

yu ∼N (u⊤c̄, u⊤Σu+σ2
w), yu+

∼N (τu⊤c̄, τ 2u⊤Σu+σ2
w),
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we deduce the distribution of the updated means,

c̄′u ∼N (c̄,Λ), c̄′u+
∼N (c̄, βΛ).

Using the zero-mean random vector z ∼N (0,Λ), we have

E{vα(c̄′u+
,Σ′

u+
)}=E{vα(c̄+

√
βz,Σ′

u+
)}≥ E{vα(c̄+ z,Σ′

u+
)}=E{vα(c̄′u,Σ′

u+
)},

where the inequality is justified by an extension of Jensen’s inequality, that states that a function
g(t) = E{f(x0 + tz)} defined for t≥ 0 is monotone increasing if f is convex and E{z} = 0. Since
Σ′

u+
�Σ′

u, we have

c̄′⊤u x−α
√

x⊤Σ′
u+

x≥ c̄′⊤u x−α
√

x⊤Σ′
ux,

implying vα(c̄
′
u,Σ

′
u+

)≥ vα(c̄
′
u,Σ

′
u) and thus

E{vα(c̄′u,Σ′
u+

)}≥ E{vα(c′u,Σ′
u)}.

Therefore, K(u+, c̄,Σ)≥K(u, c̄,Σ). Since u was arbitrary, the result follows. �

If we now restrict ourselves to the case where U is the L2-ball B, Theorem 1 indicates that we
should seek solutions u on the L2-sphere ∂B= {u∈R

n : ||u||= 1}.
It will be convenient to rewrite the objective (9) as

Kα(u, c̄,Σ)=Et{vα(c̄+ tΣdu,Σ
′) | u, c̄,Σ}− vα(c̄,Σ) , (20)

where t∼N (0,1) and where we have introduced the vector

du =
u√

u⊤Σu+σ2
w

. (21)

In the special case ||u||= 1, we have u⊤Σu+σ2
w = u⊤(Σ+σ2

wIn)u. This leads us to define

P =Σ+σ2
wIn . (22)

The matrix P is positive definite and thus invertible.
In the risk-neutral case (α=0), we can go further in the characterization of optimal solutions.

Theorem 2. Assume the risk-neutral case (α = 0). Then either any u ∈ B is optimal for
maxu∈BK0(u, c̄,Σ), or the solutions u∗ optimal for maxu∈BK0(u, c̄,Σ) satisfy

u∗ ∈
{
± P−1ΣE{tx̄(t)}
||P−1ΣE{tx̄(t)}||

}
, x̄(t)∈ argmax

x∈X

(
c̄+

tΣu∗

||P 1/2u∗||

)⊤

x ,

where the expectation is taken over t ∼ N (0,1), and where without loss of generality the vector-
valued function x̄(·) is piecewise-constant on R with a finite number of pieces.

Proof. Let Ξ denote the space of all measurable vector-valued functions x(·) :R 7→R
n with values

x(t) ∈ X , defined for all t ∈ R. Note first that for any u ∈ B, there exists for each t a measurable
selection x(t) [14] of the optimal solution set X(t) = argmaxx∈X (c̄+ tΣdu)

⊤x such that x(·)∈Ξ is
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a piecewise-constant, vector-valued function with a finite number of pieces [19, 41]. Thus we can
actually restrict Ξ to that space of functions. Consider

max
u∈B

K0(u, c̄,Σ) =max
u∈B

Et



max

x(·)∈Ξ

(
c̄+ t

Σu√
u⊤Σu+σ2

w

)⊤

x(t)



− v0(c̄,Σ)

= max
x(·)∈Ξ

max
u∈B

Et





(
c̄+ t

Σu√
u⊤Σu+σ2

w

)⊤

x(t)



− v0(c̄,Σ) ,

where the interchange between Et and maxx(·)∈Ξ is possible because the optimization problem is
written in terms of a function x(·) that does not explicitly depend on u.
One can check that maxu∈BK0(u, c̄,Σ)≥ 0 by plugging in the constant-valued function x(·) = x̄0,

where x̄0 ∈ X attains v0(c̄,Σ): for any u, one obtains Et{(c̄+ tΣdu)
⊤x̄0} = c̄⊤x̄0 + E{t}d⊤

uΣx̄0 =
v0(c̄,Σ).
Assume that we are given an optimal function x̄(·) ∈ Ξ for the problem. The set of the vectors

u∈B that attain maxu∈BK0(u, c̄,Σ) along with x̄(·) can be expressed by

argmax
u∈B

E





(
c̄+ t

Σu√
u⊤Σu+σ2

w

)⊤

x̄(t)



= argmax

u∈B

u⊤

√
u⊤Σu+σ2

w

ΣE{tx̄(t)} ,

dropping the constant term E{c̄⊤x̄(t)} on the right-hand side.
If ΣE{tx̄(t)}= 0, then any u∈B is optimal. Otherwise, ΣE{tx̄(t)} 6= 0, and by theorem 1,

argmax
u∈B

K0(u, c̄,Σ)= argmax
u: ||u||=1

u⊤ΣE{tx̄(t)}√
u⊤Pu

.

Moreover, using v= P 1/2u, we have

max
u: ||u||=1

u⊤ΣE{tx̄(t)}√
u⊤Pu

= max
v: ||P−1/2v||=1

v⊤P−1/2ΣE{tx̄(t)}
||v|| .

Recall that for any z, here taken to be z = P−1/2ΣE{tx̄(t)},

||z||=max
y∈B

y⊤z =max
y 6=0

y⊤z/||y|| .

Therefore, an optimal v is given by v∗ = βP−1/2ΣE{tx̄(t)} with β such that ||P−1/2v∗||= 1. Then it
follows that u∗ = P−1/2v = P−1ΣE{tx̄(t)}/||P−1ΣE{tx̄(t)}|| is optimal. Moreover, if u∗ is optimal,
then −u∗ is optimal, by the symmetry of the Gaussian distribution and the expression of du∗ . �

Corollary 1 (Norm-maximization reformulation). In the risk-neutral case (α= 0), we
have

max
u∈B

K0(u, c̄,Σ)= max
x(·): x(t)∈X

{
Et{c̄⊤x(t)}+ ||P−1/2ΣEt{tx(t)}||

}
− v0(c̄,Σ) , (23)

where u is recovered from an optimal x∗(·) by u∗ =P−1ΣEt{tx∗(t)}/||P−1ΣEt{tx∗(t)}||.
Proof. Let f(x(·)) =Et{c̄⊤x(t)}+ ||P−1/2ΣEt{tx(t)}||}. Since f is convex, optimal solutions are

attained on the extreme points of the feasibility set. Thus without loss of generality we can assume
that x(t) is a vertex of X for each t. Let x̄(·) ∈ Ξ be an optimal solution with Ξ defined as in
Theorem 2.



Defourny, Ryzhov, and Powell: Optimal Information Blending with Measurements in the L2 Sphere

Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the mansucript number!) 11

First, consider the degenerate case where ΣEt{tx̄(t)}=0. Then, f(x̄(·)) =Et{c̄⊤x̄(t)}. Since x̄(t)
is optimal by assumption, and since any solution x̄0 that attains v0(c̄,Σ) is in argmaxx∈X c̄⊤x, we
can assume without loss of generality that x̄(t) = x̄0 almost surely, so that Et{c̄⊤x̄(t)}= c̄⊤x̄0 =
v0(c̄,Σ). Hence in that case any measurement is optimal (in fact no new measurement is needed).
Next, consider the nondegenerate case where ΣEt{tx̄(t)} 6= 0. The relation maxu∈BK0(c̄,Σ) =

maxx(·)∈Ξ:x(t)∈X f(x(·))− v0(c̄,Σ) can be checked by comparing the two objectives with u set to
P−1ΣE{tx(t)}/||P−1ΣE{tx(t)}||: one gets

E





(
c̄+ t

Σū√
ū⊤Σū+σ2

w

)⊤

x̄(t)



− v0(c̄,Σ)= c̄⊤E{x̄(t)}+ ||P−1/2ΣE{tx̄(t)}||− v0(c̄,Σ) .

At the same time, with ΣEt{tx̄(t) 6= 0, the subdifferential of f(x(·)) at x̄(·) is a singleton corre-
sponding to the gradient of f(x(·)) at x̄(·). The gradient of f(x(·)) with respect to x(t′) for some
fixed t′ is given by

∇x(t′)f(x(·)) = φ(t′)c̄+φ(t′)(t′P−1/2Σ)⊤
P−1/2ΣE{tx(t)}

||P−1/2ΣE{tx(t)}|| = φ(t′)

[
c̄+ t′

ΣP−1ΣE{tx(t)}
||P−1/2ΣE{tx(t)}||

]
.

At x̄(·), we have the implicit definition ū= P−1ΣE{tx̄(t)}/||P−1ΣE{tx̄(t)}||, so we have

Σū

||P 1/2ū|| =
ΣP−1ΣE{tx̄(t)}

||P−1/2ΣE{tx̄(t)}|| .

Therefore, the gradient with respect to x(t′) at x̄(·) can be written as

∇x(t′)f(x(·))|x̄ = φ(t′)

[
c̄+ t′

ΣP−1ΣE{tx̄(t)}
||P−1/2ΣE{tx̄(t)}||

]
= φ(t′)

[
c̄+ t′

Σū

||P 1/2ū||

]
.

From the basic variational inequality for minimization [14, Thm. 2A.6], a necessary condition
for attaining a maximum is ∇x(t′)f(x̄(·))x̄ ∈NX (x̄(t

′)) for almost every t′, where NX (x̄(t
′)) is the

normal cone to X at x̄(t′). Since φ(t′)> 0, we can invoke the property that x∈K iff ax∈K for a
cone K and some positive scalar a, and deduce that x̄(·) must satisfy

c̄+
tΣū

||P 1/2ū|| ∈NX (x̄(t)) for almost every t .

Now, note that these conditions are necessary and sufficient for ensuring that

x̄(t)∈ argmax
x∈X

(
c̄+

tΣū

||P 1/2ū||

)⊤

x for almost every t ,

since the latter problem is convex. We have thus verified that (23) fulfills at optimality the necessary
conditions of Theorem 2. �

Theorem 2 and its corollary concern the case α= 0 only. They will not be used in the rest of the
paper. However, the structure of the problem (23) makes it easier to establish a complexity result:

Proposition 2 (NP-completeness). The decision problem associated with (9) with a dis-
cretized expectation is NP-complete.
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Proof. For establishing a complexity result, without loss of generality we can set α= 0, c̄= 0,
Σ= In, and consider maxu∈BK0(u,0, In). From (23) we obtain maxx(·): x(t)∈X (1+σ2

w)
−1/2||E{tx(t)}||,

which is equivalent to maxz∈Z ||z|| with Z = {z ∈R
n : z = E{tx(t)}, x(t) ∈ X}. By discretizing the

random variable t into N samples ti, we obtain a set ZN in R
n which is the projection of a

polyhedral set in R
n(N+1) where each x(ti) can be assumed to be a vertex of X . In that case, ZN is

polyhedral. The decision problem associated to the maximization of the L2-norm of a vector over
a polyhedral set is known to be NP-complete [28]. �

Proposition 2 indicates that we should not expect to develop exact solution algorithms for our
problem. Rather it emphasizes the need for good approximations.

6. Optimal uncertainty reduction. Consider the sequential measurement setting, where
measurements are taken iteratively. For a given sequence {uk : k ≥ 1} of measurements, let Σ1 =
Σ∈ {S ∈R

n×n : S = S⊤, S � 0} be the initial covariance matrix, and consider the matrix sequence
{Σk : k≥ 1} defined from (8) by

Σk+1 =Σk −Σkuku
⊤
k Σk/(u

⊤
k Σkuk +σ2

w).

Independently of the objective (10) based on the expected value of information from the next
measurement, a direct approach for reducing the uncertainty is to acquire information on ctrue by
making measurements uk such that Σk provably tends to the zero matrix. By the degeneracy of the
posterior distribution of ck ∼N (c̄k,Σk), Doob’s consistency theorem [15] implies that the sequence
of updated means c̄k tends to ctrue.
This section studies such a method, and shows that it achieves a rate of convergence which is

optimal in a certain sense. Namely, we consider uk taken as a dominant eigenvector of Σk:

uk ∈Emax(Σk), (24)

using the following notations defined for any symmetric matrix S ∈R
n×n:

• λmax(S) =max{λ ∈R : Su= λu, u⊤u= 1} : largest eigenvalue of S;
• Emax(S) = {u ∈ R

n : Su = λmax(S)u, u
⊤u = 1}: the set of normalized eigenvectors in the

eigenspace associated to λmax(S), excluding the zero vector.
For any ǫ > 0, we can ensure that trace Σk < ǫ after a certain number of measurements, as made

precise by the following lemma.

Lemma 4. Let λ1, . . . , λn be the eigenvalues of Σ1, with repetition according to eigenvalue mul-
tiplicity. Fix ǫ > 0. Then the matrix sequence {Σk : k≥ 1} associated with uk given by (24) satisfies
trace Σk < ǫ for any k > k0 =

∑n

i=1 log(n/ǫ)/log(1/si), where si = [1−λi/(λi+σ2
w)] for i= 1, . . . , n.

Proof. By the eigenvalue decomposition of Σk � 0, we have Σk =
∑n

i=1 λikuiku
⊤
ik, where λ1k ≥

λ2k ≥ · · · ≥ λnk ≥ 0, and where u⊤
ikujk = 1 if i= j, u⊤

ikujk =0 if i 6= j. Taking uk = u1k in the update
equation gives Σk+1 =Σk−(λ2

1ku1ku
⊤
1k)/(λ1k+σ2

w) = λ1k(1−λ1k/(λ1k+σ2
w))u1ku

⊤
1k+

∑n

i=2λikuiku
⊤
ik.

Therefore, iterations leave the original eigenvectors unchanged.
If the noise variance σ2

w = 0, the covariance would become the zero matrix after at most n
iterations (exactly n iterations if the matrix is full rank). With σ2

w > 0, we evaluate the number
of iterations needed to have trace(Σk)< ǫ as follows. For each i, let si =1−λi1/(λi1 +σ2

w). Define
ki = inf{k ∈N : ski < ǫ/n}, that is, ki = ⌈log(ǫ/n)/ log(si)⌉. Since each iteration shrinks the current
largest eigenvalue, we are guaranteed to have λik < ǫ/n for each i after k0 =

∑n

i=1 ki iterations.
This implies traceΣk =

∑n

i=1 λik < ǫ. �

Corollary 2. The matrix sequence {Σk : k≥ 1} associated to uk ∈Emax(Σk) converges to the
zero matrix (in the metric space of the Frobenius norm).
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Proof. ||Σk||F = (
∑n

i=1

∑n

j=1Σ
2
k,ij)

1/2 = (
∑n

i=1 λ
2
ik)

1/2 ≤ ∑n

i=1 |λik| =
∑n

i=1 λik = trace(Σk), so
trace(Σk)< ǫ implies ||Σk||F < ǫ. �

Corollary 3. To any measurement policy π with values uk = π(c̄k,Σk) can be associated a
family {πκ : κ= 2,3, . . .} of asymptotically consistent modified policies with value uk = πκ(c̄k,Σk, k)
and such that trace Σk < ǫ for any k > κk0, where k0 is given by Lemma 4.

Proof. By construction: we define πκ(c̄k,Σk, k) = π(c̄k,Σk) if mod (k,κ) 6= κ−1, πκ(c̄k,Σk, k)∈
Emax(Σ

k) if mod (k,κ) = κ− 1. �

The following result shows that the rate of convergence cannot be improved.

Theorem 3. All the measurement sequences defined by uk ∈Emax(Σk) achieve the optimal rate
of convergence of {trace(Σk) : k≥ 1} to 0, among the sequences such that ||uk|| ≤ 1.

Proof. The rate of convergence is maximized if we minimize the trace of Σk+1 given Σk. Writing
Σ′ for Σk+1 and Σ for Σk, we consider

min
u: ||u||=1

trace

(
Σ− Σuu⊤Σ

u⊤Σu+σ2
w

)
= trace(Σ)− max

u: ||u||=1

u⊤ΣΣu

u⊤Pu
.

The solution to the maximization problem in the second term is obtained by considering the
generalized eigenvalue problem Σ2u = λPu and taking the vector u associated to the dominant
generalized eigenvalue λ. Since P is nonsingular, the generalized eigenvalue problem is equivalent to
the standard eigenvalue problem P−1Σ2u= λu. Therefore, the sequence defined by uk ∈Emax((Σk+
Inσ

2
w)

−1Σ2
k) maximizes the rate of convergence of trace(Σk) to 0.

We will now prove that Emax(P
−1Σ2) =Emax(Σ), allowing us to conclude that uk ∈Emax(Σk) is

also optimal. To do that, we use the eigenvalue decomposition Σ=QDQ⊤, whereD is diagonal with
elements Dii = λi such that λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and Q= [q1 . . . qn] is the matrix of eigenvectors
such that Q⊤Q= In =QQ⊤. By the Rayleigh quotient representation, uk ∈ Emax(P

−1Σ2) iff uk ∈
argmaxu: ||u||=1 u

⊤P−1Σ2u. Now, we have

argmax
u: ||u||=1

u⊤(Σ+ Inσ
2
w)

−1Σ2u

=argmax
u: ||u||=1

u⊤(Q(D+Inσ
2
w)Q

⊤)−1QD2Q⊤u= argmax
u: ||u||=1

u⊤Q(D+Inσ
2
w)

−1D2Q⊤u

=argmax
θ: ||θ||=1

θ⊤(D+Inσ
2
w)

−1D2θ= argmax
θ: ||θ||=1

n∑

i=1

λ2
i θi

λi +σ2
w

= argmax
θ: ||θ||=1

n∑

i=1

νiθi,

where we have used the change of variable θ=Q⊤u and defined νi = λ2
i /(λi+σ2

w). We have νi = νj
iff λi = λj. The ordering of the λi’s implies ν1 ≥ ν2 ≥ · · · ≥ νn ≥ 0. If ν1 > ν2, the optimal solution
θ∗ is the unit vector e1, so u∗ =Qθ∗ =Qe1 = q1. If ν1 = · · ·= νk > νk+1, we have θ∗ ∈ {∑k

i=1wkek :∑k

i=1wi = 1, wi ≥ 0}} and thus u∗ ∈ {∑k

i=1wkqk :
∑k

i=1wi =1, wi ≥ 0}, showing that the principal
eigenspaces of Σ and P−1Σ2 coincide. �

Note that the condition Σk → 0 is sufficient but not necessary for the convergence of xk to a
maximizer of the true problem (1). To see that, imagine that some coefficient cj plays no role in
the optimization problem, because of a constraint xj = 0. Say that cj is statistically independent of
the other coefficients, and has a prior with an arbitrarily large variance. A sequential measurement
algorithm defined by (24) will dedicate many measurements to the reduction of uncertainty on cj.
However, with α= 0 we should never measure cj, since updates of c̄j never improve the objective.
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7. Optimal expected improvement. We now come back to the problem of solving (10) as a
stochastic program. A prerequisite is the construction of a finite approximation to the expectation
in (9). To do that, consider

• φ(t) = (2π)−1/2 exp{−t2/2}: pdf of N (0,1)
• Φ(t) =

∫ t

−∞
φ(t′)dt′: cdf of N (0,1)

• {ti}1≤i≤N : sequence defined by t0 =−∞, tN+1 =+∞,

∫ (ti+ti+1)/2

(ti−1+ti)/2

(t− ti)φ(t)dt= 0, 1≤ i≤N. (25)

The relation (25) expresses a stationary property satisfied by the optimal solution to the quanti-

zation problem [21]

DN = infq∈QN
E{||t− q(t)||2}, t∼N (0,1),

where QN denotes the class of measurable functions q : R 7→ R with at most N values t1, . . . , tN .

Because N (0,1) is one-dimensional and strongly unimodal, the points ti are uniquely determined
by (25) [21, Thm I.5.1]. The points can be computed by methods described in [31].

• {pi}1≤i≤N with pi = Φ
(

ti+ti+1

2

)
−Φ

(
ti−1+ti

2

)
. For a function f that is Lipschitz continuous

modulus L,

∣∣∣E{f(t)}−
∑N

i=1 pif(ti)
∣∣∣≤LE{||t− q(t)||}.

For a convex function f , we have [31]

∑N

i=1 pif(ti)≤E{f(t)}. (26)

Using the optimal N -quantization of N (0,1), we then define

K̂
N
α (u, c̄,Σ)=

∑N

i=1pivα(c̄+ tiΣdu,Σ
′)− vα(c̄,Σ). (27)

Lemma 5. For all N , K̂N
α (u, c̄,Σ)≤Kα(u, c̄,Σ).

Proof. For each fixed (x,Σ), the function c̄⊤x− α
√
x⊤Σx is linear in c̄ and thus convex in c̄.

The maximum over an infinite family of convex functions indexed by x is convex, thus vα(c̄,Σ) is

convex in c̄. Since composition with linear functions preserves convexity, vα(c̄+ tΣdu,Σ
′) is convex

in t. The inequality of the lemma follows from (26). �

Finally, noting that to each vα(c̄+ tiΣdu,Σ
′), i= 1, . . . ,N , is associated a program with decision

vector xi ∈ R
n, and using the update formula for the inverse covariance matrix [Σ′]−1 = Σ−1 +

uu⊤/σ2
w, we expand (27) as

K̂
N
α (u, c̄,Σ) = max

x1∈X , ..., xN∈X

N∑

i=1

pi

[
(c̄+ tiΣdu)

⊤xi −α

√
x⊤
i (Σ−1 +uu⊤/σ2

w)
−1

xi

]
− vα(c̄,Σ) . (28)

In maxu K̂
N
α (u, c̄,Σ) the term −vα(c̄,Σ) is constant with u, so one can omit it.
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7.1. The case N = 1. We first study the maximization of K̂
N
α (·, c̄,Σ) with N = 1, where

N (0,1) is reduced to a single mass point. In that case, t1 = 0 and p1 = 1 in (28), and we obtain the
problem

max
u:||u||≤1,x:Ax=b,x�0

c̄⊤x−α
√

x⊤(Σ−1+uu⊤/σ2
w)

−1x . (29)

To get some insights on the nature of (29), suppose momentarily that we are given an optimal
solution x for (29), say x̄. Then a corresponding optimal u is given by

ū∈ argmax
u: ||u||=1

c̄⊤x̄−α

√
x̄⊤(Σ− Σuu⊤Σ

u⊤Σu+σ2
w

)x̄= argmax
u: ||u||=1

u⊤Σx̄x̄⊤Σu

u⊤Σu+σ2
w

.

This is formally equivalent to the problem solved for establishing Proposition 1, so we immediately
obtain ū=P−1Σx̄/||P−1Σx̄||. The maximization of K̂N

α (·, c̄,Σ) with N = 1 is thus closely related to
the fixed-decision heuristic, except that the reference solution x= x̄ is now optimal for the problem
with the current c̄ and the updated covariance matrix Σ′, which depends on u.

Proposition 3. With α > 0, the problem (29) is equivalent to the following program over
x∈R

n, s∈R, and the symmetric matrix W ∈R
n×n:

maximize c̄⊤x−α s

subject to Ax= b , x� 0 ,
[
s x⊤

x sΣ−1 +W

]
� 0 , trace(W ) = s/σ2

w , rank(W ) = 1 ,

where u corresponds to a normalized dominant eigenvector of W .

Proof. The constraint rank(W ) = 1 implies thatW = λuu⊤ for some λ∈R, with u corresponding
to the unique normalized eigenvector of W . Since trace(W ) = λ, the condition trace(W ) = s/σ2

w

implies λ= s/σ2
w and thus W = suu⊤/σ2

w. By substitution into the SDP constraint, we have

[
s x⊤

x s(Σ−1 +uu⊤/σ2
w)

]
� 0 .

By the Schur complement formula, this constraint means that either s = 0 (and thus x = 0), or
s > 0 and s − x⊤(s[Σ−1 + uu⊤/σ2

w])
−1x ≥ 0, that is, s ≥

√
x⊤(Σ−1+uu⊤/σ2

w)
−1x. The objective

with α> 0 ensures that s is made small, so at optimality we get s=
√

x⊤(Σ−1 +uu⊤/σ2
w)

−1x. �

Proposition 3 suggests the use of a classical convexification technique where the rank-one con-
straint is relaxed [42], and then a solution u with ||u||=1 is recovered by extracting the dominant
eigenvector of W . When the rank-one constraint is relaxed, we must add the constraint W � 0
which is no longer implied by the other constraints. Hence a first approximate solution scheme:
1. Solve the semidefinite program

maximize c̄⊤x−α s (30)

subject to Ax= b , x� 0 ,

[
s x⊤

x sΣ−1 +W

]
� 0 , trace(W ) = s/σ2

w , W � 0 .

2. Return for u the normalized dominant eigenvector of W .
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Step 2 is justified by the fact that the best rank-one approximation to W (in the Frobenius norm
metric) is the matrix X = λmax(W )uu⊤. If W has rank one, then λmax(W ) = trace(W ) = s/σ2

w.
Legitimate questions are then to ask whether the relaxation (30) should be tight — can we

expect that a rank-one matrix W could be optimal — and then, if the relaxation is tight, can
we easily recover the rank-one solution, since the interior-point solver might well return another
solution with rank greater than one.
In general, these are difficult questions, but it turns out that one can actually say something on

the quality of the relaxation. Let ν ∈R
n with elements ν1 ≥ · · · ≥ νn ≥ 0 denote the vector of sorted

eigenvalues of W . We have trace(W ) =
∑n

i=1 νi =
∑n

i=1 |νi| = ||ν||1. Since L1-norm regularization
induces sparsity in the solution, one can see that the constraint trace(W ) = s/σ2

w, combined with
the fact that s is minimized in the objective, has a beneficial effect on the formulation: it induces
zero eigenvalues in W , and thus rank reduction. Nuclear norm minimization, or trace minimization
in the special case of positive semidefinite matrices, is a convex technique for inducing low-rank
solutions [16]; in our case the trace minimization effect is a byproduct of the original objective.
This analysis reveals that α> 0 plays the additional role of weighting a low-rank regularization

term for W . For sufficiently high values of α, we are more likely to obtain tighter relaxations. For
any value of α > 0, the preference will be given to a low-rank solution for W among all optimal
solutions.

7.2. The case N > 1, α= 0. When N > 1, the problem takes into account the update of c̄ to
c̄′, which depends on t and u. The following lemma is instrumental for dealing with the nonlinear
dependence of du on u, as defined in (21). From Theorem 1, we know we can restrict our attention
to measurements u with ||u||=1.

Lemma 6. The nonconvex set

D=

{
d=

u√
u⊤Σu+σ2

w

: ||u||=1, u∈R
n

}
(31)

admits the alternative representations

D={d′ = P−1/2u′ : ||u′||= 1, u′ ∈R
n}, (32)

D={d′′ ∈R
n : trace(Pd′′d′′⊤) = 1}. (33)

Proof. If d∈D, there exists u∈R
n with u⊤u= 1 such that

d=
u√

u⊤Σu+σ2
w

=
u√

u⊤Pu
=

P−1/2P 1/2u

||P 1/2u|| = P−1/2u′

where u′ = P 1/2u/||P 1/2u|| satisfies ||u′||= 1, showing (31) → (32). Conversely, if d′ ∈D, there
exists u′ ∈R

n with u′⊤u′ = 1 such that

d′ = P−1/2u′ = ||P−1/2u′||v
where we have defined v= P−1/2u′/||P−1/2u′||; then noting that v⊤v= 1, we evaluate

[v⊤Σv+σ2
w]

−1/2 = [v⊤Pv]−1/2 =

[
u′⊤P−1/2PP−1/2u′

||P−1/2u′||2
]−1/2

= ||P−1/2u′||,

so that d′ = [v⊤Σv+ σ2
w]

−1/2v, showing (32) → (31) with u= v = P−1/2u′/||P−1/2u′||. This estab-
lishes the equivalence between (31) and (32).
The well-know identity {Q1/2z : ||z|| = 1, z ∈ R

n} = {z ∈ R
n : z⊤Q−1z = 1} applied to Q = P−1,

and the relation z⊤Q−1z = trace(z⊤Q−1z) = trace(Q−1zz⊤) = trace(Pzz⊤), establish the equiva-
lence between (32) and (33). �
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The following lemma, due to [44], will be useful to strengthen the relaxations.

Lemma 7. Assume X = {x∈R
n :Ax= b, x� 0} is bounded and not reduced to {0}. Fix ν ∈R

n

with νi > 0 for each i, and define γ̄ν = supx∈X ν⊤x. Then the following relation holds true for any
x∈X :

xx⊤ � γ̄νDiag(x)Diag(ν)−1,

where Diag(z) denotes the diagonal matrix with elements zi.

Proof. Since x� 0 and X 6= {0}, γ̄ν > 0. Since X is bounded, γ̄ν <∞. A lemma established in [44]
shows that for any x∈X , diag(ν)xx⊤diag(ν)� γ̄νdiag(ν)diag(x) . Recall that S � 0 iff PSP⊤ � 0,
where P can be any invertible matrix. Applying this rule to the inequality with P = diag{ν}−1

establishes the result. �

We have now the necessary ingredients for proposing a solution scheme to (10), first in the case
α= 0. As usual, P =Σ+σ2

wIn.
1. Choose a quantization {pi, ti}Ni=1 of t∼N (0,1).

Construct the symmetric matrices

Ci =
1

2



0 c̄⊤ 0⊤

c̄ 0 tiΣ
0 tiΣ 0


 ∈R

(2n+1)×(2n+1), 1≤ i≤N.

2. Generate a set of vectors {νℓ}Mℓ=1, νℓ ≻ 0, and evaluate

γ̄ℓ =max
x∈X

ν⊤
ℓ x.

3. Solve the following SDP over the symmetric optimization matrices Y ∈R
n×n and

Zi =



Z11

i Z1x
i Z1d

i

Zx1
i Zxx

i Zxd
i

Zd1
i Zdx

i Zdd
i


=




1 x⊤
i d⊤

xi Z
xx
i Zxd

i

d Zdx
i Y


∈R

(2n+1)×(2n+1), 1≤ i≤N :

maximize
∑N

i=1pitrace(CiZi)

subject to ∀ i : Zi � 0,

Z11
i = 1, AZx1

i = b, Zx1
i � 0,

AZxx
i A⊤ = bb⊤, [Zxx

i ]qr ≥ 0 ∀q, r,
Zxx

i � γ̄ℓDiag(Zx1
i )Diag(νℓ)

−1 ∀ℓ,
Zdd

i = Y,

trace(PY ) = 1.

4. Return for u the eigenvector associated to the largest eigenvalue of Y .
The scheme is based on the relation

(c̄+ tiΣd)
⊤xi =

1

2
trace






0 c̄⊤ 0⊤

c̄ 0 tiΣ
0 tiΣ 0






1
xi

d






1
xi

d




⊤

 ,



Defourny, Ryzhov, and Powell: Optimal Information Blending with Measurements in the L2 Sphere

18 Article submitted to Mathematics of Operations Research; manuscript no. (Please, provide the mansucript number!)

where we define

Zi =




1
xi

d






1
xi

d




⊤

=




1 x⊤
i

u⊤

√
u⊤Σu+σ2

w

xi xix
⊤
i

xiu
⊤

√
u⊤Σu+σ2

w

u√
u⊤Σu+σ2

w

ux⊤
i√

u⊤Σu+σ2
w

uu⊤

u⊤Σu+σ2
w




,

which is semidefinite positive and has rank 1.
The constraints Ax= b and x� 0 imply Axix

⊤
i A

⊤ = bb⊤ (linear equality between matrices) and
[xix

⊤
i ]qr ≥ 0 for 1 ≤ q, r ≤ n (nonnegativity of the matrix xix

⊤
i ). In terms of the matrix Zi, we

write AZxx
i A⊤ = bb⊤ and [Zxx

i ]qr ≥ 0. The constraint trace(Zxx
i AA⊤) = b⊤b would be of no use

here because it is implied by AZxx
i A⊤ = bb⊤, so we use Lemma 7 to further control Zxx

i by the
constraintZxx

i � γ̄ℓDiag(Zx1
i )Diag(νℓ)

−1. A single inequality suffices since we impose Zx1
i ∈X , which

is bounded by assumption. Introducing additional valid inequalities can strengthen the relaxation
but can also increase the rank of the solution Y , since the minimal rank solution is affected by the
number of constraints [32, 3].
We introduce the variable Y = uu⊤/(u⊤Σu + σ2

w) to write the constraints Zuu
i = Y = Zuu

j ,
1 ≤ i, j ≤ N . From Theorem 1 we want ||u|| = 1. From Lemma 6, this is possible by imposing
trace(PY ) = 1 and rank(Y ) = 1. All the rank-one constraints are then relaxed. We obtain our
approximation of the optimal u through the normalized eigenvector associated to the largest eigen-
value of Y , since we have Y u= (u⊤u/u⊤Pu)u= λu with λ= u⊤Pu when Y follows its rank-one
definition.

7.3. General case: N > 1, α > 0. The solution scheme for the general case combines the
techniques used in the two preceding cases.
1. Choose a quantization {pi, ti}Ni=1 of t∼N (0,1).

Define the symmetric matrices

Ci =
1

2



0 c̄⊤ 0⊤

c̄ 0 tiΣ
0 tiΣ 0


 ∈R

(2n+1)×(2n+1), 1≤ i≤N.

2. Generate a set of vectors {νℓ}Mℓ=1, νℓ ≻ 0, and evaluate γ̄ℓ =maxx∈X ν⊤
ℓ x.

3. Solve the following SDP over u∈R
n, si ∈R and the symmetric matrices Y , Wi ∈R

n×n, and

Zi =



Z11

i Z1x
i Z1d

i

Zx1
i Zxx

i Zxd
i

Zd1
i Zdx

i Zdd
i


=




1 x⊤
i d⊤

xi Z
xx
i Zxd

i

d Zdx
i Y


 ∈R

(2n+1)×(2n+1) , 1≤ i≤N :

maximize
∑N

i=1pi[trace(CiZi)−αsi]

subject to trace(PY ) = 1 ,

∀i : Zi � 0 ,

trace(Wi) = si/σ
2
w ,

[
si Z1x

i

Zx1
i siΣ

−1 +Wi

]
� 0 ,
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[
Wi wi

w⊤
i 1

]
� 0 ,

[
Y wi

w⊤
i trace(PWi)

]
� 0 ,

Z11
i = 1 , AZx1

i = b , Zx1
i � 0 ,

AZxx
i A⊤ = bb⊤ , [Zxx

i ]qr ≥ 0 ∀q, r ,

Zxx
i � γ̄ℓDiag(Zx1

i )Diag(νℓ)
−1 ∀ℓ ,

Zdd
i = Y .

4. Return for u the eigenvector associated to the largest eigenvalue of Y .
In the SDP, using ||u|| = 1 we define Y = dd⊤ = uu⊤/u⊤Pu = uu⊤/trace(Puu⊤). We have
trace(PY ) = trace(u⊤Pu/u⊤Pu) = 1. For each i, we define si ≥ 0 and wiw

⊤
i =Wi = siuu

⊤/σ2
w. We

have trace(Wi) = si/σ
2
w. Assuming si > 0, we have uu⊤ = σ2

wWi/si, so we can rewrite Y as

Y =
σ2
wWi/si

trace(Pσ2
wWi/si)

=
wiw

⊤
i

trace(PWi)
.

We relax the definitions of Wi and Y to Wi � wiw
⊤
i and Y � wiw

⊤
i /trace(PWi), which can be

expressed, using a Schur complement logic, by the constraints

[
Wi wi

w⊤
i 1

]
� 0 ,

[
Y wi

w⊤
i trace(PWi)

]
� 0 .

The rest of the construction of the program follows the logic of Sections 7.1 and 7.2.

8. Numerical test. We begin by testing the different approximation methods proposed in
this paper on a series of random LPs with n= 20 optimization variables, n positivity constraints,
and m = 5 equality constraints. The goal of these experiments is to evaluate the ability of the
different methods of maximizing the objective Kα(·, c̄,Σ) stated in (9) for some arbitrary values of
c̄,Σ.
We compare the following optimization strategies:
• rand: maximum of Kα(u, c̄,Σ) over 1000 random directions u= u′/||u′|| with u′ ∼N (0, In).
• eig: Kα(u, c̄,Σ) with u set to the eigenvector relative to the largest eigenvalue of Σ.
• unit: maximum of Kα(ej, c̄,Σ) over the unit vectors ej, 1≤ j ≤ n.
• sdp-1: Kα(u, c̄,Σ) with u set to the output of the one-sample approximation scheme of Sec-

tion 7.1.
• sdp-2: Kα(u, c̄,Σ) with u set to the output of the general scheme of Section 7.3, using N = 5

samples for the approximating the expectation inside the optimization program, andM = 5 random
positive directions νℓ.
In our simulations, a run is defined as follows:
1. Generation of an initial random problem (k=1):
• c̄1 ∼N (0, In),
• Σ1 = (S+S⊤)(S+S⊤)∈R

n×n with Sij ∼N (0,1),
• A∈R

m×n with Aij drawn uniformly in [0,1] and rejection of A if rank(A)<min{m,n},
• b=Aβ, where β ∈R

n has coordinates βi = |β′
i|, β′ ∼N (0,1).

2. Optimization of a measurement u by the 5 methods.
3. Selection of uk from sdp-2, and update of c̄k,Σk to c̄k+1,Σk+1, pretending that y= 0. (Thus

c̄k+1 = c̄k in this setting.)
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Figure 1. Optimization results averaged over 25 random problems. Each problem is updated 10 times, using the
previous measurement determined by sdp-2. Higher values indicate better solutions to the maximization of K(·, c̄k,Σk)
over the sphere in R

20.

4. Return to step 2 with k incremented until 10 stages have been carried out.
In all these experiments we set σ2

w = 1 and α= 1.
Experimentally, our random problems are such that the eigenvalues of Σk are distributed in some

range during the first stages k = 1,2, . . . of a run, and then tend to be more concentrated at later
stages.
The experiments are implemented in Matlab 7.10. The LPs and SOCPs are solved with Cplex

12.2.0.2. The semidefinite programs are formulated and solved through cvx in Matlab [22, 23]. Aver-
aged results over 25 random problem instances are presented on Figure 1. The values Kα(u, c̄

k,Σk)
are estimated by using an optimal quadratic quantization on 21 samples.
Recall that Kα(u, c̄

k,Σk) is a measure of expected improvement in the quality of the robust
solution. This quantity can thus be used as a performance measure. A policy that consistently
achieves higher expected improvement than another policy will also achieve (on average) better
robust solutions. We see that the values of Kα exhibit a downward trend over time, reflecting the
fact that the marginal value of a measurement tends to decrease as the uncertainty is progressively
reduced. From the numerical results, it appears that direct search rand already begins to break
down on these small problems. In fact, on each individual problem, sdp-2 consistently outperforms
rand. We also observe an improvement from sdp-1 to sdp-2. The baseline policy eig generally
gives the worst results, showing that optimal uncertainty reduction does not necessarily lead to
solutions with higher economic value. Overall, Figure 1 suggests that sdp-2 consistently finds better
solutions, confirming the value of a better approximation of the value of information.
Next, we present results obtained on a randomly generated MDP with |S|= 10 states and |A|=2

actions. This time, we compare the algorithms on the basis of the measurement policies they induce
over a sequence of 10 measurements. We are interested in the true value of the MDP policy that
is obtained after k measurements for k= 1, . . . ,10, that is,

f(xk, c
true) = x⊤

k c
true , xk ∈ argmax

x:Ax=b, x�0

x⊤c̄k −α
√

x⊤Σkx ,

where c̄k, Σk are the end-result of the method that optimizes the measurement vectors u1, . . . , uk,
and of the random observations y1 = u⊤

1 c
true+w1, . . . , yk = u⊤

k c
true+wk.
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Figure 2. Distribution of the true
performance with eig, for a growing
number of measurements.
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Figure 3. Distribution of the true
performance with sdp-1, for a grow-
ing number of measurements.
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Figure 4. Distribution of the true
performance with sdp-2, for a grow-
ing number of measurements.

In the MDP language, xk encodes the stochastic policy πk that optimally solves the robust MDP
(17) posed on the beliefs after k measurements. The vector ctrue encodes the true reward function
rtrue(·, ·) of the MDP, and f(xk, c

true) is the expected value of πk on the true MDP, that we can
also write as

V πk =E

{ ∞∑

t=0

γtrtrue(st, πk(st))
∣∣∣ s0 ∼ q0

}
,

for some initial state distribution q0 determined by the vector b. Because the sequence w1, . . . ,wk

of observation noise is random, one should actually look at the distribution of f(xk, c
true) = V πk .

Figures 2 to 4 show the results of 100 simulations run on the same fixed MDP. All simulations
start from a same belief distribution (c̄0,Σ0). There are 3 graphs, corresponding to eig, sdp-1 and
sdp-2 respectively. The same 100 samples of a sequence of Gaussian noises {wk : 1≤ k ≤ 10} for
making 10 consecutive measurements are used for comparing the 3 methods. The true maximum
is indicated by a horizontal line. We have plotted the curve of the estimated mean of V πk over the
100 samples as a function of the number k= 0, . . . ,10 of past measurements. We have also plotted
vertical bars between the 25-th and the 75-th percentiles of the distribution of V πk . The support
of V πk cannot cross the horizontal line of the true maximum.
Figure 2 shows that eig performs well on average, but exhibits a high degree of variation. In

other words, there is a higher probability that optimal uncertainty reduction will lead to an MDP
policy πk that performs poorly on the true problem.
By contrast, Figure 3 shows that sdp-1 underperforms eig on average, but the distribution of

performance is more tightly concentrated around the mean (that is, the resulting MDP policy is
more robust). Lastly, Figure 4 shows that sdp-2 dominates the other two methods on average,
while also achieving smaller variance than eig.

9. Conclusion. We have posed an optimal learning problem in which a decision-maker
improves a robust solution to a stochastic linear program by sequentially collecting information
about the unknown objective coefficients. A single piece of information takes the form of a lin-
ear combination (a “blend”) of the true underlying objective vector, subject to Gaussian noise.
Bayesian updating is then used to combine this new information with a multivariate normal prior
distribution on the unknown parameters. Previous work has considered weighted sums of unknown
parameters where the weights were pre-specified by a linear regression model. To our knowledge,
the present paper is the first to pose the continuous optimization problem of choosing the opti-
mal weight vector. Our formulation of this problem allows for both risk-neutral and risk-averse
decision-makers.
Within this setting, we have proposed two policies for choosing information blends. The first was

shown to optimize uncertainty reduction (analogous to active learning methods in statistics) by
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selecting the largest eigenvector of the posterior covariance matrix. The second approximates the
optimal solution to an expected improvement criterion (a nonconvex optimization problem) via
an SDP reformulation technique. The approach is applicable to robust LP formulations of Markov
decision process problems, where risk-averse decision-making policies are desired. We show that
our approach generalizes a previous heuristic for such problems. In numerical examples, the SDP
approximation consistently outperforms a number of benchmarks. We believe that the present
paper contributes to the interface of robust optimization and optimal learning, and that the idea
of information blending offers a new way to think about sequential information collection.

Appendix. Proof of Proposition 1.

Assuming α> 0, we have, from (18),

argmax
u∈B

K̃α(u, c̄,Σ)= argmax
u∈B

√
x̄⊤Σx̄−

√
x̄⊤

(
Σ− Σuu⊤Σ

u⊤Σu+σ2
w

)
x̄ .

If Σx̄= 0, then any u∈ B is optimal. Otherwise, Σx̄ 6= 0, and we can justify that any optimal u
will satisfy u⊤u= 1 by the proof technique used in Theorem 1. Then we have

argmax
u∈B

K̃α(u, c̄,Σ)= argmax
u: ||u||=1

√
x̄⊤Σx̄−

√
x̄⊤

(
Σ− Σuu⊤Σ

u⊤Σu+σ2
w

)
x̄

= argmin
u: ||u||=1

√
x̄⊤

(
Σ− Σuu⊤Σ

u⊤Σu+σ2
w

)
x̄

= argmin
u: ||u||=1

x̄⊤

(
Σ− Σuu⊤Σ

u⊤Σu+σ2
w

)
x̄

= argmax
u: ||u||=1

x̄⊤Σuu⊤Σx̄

u⊤Σu+σ2
w

= argmax
u: ||u||=1

u⊤Σx̄x̄⊤Σu

u⊤(Σ+σ2
wIn)u

.

We can then proceed as in the proof of Theorem 2, or observe that an optimal solution ū can
be obtained by considering the generalized eigenvalue problem (Σx̄x̄⊤Σ)u = λ(Σ + σ2

wIn)u and
taking for ū a normalized generalized vector associated to the largest generalized eigenvalue λ.
Since (Σ+ σ2

wIn) is nonsingular, the generalized eigenvalue problem is equivalent to the standard
eigenvalue problem (Σ+ Inσ

2
w)

−1(Σx̄x̄⊤Σ)u= λu, which is of the form

fg⊤u= λu with f = (Σ+ Inσ
2
w)

−1Σx̄ , g =Σx̄.

Therefore, the rank-one matrix fg⊤ has a single positive eigenvalue g⊤f/||f || with a normalized
eigenvector f/||f || or −f/||f ||, and ū=±(Σ+ Inσ

2
w)

−1Σx̄/||(Σ+ Inσ
2
w)

−1Σx̄||.
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