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Abstract

Multilingual speakers switch between lan-
guages in online and spoken communication.
Analyses of large scale multilingual data re-
quire automatic language identification at the
word level. For our experiments with mul-
tilingual online discussions, we first tag the
language of individual words using language
models and dictionaries. Secondly, we incor-
porate context to improve the performance.
We achieve an accuracy of 98%. Besides word
level accuracy, we use two new metrics to
evaluate this task.

1 Introduction

There are more multilingual speakers in the world
than monolingual speakers (Auer and Wei, 2007).
Multilingual speakers switch across languages in
daily communication (Auer, 1999). With the in-
creasing use of social media, multilingual speakers
also communicate with each other in online environ-
ments (Paolillo, 2011). Data from such resources
can be used to study code switching patterns and lan-
guage preferences in online multilingual conversa-
tions. Although most studies on multilingual online
communication rely on manual identification of lan-
guages in relatively small datasets (Danet and Her-
ring, 2007; Androutsopoulos, 2007), there is a grow-
ing demand for automatic language identification in
larger datasets. Such a system would also be useful
for selecting the right parsers to process multilingual
documents and to build language resources for mi-
nority languages (King and Abney, 2013).

In this paper, we identify Dutch (NL) en Turkish
(TR) at the word level in a large online forum for
Turkish-Dutch speakers living in the Netherlands.
The users in the forum frequently switch languages
within posts, for example:

<TR> Sariyi ver </TR>
<NL> Wel mooi doelpunt </NL>

So far, language identification has mostly been mod-
eled as a document classification problem. Most ap-
proaches rely on character or byte n-grams, by com-
paring n-gram profiles (Cavnar and Trenkle, 1994),
or using various machine learning classifiers. While
McNamee (2005) argues that language identification
is a solved problem, classification on a more fine-
grained level (instead of document level) remains a
challenge (Hughes et al., 2006). Furthermore, lan-
guage identification is more difficult for short texts
(Baldwin and Lui, 2010; Vatanen et al., 2010), such
as queries and tweets (Bergsma et al., 2012; Carter
et al., 2012; Ceylan and Kim, 2009). Tagging in-
dividual words (without context) has been done us-
ing dictionaries, affix statistics and classifiers us-
ing character n-grams (Hammarström, 2007; Got-
tron and Lipka, 2010). Although Yamaguchi and
Tanaka-Ishii (2012) segmented text by language,
their data was artificially created by randomly sam-
pling and concatenating text segments (40-160 char-
acters) from monolingual texts. Therefore, the lan-
guage switches do not reflect realistic switches as
they occur in natural texts. Most related to ours is
the work by King and Abney (2013) who labeled
languages of words in multilingual web pages, but
evaluated the task only using word level accuracy.
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Our paper makes the following contributions: 1)
We explore two new ways to evaluate the task for an-
alyzing multilingual communication and show that
only word accuracy gives a limited view 2) We are
the first to apply this task on a conversational and
larger dataset 3) We show that features using the
context improve the performance 4) We present a
new public dataset to support research on language
identification.

In the rest of the paper, we first discuss the related
work and describe our dataset. Secondly, we present
our experiments. We finally conclude with a sum-
mary and suggestions for future work.

2 Corpus

Our data1 comes from one of the largest online
communities in The Netherlands for Turkish-Dutch
speakers. All posts from May 2006 until October
2012 were crawled. Although Dutch and Turkish
dominate the forum, English fixed phrases (e.g. no
comment, come on) are also occasionally observed.
Users switch between languages within and across
posts. Examples 1 and 2 illustrate switches between
Dutch and Turkish within the same post. Example 1
is a switch at sentence level, example 2 is a switch
at word level.

Example 1:
<NL>Mijn dag kan niet stuk :) </NL>
<TR> Cok guzel bir haber aldim </TR>

Translation: <NL> This made my day:)
</NL><TR> I received good news
</TR>

Example 2:
<TR>kahvalti</TR><NL>met
vriendinnen by my thuis </NL>

Translation: <TR>breakfast </TR>
<NL> with my girlfriends at my home
</NL>

The data is highly informal with misspellings,
lengthening of characters (e.g. hotttt), replacement
of Turkish characters (kahvalti instead of kahvaltı)
and spelling variations (tankyu instead of thank
you). Dutch and Turkish sometimes share common
spellings (e.g. ben is am in Dutch and I in Turkish),
making this a challenging task.

1Available at http://www.dongnguyen.nl/data-langid-
emnlp2013.html

Annotation
For this research, we classify words as either Turkish
or Dutch. Since Dutch and English are typologically
more similar to each other than Turkish, the English
phrases (less than 1%) are classified as Dutch. Posts
were randomly sampled and annotated by a native
Turkish speaker who is also fluent in Dutch. A na-
tive Dutch speaker annotated a random set of 100
posts (Cohen’s kappa = 0.98). The following tokens
were ignored for language identification:

• Smileys (as part of the forum markup, as well
as textual smileys such as “:)” ).

• Numeric tokens and punctuation.

• Forum tags (e.g. [u] to underline text).

• Links, images, embedded videos etc.

• Turkish and Dutch first names and place
names2.

• Usernames when indicated with special forum
markup.

• Chat words, such as hahaha, ooooh and lol rec-
ognized using regular expressions.

Posts for which all tokens are ignored, are not
included in the corpus.

Statistics
The dataset was randomly divided into a training,
development and test set. The statistics are listed
in Table 1. The statistics show that Dutch is the
majority language, although the difference between
Turkish and Dutch is not large. We also find that the
documents (i.e. posts) are short, with on average 18
tokens per document. The data represents realistic
texts found in online multilingual communication.
Compared to previously used datasets (Yamaguchi
and Tanaka-Ishii, 2012; King and Abney, 2013), the
data is noisier and the documents are much shorter.

#NL tokens #TR tokens #Posts/(BL%)
Train 14900 (54%) 12737 (46%) 1603 (15%)
Dev 8590 (51%) 8140 (49%) 728 (19%)
Test 5895 (53%) 5293 (47%) 735 (17%)

Table 1: Number of tokens and posts for Dutch (NL) and
Turkish (TR), including % of bilingual (BL) posts

2Based on online name lists and Wikipedia pages
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3 Experimental Setup

3.1 Training Corpora
We used the following corpora to extract dictionaries
and language models.

• GenCor: Turkish web pages (Sak et al., 2008).

• NLCOW2012: Dutch web pages (Schäfer and
Bildhauer, 2012).

• Blog authorship corpus: English blogs (Schler
et al., 2006).

Each corpus was chunked into large segments
which were then selected randomly until 5M tokens
were obtained for each language. We tokenized the
text and kept the punctuation.

3.2 Baselines
As baselines, we use langid.py3 (Lui and Bald-
win, 2012) and van Noord’s TextCat implementa-
tion4 of the algorithm by Cavnar and Trenkle (1994).
TextCat is based on the comparison of n-gram pro-
files and langid.py on Naive Bayes with n-gram fea-
tures. For both baselines, words were entered indi-
vidually to each program. Words for which no lan-
guage could be determined were assigned to Dutch.
These models were developed to identify the lan-
guages of the documents instead of words and we
did not retrain them. Therefore, these models are
not expected to perform well on this task.

3.3 Models
We start with models that assign languages based on
only the current word. Next, we explore models and
features that can exploit the context (the other words
in the post). Words with the highest probability for
English were assigned to Dutch for evaluation.

Dictionary lookup (DICT)
We extract dictionaries with word frequencies from
the training corpora. This approach looks up the
words in the dictionaries and chooses the language
for which the word has the highest probability. If
the word does not occur in the dictionaries, Dutch is
chosen as the language.

3https://github.com/saffsd/langid.py
4http://www.let.rug.nl/∼vannoord/TextCat/

Language model (LM)
We build a character n-gram language model for
each language (max. n-gram length is 5). We use
Witten-Bell smoothing and include word boundaries
for calculating the probabilities.

Dictionary + Language model (DICT+LM)
We first use the dictionary lookup approach (DICT).
If the word does not occur in dictionaries, a decision
is made using the language models (LM).

Logistic Regression (LR)
We use a logistic regression model that incorporates
context with the following features:

• (Individual word) Label assigned by the
DICT+LM model.

• (Context) The results of the LM model based on
previous + current token, and current token +
next token (e.g. the sequence “ben thuis” (am
home) as a whole if ben is the current token).
This gives the language model more context for
estimation. We compare the use of the assigned
labels (LAB) with the use of the log probability
values (PROB) as feature values.

Conditional Random Fields (CRF)
We treat the task as a sequence labeling problem and
experiment with linear-chain Conditional Random
Fields (Lafferty et al., 2001) in three settings:

• (Individual word) A CRF with only the tags as-
signed by the DICT+LM to the individual to-
kens as a feature (BASE).

• (Context). CRFs using the LAB or PROB as ad-
ditional features (same features as in the logis-
tic regression model) to capture additional con-
text.

3.4 Implementation
Language identification was not performed for texts
within quotes. To handle the alphabetical length-
ening (e.g. lolllll), words are normalized by trim-
ming same character sequences of three characters
or more. We use the Lingpipe5 and Scikit-learn (Pe-
dregosa et al., 2011) toolkits for our experiments.

5http://alias-i.com/lingpipe/

859



Word classification Fraction Post classification
TR NL MAE

Run P R P R Acc. ρ All Mono. BL F1 Acc.
Textcat 0.872 0.647 0.743 0.915 0.788 0.739 0.251 0.264 0.188 0.386 0.396
LangIDPy 0.954 0.387 0.641 0.983 0.701 0.615 0.364 0.371 0.333 0.413 0.475
DICT 0.955 0.733 0.802 0.969 0.858 0.827 0.196 0.200 0.175 0.511 0.531
LM 0.950 0.930 0.938 0.956 0.944 0.926 0.074 0.076 0.065 0.699 0.703
DICT + LM 0.951 0.934 0.942 0.957 0.946 0.943 0.067 0.067 0.063 0.711 0.717
LR + LAB 0.965 0.952 0.958 0.969 0.961 0.917 0.066 0.066 0.068 0.791 0.808
LR + PROB 0.956 0.976 0.978 0.959 0.967 0.945 0.048 0.044 0.064 0.826 0.849
CRF + BASE 0.973 0.974 0.977 0.976 0.975 0.940 0.043 0.027 0.119 0.858 0.898
CRF + LAB 0.964 0.977 0.979 0.967 0.972 0.933 0.046 0.033 0.111 0.855 0.891
CRF + PROB 0.970 0.980 0.982 0.973 0.976 0.946 0.039 0.025 0.103 0.853 0.895

Table 2: Results of language identification experiments.

3.5 Evaluation

The assigned labels can be used for computational
analysis of multilingual data in different ways. For
example, these labels can be used to analyze lan-
guage preferences in multilingual communication or
the direction of the switches (from Turkish to Dutch
or the other way around). Therefore, we evaluate the
methods from different perspectives.

The evaluation at word and post levels is done
with the following metrics:

• Word classification precision (P), recall (R) and
accuracy. Although this is the most straightfor-
ward approach to evaluate the task, it ignores
the document boundaries.

• Fraction of language in a post: Pearson’s cor-
relation (ρ) and Mean Absolute Error (MAE) of
proportion of Turkish in a post. This evaluates
the measured proportion of languages in a post
when the actual tags for individual words are
not needed. For example, such information is
useful for analyzing the language preferences
of users in the online forum. Besides report-
ing the MAE over all posts, we also separate
the performance over monolingual and bilin-
gual posts (BL).

• Post classification: Durham (2003) analyzed
the switch between languages in terms of the
amount of monolingual and bilingual posts.
Our posts are classified as NL, TR or bilingual
(BL) if all words are tagged in the particular
language or both. We report F1 and accuracy.

4 Results

The results are presented in Table 2. Significance
tests were done by comparing the results of the word
and post classification measures using McNemar’s
test, and comparing the MAEs using paired t-tests.
All runs were significantly different from each other
based on these tests (p < 0.05), except the MAEs of
the DICT+LM and LR+LAB runs and the MAEs and
post classification metrics between the CRFs runs.

The difficulty of the task is illustrated by exam-
ining the coverage of the tokens by the dictionaries.
24.6% of the tokens (dev + test set) appear in both
dictionaries, 31.1% only in the Turkish dictionary,
30.5% only in the Dutch dictionary and 13.9% in
none of the dictionaries.

The baselines do not perform well. This confirms
that language identification at the word level needs
different approaches than identification at the docu-
ment level. Using language models result in a bet-
ter performance than dictionaries. They can han-
dle unseen words and are more robust against the
noisy spellings. The combination of language mod-
els and dictionaries is more effective than the indi-
vidual models. The results improve when context
was added using a logistic regression model, espe-
cially with the probability values as feature values.

CRFs improve the results but the improvement
on the correlation and MAE is less. More specifi-
cally, CRFs improve the performance on monolin-
gual posts, especially when a single word is tagged
in the wrong language. However, when the influence
of the context is too high, CRFs reduce the perfor-
mance in bilingual posts.
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This is also illustrated with the results of the post
classification. The LR+PROB run has a high recall
(0.905), but a low precision (0.559) for bilingual
posts, while the CRF+PROB approach has a low re-
call (0.611) and a high precision (0.828).

The fraction of Dutch and Turkish in posts varies
widely, providing additional challenges to the use of
CRFs for this task. Classifying posts first as mono-
lingual/bilingual and tagging individual words after-
wards for bilingual posts might improve the perfor-
mance.

The evaluation metrics highlight different aspects
of the task whereas word level accuracy gives a
limited view. We suggest using multiple metrics to
evaluate this task for future research.

Dictionaries versus Language Models
The results reported in Table 2 were obtained by
sampling 5M tokens of each language. To study the
effect of the number of tokens on the performance
of the DICT and LM runs, we vary the amount of
data. The performance of both methods increases
consistently with more data (Figure 1). We also
find that language models achieve good performance
with only a limited amount of data, and consistently
outperform the approach using dictionaries. This is
probably due to the highly informal and noisy nature
of our data.
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Figure 1: Effect of sampling size

Post classification
We experimented with classifying posts into TR, NL
and bilingual using the results of the word level lan-
guage identification (Table 2: post classification).
Posts were classified as a particular language if all
words were tagged as belonging to that language,
and bilingual otherwise. Runs using CRFs achieved
the best performance.

We now experiment with allowing a margin (e.g.
a margin of 0.10 classifies posts as TR if at least
90% of the words are classified as TR). Allowing
a small margin already increases the results of sim-
pler approaches (such as the LR-PROB run, Table 3)
by making it more robust against errors. However,
allowing a margin reduces the performance of the
CRF runs.

Margin 0.0 0.05 0.10 0.15 0.20
Accuracy 0.849 0.873 0.876 0.878 0.865

Table 3: Effect of margin on post classification
(LR-PROB run)

Error analysis
The manual analysis of the results revealed three
main challenges: 1) Our data is highly informal
with many spelling variations (e.g. moimoimoi,
goooooooooooolllll) and noise (e.g. asdfghjfgsha-
haha) 2) Words sharing spelling in Dutch and Turk-
ish are difficult to identify especially when there
is no context available (e.g. a post with only one
word). These words are annotated based on their
context. For example, the word super in “Seyma,
super” is annotated as Turkish since Seyma is also a
Turkish word. 3) Named entity recognition is neces-
sary to improve the performance of the system and
decrease the noise in evaluation. Based on precom-
piled lists, our system ignores named entities. How-
ever, some names still remain undetected (e.g. user-
names).

5 Conclusion

We presented experiments on identifying the lan-
guage of individual words in multilingual conversa-
tional data. Our results reveal that language models
are more robust than dictionaries and adding context
improves the performance. We evaluate our methods
from different perspectives based on how language
identification at word level can be used to analyze
multilingual data. The highly informal spelling in
online environments and the occurrences of named
entities pose challenges.

Future work could focus on cases with more than
two languages, and languages that are typologically
less distinct from each other or dialects (Trieschnigg
et al., 2012).
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