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Abstract

We introduce a new three step iterative scheme with errors to approximate the unique common fixed point
of a family of three strongly pseudocontractive (accretive) mappings on Banach spaces. Our results are
generalizations and improvements of results obtained by several authors in literature. In particular, they
generalize and improve the results of Mogbademu and Olaleru [A. A. Mogbademu and J. O. Olaleru, Bull.
Math. Anal. Appl., 3 (2011), 132-139], Xue and Fan [Z. Xue and R. Fan, Appl. Math. Comput., 206
(2008), 12-15] which is in turn a correction of Rafiq [A. Rafiq, Appl. Math. Comput., 182 (2006), 589-595].
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1. Introduction and Preliminaries

Let E be a real Banach space with dual E∗ and D is a nonempty closed convex subset of E. We denote
by J the normalized duality from E to 2E

∗
defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, (1.1)

where 〈., .〉 denotes the generalized duality pairing. We shall also denote the single-valued duality mapping
by j.
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Definition 1.1 [20]. A map T : E → E is called strongly accretive if there exists a constant k > 0
such that, for each x, y ∈ E, there is a j(x− y) ∈ J(x− y) satisfying

〈Tx− Ty, j(x− y)〉 ≥ k‖x− y‖2. (1.2)

Definition 1.2 [20]. An operator T with domain D(T ) and range R(T ) in E is called strongly pseudocon-
tractive if for all x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y) and a constant 0 < k < 1 such that

〈Tx− Ty, j(x− y)〉 ≤ k‖x− y‖2. (1.3)

The class of strongly accretive operators is closely related to the class of strongly pseudocontractive operators.
It is well known that T is strongly pseudocontractive if and only if (I − T ) is strongly accretive, where I
denotes the identity operator. Browder [1] and Kato [8] indepedently introduced the concept of accretive
operators in 1967. One of the early results in the theory of accretive operators credited to Browder states
that the initial value problem

du(t)

dt
+ Tu(t) = 0, u(0) = u0 (1.4)

is solvable if T is locally Lipschitzian and accretive in an appropriate Banach space.
These class of operators have been studied extensively by several authors (see [2], [3], [9], [10], [11], [15],
[16], [18], [20], [25]).

Definition 1.3 [20]. A mapping T : E → E is called Lipschitzian if there exists a constant L > 0
such that

‖Tx− Ty‖ ≤ L‖x− y‖, ∀ x, y ∈ D(T ). (1.5)

In 1953, Mann [10] introduced the Mann iterative scheme and used it to prove the convergence of the
sequence to the fixed points for which the Banach principle is not applicable. Later in 1974, Ishikawa [6]
introduced an iterative process to obtain the convergence of a Lipschitzian pseudocontractive operator when
Mann iterative scheme failed to converge. In 2000 Noor [14] gave the following three-step iterative scheme
(or Noor iteration) for solving nonlinear operator equations in uniformly smooth Banach spaces.
Let D be a nonempty convex subset of E and let T : D → D be a mapping. For a given x0 ∈ K, compute
the sequence {xn}∞n=0 by the iterative schemes

xn+1 = (1− αn)xn + αnTyn,
yn = (1− βn)xn + βnTzn,
zn = (1− γn)xn + γnTxn, n ≥ 0

(1.6)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying some conditions.
If γn = 0 and βn = 0, for each n ∈ Z, n ≥ 0, then (1.6) reduces to:

the iterative scheme
xn+1 = (1− αn)xn + αnTxn, n ∈ Z, n ≥ 0, (1.7)

which is called the one-step (or Mann iterative scheme), introduced by Mann [9].
For γn = 0, (1.6) reduces to: {

xn+1 = (1− αn)xn + αnTyn,
yn = (1− βn)xn + βnTxn, n ≥ 0

(1.8)

where {αn}∞n=0 and {βn}∞n=0 are two real sequences in [0, 1] satisfying some conditions. Equation (1.8) is
called the two-step (or Ishikawa iterative process) introduced by Ishikawa [6].
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In 1989, Glowinski and Le-Tallec [4] used a three-step iterative process to solve elastoviscoplasticity, liquid
crystal and eigenvalue problems. They established that three-step iterative scheme performs better than
one-step (Mann) and two-step (Ishikawa) iterative schemes. Haubruge et al. [5] studied the convergence
analysis of the three-step iterative processes of Glowinski and Le-Tallec [4] and used the three-step iter-
ation to obtain some new splitting type algorithms for solving variational inequalities, separable convex
programming and minimization of a sum of convex functions. They also proved that three-step iteration
also lead to highly parallelized algorithms under certain conditions. Hence, we can conclude by observing
that three-step iterative scheme play an important role in solving various problems in pure and applied
sciences. Studies in nonlinear functional analysis reveals that several problems in sciences, engineering and
management sciences can be converted and solved as a fixed point problem of the form x = Tx, where T
is a mapping. Several authors in literature have obtained some interesting fixed points results (see, e.g.
[1, 7, 8, 12, 13, 21, 19, 24, 26, 27]).

Rafiq [20] recently introduced the following modified three-step iterative scheme and used it to approxi-
mate the unique common fixed point of a family of strongly pseudocontractive operators.

Let T1, T2, T3 : D → D be three given mappings. For a given x0 ∈ D, compute the sequence {xn}∞n=0

by the iterative scheme 
xn+1 = (1− αn)xn + αnT1yn
yn = (1− βn)xn + βnT2zn
zn = (1− γn)xn + γnT3xn, n ≥ 0,

(1.9)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying some conditions. Observe
that iterative schemes (1.6)-(1.8) are special cases of (1.9).
More recently, Suantai [22] introduced the following three-step iterative schemes.
Let E be a normed space, D be a nonempty convex subset of E and T : D → D be a given mapping. Then
for a given x1 ∈ D, compute the sequence {xn}∞n=1, {yn}∞n=1 and {zn}∞n=1 by the iterative scheme

zn = anT
nxn + (1− an)xn

yn = bnT
nzn + cnT

nxn + (1− bn − cn)xn
xn+1 = αnT

nyn + βnT
nzn + (1− αn − βn)xn, n ≥ 1,

(1.10)

where {an}∞n=1, {bn}∞n=1, {cn}∞n=1, {αn}∞n=1, {βn}∞n=1 are appropriate sequences in [0, 1].

Motivated by the facts above, we now introduce the following modified three-step iterative scheme with
errors which we shall use in this paper to approximate the unique common fixed point of a family of
strongly pseudocontractive maps.

Let E be a real Banach space, D be a nonempty convex subset of E and T1, T2, T3 : D → D be a family of
three maps. Then for a given x0, u0, v0, w0 ∈ D, compute the sequence {xn}, {yn} and {zn} by the iterative
scheme 

xn+1 = (1− αn − βn − en)xn + αnT1yn + βnT1zn + enun n ≥ 0
yn = (1− an − bn − e′n)xn + anT2zn + bnT2xn + e′nvn
zn = (1− cn − e′′n)xn + cnT3xn + e′′nwn,

(1.11)

where {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {αn}∞n=0, {βn}∞n=0, {en}∞n=0, {e′n}∞n=0, {e′′n}∞n=0 are real sequences in [0, 1]
satisfying certain conditions and {un}∞n=0, {vn}∞n=0, {wn}∞n=0 are bounded sequences in D.

Observe that (1.6)-(1.10) and the modified three step iteration process with errors introduced by Mogbademu
and Olaleru [11] are special cases of (1.11). In this paper, we shall use algorithm (1.11) to approximate the
unique common fixed point of a family of three strongly pseudocontractive operators in Banach spaces. Our
results are generalizations and improvements of the results of Mogbademu and Olaleru [11], Xue and Fan
[25] which in turn is a correction of Rafiq [20].
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Rafiq [20] proved the following theorem

Theorem R [20]. Let E be a real Banach space and D be a nonempty closed convex subset of E. Let
T1, T2, T3 be strongly pseudocontractive self maps of D with T1(D) bounded and T1, T3 be uniformly con-
tinuous. Let {xn}∞n=0 be the sequence defined by

xn+1 = (1− αn)xn + αnT1yn
yn = (1− βn)xn + βnT2zn
zn = (1− γn)xn + γnT3xn, n ≥ 0,

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences in [0, 1] satisfying the conditions:
limn→∞ αn = 0 = limn→∞ βn and

∑∞
n=0 αn =∞.

If F (T1) ∩ F (T2) ∩ F (T3) 6= ∅, then the sequence {xn}∞n=0 converges strongly to the common fixed point of
T1, T2, T3.

Xue and Fan [25] obtained the following convergence results which in turn is a correction of Theorem
R.

Theorem XF [25]. Let E be a real Banach space and D be a nonempty closed convex subset of E. Let
T1, T2 and T3 be strongly pseudocontractive self maps of D with T1(D) bounded and T1, T2 and T3 uniformly
continuous. Let {xn}∞n=0 be defined by (1.9), where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are three real sequences
in [0, 1] which satisfy the conditions: αn, βn → 0 as n→∞ and

∑∞
n=0 αn =∞. If F (T1)∩F (T2)∩F (T3) 6= ∅,

then the sequence {xn}∞n=0 converges strongly to the common fixed point of T1, T2 and T3.
In this study, we use our newly introduced iterative scheme (1.11) to prove some convergence results.

Our results are generalizations and improvements of the results of Mogbademu and Olaleru [11], Xue and
Fan [25] which in turn is a correction of Rafiq [20].

The following lemmas will be useful in this study.

Lemma 1.1 [20]. Let E be a real Banach space and J : E → 2E
∗

be the normalized duality mapping.
Then, for any x, y ∈ E

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀ j(x+ y) ∈ J(x+ y). (1.12)

Lemma 1.2 [23]. Let {ρ}∞n=0 be a nonnegative sequence which satisfies the following inequality:

ρn+1 ≤ (1− λn)ρn + σn, n ≥ 0, (1.13)

where λn ∈ (0, 1), n = 0, 1, 2, · · · ,
∑∞

n=0 λn =∞ and σn = o(λn). Then ρn → 0 as n→∞.

2. Main Results

Theorem 2.1 Let E be a real Banach space and D be a nonempty closed convex subset of E. Let T1, T2
and T3 be strongly pseudocontractive self maps of D with T1(D) bounded and T1, T2 and T3 uniformly con-
tinuous. Let {xn}∞n=0 be defined by (1.11), where {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {αn}∞n=0, {βn}∞n=0, {en}∞n=0,
{e′n}∞n=0, {e′′n}∞n=0 are real sequences in [0, 1] satisfying the conditions: an, bn, cn, en, e

′
n, e
′′
n, αn, βn −→ 0 as

n→∞, αn + βn + en < 1, an + bn + e′n < 1, cn + e′′n < 1,
∑∞

n=0 αn =∞ and {un}, {vn}, {wn} are bounded
sequences in D. If F (T1)∩F (T2)∩F (T3) 6= ∅, then the sequence {xn}∞n=0 converges strongly to the common
fixed point of T1, T2 and T3.

Proof. Since T1, T2, T3 are strongly pseudocontractive, there exists a constant k = max{k1, k2, k3} so
that

〈Tix− Tiy, j(x− y)〉 ≤ k‖x− y‖2, i = 1, 2, 3, (2.1)
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where k1, k2 and k3 are constants for operators T1, T2 and T3 respectively. Assume that p ∈ F (T1)∩F (T2)∩
F (T3), using the fact that Ti is strongly pseudocontractive for each i = 1, 2, 3 we obtain F (T1) ∩ F (T2) ∩
F (T3) = p 6= ∅. Since T1 has a bounded range, we let

M1 = ‖x0 − p‖+ sup
n≥0
‖T1yn − p‖+ sup

n≥0
‖T1zn − p‖+ ‖un − p‖. (2.2)

We shall prove by induction that ‖xn−p‖ ≤M1 holds for all n ∈ N.We observe from (2.2) that ‖x0−p‖ ≤M1.
Assume that ‖xn − p‖ ≤ M1 holds for all n ∈ N. We will prove that ‖xn+1 − p‖ ≤ M1. Using (1.11), we
obtain

‖xn+1 − p‖ = ‖(1− αn − βn − en)(xn − p) + αn(T1yn − p)+
βn(T1zn − p) + en(un − p)‖

≤ (1− αn − βn − en)‖xn − p‖+ αn‖T1yn − p‖+
βn‖T1zn − p‖+ en‖un − p‖

≤ (1− αn − βn − en)M1 + αnM1 + βnM1 + enM1

= M1. (2.3)

Using the uniform continuity of T3, we obtain that {T3xn}∞n=0 is bounded. We now set

M2 = max

{
M1, sup

n≥0
{‖T3xn − p‖}, sup

n≥0
{‖wn − p‖}

}
, (2.4)

hence

‖zn − p‖ = ‖(1− cn − e′′n)(xn − p) + cn(T3xn − p) + e′′n(wn − p)‖
≤ (1− cn − e′′n)‖xn − p‖+ cn‖T3xn − p‖+ e′′n‖wn − p‖
≤ (1− cn − e′′n)M1 + cnM2 + e′′nM2

≤ (1− cn − e′′n)M2 + cnM2 + e′′nM2

= M2. (2.5)

By the uniform continuity of T2, we obtain {T2zn}∞n=0 and {T2xn}∞n=0 are bounded. Set

M = sup
n≥0
‖T2zn − p‖+ sup

n≥0
‖xn − p‖+ sup

n≥0
‖vn − p‖+M2. (2.6)

Using Lemma 1.1 and (1.11), we obtain

‖xn+1 − p‖2 = ‖(1− αn − βn − en)(xn − p) + αn(T1yn − p)+
βn(T1zn − p) + en(un − p)‖2

≤ (1− αn − βn − en)2‖xn − p‖2
+2〈αn(T1yn − p) + βn(T1zn − p) + en(un − p), j(xn+1 − p)〉

= (1− αn − βn − en)2‖xn − p‖2 + 2αn〈T1yn − p, j(xn+1 − p)〉
+2βn〈T1zn − p, j(xn+1 − p)〉+ 2en〈un − p, j(xn+1 − p)〉

≤ (1− αn − βn − en)2‖xn − p‖2
+2αn〈T1xn+1 − T1p, j(xn+1 − p)〉
+2αn〈T1yn − T1xn+1, j(xn+1 − p)〉
+2βn〈T1xn+1 − T1p, j(xn+1 − p)〉
+2βn〈T1zn − T1xn+1, j(xn+1 − p)〉+ 2en〈un − p, j(xn+1 − p)〉

≤ (1− αn − βn − en)2‖xn − p‖2 + 2αnk‖xn+1 − p‖2
+2αn‖T1yn − T1xn+1‖.‖xn+1 − p‖+ 2βnk‖xn+1 − p‖2
+2βn‖T1zn − T1xn+1‖.‖xn+1 − p‖+ 2enM

≤ (1− αn − βn − en)2‖xn − p‖2 + 2αnk‖xn+1 − p‖2
+2βnk‖xn+1 − p‖2 + 2αnδnM1 + 2βnτnM1 + 2enM, (2.7)
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where δn = ‖T1yn − T1xn+1‖ −→ 0 as n→∞ and τn = ‖T1zn − T1xn+1‖ −→ 0 as n→∞. But,

‖yn − xn+1‖ = ‖(1− an − bn − e′n)xn + anT2zn + bnT2xn + e′nvn
−(1− αn − βn − en)xn − αnT1yn − βnT1zn − enun‖

= ‖an(T2zn − xn) + bn(T2xn − xn) + e′n(vn − xn)
+αn(xn − T1yn) + βn(xn − T1zn) + en(xn − un)‖

≤ an‖T2zn − xn‖+ bn‖T2xn − xn‖+ e′n‖vn − xn‖
+αn‖xn − T1yn‖+ βn‖xn − T1zn‖+ en‖xn − un‖

≤ anM + bnM + e′nM + αnM1 + βnM1 + enM1

= M(an + bn + e′n) +M1(αn + βn + en)
≤ M(an + bn + e′n + αn + βn + en) −→ 0, (2.8)

as n→∞.

‖zn − xn+1‖ = ‖(1− cn − e′′n)xn + cnT3xn + e′′nwn − (1− αn − βn − en)xn
−αnT1yn − βnT1zn − enun‖

= ‖cn(T3xn − xn) + e′′n(wn − xn) + αn(xn − T1yn)
+βn(xn − T1zn) + en(xn − un)‖

≤ cn‖T3xn − xn‖+ e′′n‖wn − xn‖+ αn‖xn − T1yn‖
+βn‖xn − T1zn‖+ en‖xn − un‖

≤ cnM2 + e′′nM + αnM1 + βnM1 + enM
≤ M(cn + e′′n + αn + βn + en) −→ 0,

as n → ∞. This implies that limn→∞ ‖xn+1 − yn‖ = 0 and limn→∞ ‖xn+1 − zn‖ = 0 since limn→∞ an =
0, limn→∞ bn = 0, limn→∞ cn = 0, limn→∞ e

′
n = 0, limn→∞ e

′′
n = 0, limn→∞ αn = 0, limn→∞ βn = 0,

limn→∞ en = 0. Using the uniform continuity of T1, we obtain δn = ‖T1yn − T1xn+1‖ −→ 0 as n → ∞
and τn = ‖T1zn − T1xn+1‖ −→ 0 as n → ∞. Hence, there exists a positive integer N such that αn, βn <
min{ 1

2k ,
1−k

(1−k)2+k2 } for all n ≥ N. Hence, from (2.7), we obtain

‖xn+1 − p‖2 ≤
(
(1−αn−βn−en)2
1−2αnk−2βnk

)
‖xn − p‖2 + 2αnδnM1+2βnτnM1+2enM1

1−2αnk−2βnk

≤
(

(1−αn)2

1−2αnk−2βnk

)
‖xn − p‖2 +M

(
2αnδn+2βnτn+2en

1−2αnk−2βnk

)
=

(
1−2αn+α2

n−2αnk−2βnk+2αnk+2βnk
1−2αnk−2βnk

)
‖xn − p‖2

+M
(
2αnδn+2βnτn+2en

1−2αnk−2βnk

)
=

(
1− 2αn−α2

n−2αnk
1−2αnk−2βnk

)
‖xn − p‖2 +M

(
2αnδn+2βnτn+2en

1−2αnk−2βnk

)
=

(
1− 2−αn−2k

1−2αnk−2βnkαn

)
‖xn − p‖2 +M

(
2αnδn+2βnτn+2en

1−2αnk−2βnk

)
≤ (1− (1− k)αn) ‖xn − p‖2 +M

(
2αnδn+2βnτn+2en

1−2αnk−2βnk

)
. (2.9)

Next, set ρn = ‖xn − p‖, λn = (1 − k)αn and σn = M
(
2αnδn+2βnτn+2en

1−2αnk−2βnk

)
. Using Lemma 1.2, we have

‖xn − p‖ −→ 0 as n→∞. The proof of Theorem 2.1 is completed. �

Corollary 2.2 Let E be a real Banach space, D a nonempty closed and convex subset of E. Let T1, T2, T3
be self maps of D with T1(D) bounded such that F (T1) ∩ F (T2) ∩ F (T3) 6= ∅ and T1, T2 and T3 uniformly
continuous. Suppose T1, T2, T3 are strongly pseudocontractive mappings. For x0, u0, v0, w0 ∈ D, the three
step iteration with errors {xn} defined as follows

xn+1 = anxn + bnT1yn + cnun
yn = a′nxn + b′nT2zn + c′nvn
zn = a′′nxn + b′′nT3xn + c′′nwn n ≥ 0,

(2.10)



G. A. Okeke, J. O. Olaleru, J. Nonlinear Sci. Appl. 7 (2014), 180–187 186

where {un}, {vn} and {wn} are arbitrary bounded sequences in D. {an}, {bn}, {cn}, {a′n}, {b′n}, {c′n}, {a′′n},
{b′′n} and {c′′n} are real sequences in [0, 1] satisfying the following conditions:

(i) an + bn + cn = a′n + b′n + c′n = a′′n + b′′n + c′′n = 1
(ii) bn, b

′
n, cn, c

′
n −→ 0 as n→∞.

(iii)
∑∞

n=1 bn =∞
(iv) limn→∞

cn
bn

= 0,
converges strongly to the unique common fixed point of T1, T2 and T3.

Remark 2.3 Corollary 2.2 is Theorem 2.1 of Mogbademu and Olaleru [11]. Observe that if βn = bn ≡ 0
for all n = 0, 1, 2, · · · in Theorem 2.1, then we obtain Theorem 2.1 of [11]. Similary, if βn = en = bn = e′n =
e′′n ≡ 0 for all n = 0, 1, 2, · · · in Theorem 2.1, then we obtain Theorem 2.1 of Xue and Fan [25]. Hence,
Theorem 2.1 is an improvement and a generalization of Mogbademu and Olaleru [11], Xue and Fan [25]
which in turn is a correction of Rafiq [20].

Theorem 2.4 Let E be a real Banach space, T1, T2, T3 : E → E be uniformly continuous and strongly
accretive operators with R(I −T1) bounded, where I is the identity mapping on E. Let p denote the unique
common solution to the equation Tix = f, (i = 1, 2, 3). For a given f ∈ E, define the operator Hi : E → E
by Hix = f + x− Tix, (i = 1, 2, 3). For any x0 ∈ E, the sequence {xn}∞n=0 is defined by

xn+1 = (1− αn − βn − en)xn + αnH1yn + βnH1zn + enun, n ≥ 0,
yn = (1− an − bn − e′n)xn + anH2zn + bnH2xn + e′nvn,
zn = (1− cn − e′′n)xn + cnH3xn + e′′nwn,

(2.11)

where {an}∞n=0, {bn}∞n=0, {cn}∞n=0, {αn}∞n=0, {βn}∞n=0, {en}∞n=0, {e′n}∞n=0, {e′′n}∞n=0 are real sequences in [0, 1]
satisfying the conditions: an, bn, e

′
n, αn, βn, en −→ 0 as n→∞, αn+βn+en < 1, an+bn+e′n < 1, cn+e′′n < 1,∑∞

n=0 αn = ∞ and {un}∞n=0, {vn}∞n=0, {wn}∞n=0 are bounded sequences in E. Then the sequence {xn}∞n=0

converges strongly to the unique common solution to Tix = f (i = 1, 2, 3).

Proof. Clearly, if p is the unique common solution to the equation Tix = f (i = 1, 2, 3), it follows that p
is the unique common fixed point of H1, H2 and H3. Using the fact that T1, T2 and T3 are all srtongly ac-
cretive operators, then H1, H2 and H3 are all strongly pseudocontractive with constant k = max{k1, k2, k3}
where k1, k2, k3 ∈ (0, 1) are strongly pseudocontractive constants for H1, H2 and H3 respectively. Since
Ti (i = 1, 2, 3) is uniformly continuous with R(I−T1) bounded, this implies that Hi (i = 1, 2, 3) is uniformly
continuous with R(H1) bounded. Hence, Theorem 2.4 follows from Theorem 2.1. �

Remark 2.5 Theorem 2.4 improves and extends Theorem 2.4 of Mogbademu and Olaleru [11] and Theorem
2.2 of Xue and Fan [25] which in turn is a correction of Rafiq [20].

Example 2.6 Let E = (−∞,+∞) with the usual norm and let D = [0,+∞). We define T1 : D → D
by T1x := x

2(1+x) for each x ∈ D. Hence, F (T1) = {0}, R(T1) = [0, 12) and T1 is a uniformly continuous and

strongly pseudocontractive mapping. Define T2 : D → D by T2x := x
4 for all x ∈ D. Hence, F (T2) = {0} and

T2 is a uniformly continuous and strongly pseudocontractive mapping. Define T3 : D → D by T3x := sin4 x
4

for each x ∈ D. Then F (T3) = {0} and T3 is a uniformly continuous and strongly pseudocontractive mapping.
Set αn = 1

n+1 , βn = 1
(n+1)+(n+1)2

, en = 1
(n+1)2

, an = 1

4(n+1)
1
2
, bn = 1

2(n+1)2+(n+1)
, e′n = 1

(n+1)+(n+1)2+(n+1)3
,

cn = 1

(n+1)
1
2
, e′′n = 1

(n+1)
1
2+(n+1)

1
3
, for all n ≥ 0. Clearly, F (T1) ∩ F (T2) ∩ F (T3) = {0} = p 6= ∅. For an

arbitrary x0 ∈ D, the sequence {xn}∞n=0 ⊂ D defined by (1.11) converges strongly to the common fixed
point of T1, T2 and T3 which is {0}, satisfying Theorem 2.1. This means that Theorem 2.1 is applicable.
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