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ABSTRACT: In focused studies designed to follow up associations detected in a genome-wide association study (GWAS),
investigators can proceed to fine-map a genomic region by targeted sequencing or dense genotyping of all variants in the region,
aiming to identify a functional sequence variant. For the analysis of a quantitative trait, we consider a Bayesian approach
to fine-mapping study design that incorporates stratification according to a promising GWAS tag SNP in the same region.
Improved cost-efficiency can be achieved when the fine-mapping phase incorporates a two-stage design, with identification of
a smaller set of more promising variants in a subsample taken in stage 1, followed by their evaluation in an independent stage
2 subsample. To avoid the potential negative impact of genetic model misspecification on inference we incorporate genetic
model selection based on posterior probabilities for each competing model. Our simulation study shows that, compared to
simple random sampling that ignores genetic information from GWAS, tag-SNP-based stratified sample allocation methods
reduce the number of variants continuing to stage 2 and are more likely to promote the functional sequence variant into
confirmation studies.
Genet Epidemiol 38:599–609, 2014. © 2014 Wiley Periodicals, Inc.
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Introduction

When large samples have been recruited for genome-wide
association study (GWAS) but whole genome sequencing is
still not a viable option for fine-mapping despite the decreas-
ing cost of next-generation sequencing (NGS) [Hedges et al.,
2011], targeted sequencing or dense genotyping of all variants
in a candidate region is an attractive alternative [Almomani
et al., 2011]. For example, the Wellcome Trust Case Con-
trol Consortium (WTCCC) investigated regions identified
in GWASs for three diseases by dense genotyping of variants
across these regions, and defined, using Bayes factors, credible
sets of variants that were likely to contain the causal disease-
associated variants [Wellcome Trust Case Control Consor-
tium et al., 2012]. Additional savings can be gained when the
fine-mapping phase incorporates a two-stage design, analo-
gous to that previously developed in the GWAS setting [e.g.,
Skol et al., 2007; Thomas et al., 2009]. In stage 1, a subset of
the original GWAS subjects is selected and densely genotyped,
examining all variants in the target region using expensive
regional sequencing technology. In stage 2, selected variants
identified in stage 1 are typed in the remaining subjects using
cost-effective genotyping technologies. Subsequently, asso-
ciation of these variants with the quantitative trait can be
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evaluated using the combined data from both stages. Fig-
ure 1 illustrates a two-stage fine-mapping design based on an
existing GWAS sample.

The purpose of a fine-mapping study for a complex quan-
titative trait is to identify a few variants, if not a single one,
that are potentially responsible for the variation in the trait,
estimate genetic effect sizes, and characterize genetic associa-
tion at the gene level. The information provided by GWAS tag
SNPs can be useful in the selection of subjects for sequencing
[Chen et al., 2012; Schaid et al., 2013]. As opposed to a sim-
ple random-sampling (SRS) procedure, a good sample-size
allocation in a properly stratified sample (involving under-
or oversampling of strata) may improve efficiency of effect
size estimation at a functional sequence variant. One ap-
proach stratifies the GWAS sample according to the three tag
SNP genotype categories: common homozygote, heterozy-
gote, and rare homozygote. For a quantitative trait, Chen
et al. [2012] found that estimation efficiency can be gained
when the frequency of sampling the homozygote strata is
higher than one would expect under SRS and also when the
frequency of samples from the heterozygote stratum is lower
than under SRS, provided that the additive genetic model
is correctly specified and the tag-seq linkage disequilibrium
(LD) is reasonably high, for example, above 0.80. In a case-
control setting, Schaid et al. [2013] showed that stratified
sampling based on both tag genotypes and case-control sta-
tus is not likely to have lower power than stratified sampling
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Figure 1. Illustration of a two-phase two-stage design, with the GWAS phase examining 1�3 millions of tag SNPs in a total of N subjects and
the fine-mapping phase focusing on m SNPs within a specified region identified by GWAS. The rows of the matrix correspond to N individuals
stratified by the GWAS tag SNP genotype (e.g., N = 5,000, with expected strata sizes of NAA = 2450, NAa = 2100, Naa = 450 for a tag SNP with
MAF = 0.30), and the columns correspond to m sequenced SNPs ordered by chromosome position. The fine-mapping phase consists of two-stages:
in Stage 1, n1 individuals are sampled for sequencing of all variants in a region surrounding the tag SNP (e.g., n1 = 1,000, with random sampling of
an equal number of individuals from each of the three strata: nAA = 334, nAa = 333, naa, = 333 corresponding roughly to sampling fractions of 1/8, 1/4,
and 3/4, respectively). A subset of m2 promising sequence SNPs is identified (e.g., m2 equal to 30% of the m variants); the selected SNPs are not
necessarily contiguous, although their distribution within the region will depend strongly on the local LD structure. In Stage 2, the m2 variants are
genotyped in the N – n1 remaining subjects.

based only on case-control status, and can sometimes have
substantially greater power. Both these studies considered
analysis under an additive or log-additive model for a func-
tional sequence variant, an assumption that may be violated
in practice.

Genetic model specification in genetic analysis is a very
long-standing problem [for discussion see Joo et al., 2010;
Stephens and Balding, 2009; Strauch et al., 2003; Vukcevic
et al., 2011]. In our context, model misspecification may
have a negative impact on the choice of variants for stage 2.
Although the additive model has been widely used in the
discovery stage for GWASs of many complex traits and dis-
eases, genetic effect size estimates at the sequence variant are
biased when the underlying genetic model is nonadditive.
For a nonfunctional sequence variant, the impact of model
misspecification depends on LD with the functional variant.
Furthermore, the correct genetic model for the sequence vari-
ant may be difficult to identify when few heterozygotes at the
sequence variant are observed. Several authors have explored
the nature of the relationship between a GWAS tag SNP, used
to identify the region of interest, and a functional sequence
variant within the region, examining the impact of the LD
correlation on the association estimate, the ability to iden-
tify a genetic model, and the accuracy of localization [Faye
et al., 2013; Spencer et al., 2011; Vukcevic et al., 2011]. Char-

acterizing the genetic model, i.e., the mode of inheritance,
for a putative functional variant, even approximately, is of
substantial interest in this fine-mapping process, and may be
informative for ongoing study design.

In this article, we consider a Bayesian approach for regional
fine-mapping with selection of a credible set of variants simi-
lar to that of Wellcome Trust Case Control Consortium et al.
[2012], but here we incorporate a two-stage sampling pro-
cedure in the fine-mapping phase. The Bayesian approach
enables comparison among variants and the identification
of a credible set that is analogous to, but more directly inter-
pretable than, a confidence interval in a frequentist approach.
By comparisons among genetic models using the stage 1 sam-
ple, as well as among variants, we aim primarily to improve
knowledge about the position of the functional sequence vari-
ant and secondarily, to learn about the genetic model. Selected
potentially functional variants are then evaluated in stage 2 by
genotyping the remaining samples using a more cost-effective
technology. We focus on features associated with the stage 1
design and analysis, and the value of sampling and genetic
model information, including reduction in the size of the
credible set, genetic model identification, as well as the prob-
ability of selecting a function sequence variant for stage 2.

The rest of this report is organized as follows. In the fol-
lowing section, we propose a Bayesian method for two-stage
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stratified design and the selection of a credible set of vari-
ants for confirmation. To demonstrate how one can imple-
ment the proposed method in practice, we simulate data
from 1000 Genomes Project and evaluate three sample alloca-
tion schemes under various settings, including cost-efficiency
considerations. We conclude with discussion.

Methods

Two-Stage Stratified Design

Consider a fine-mapping study of a complex quantitative
trait denoted by the random variable Y. Let G be the genotype
of a tag SNP, with major and minor alleles A and a, that has
drawn attention to a region potentially harboring a functional
sequence variant. Each of the individuals in the GWAS sample
will yield a pair of observed values (G i, Yi), i = 1, . . . , N. We
define three strata in the GWAS sample (Fig. 1) according to
the three categories of the tag SNP genotype, i.e., common
and rare homozygote and heterozygote, within which we will
select individuals into a stage 1 fine-mapping sample. Let
n1 and n2 be the number of individuals in the stage 1 and
stage 2 samples, respectively, N = n1 + n2. Ideally, the stage 1
sample proportion n1/N should be chosen to maximize the
ability to correctly select the functional variant for typing in
stage 2, subject to financial constraints on the genotyping
costs. Practically, the choice of n1is dictated by more modest
goals, e.g., financial constraints and/or the ability to reduce
the scope of the fine-mapping in stage 2 to a feasible number
of variants that includes the functional variant with high
probability. For individuals selected into the stage 1 sample,
we genotype all sequence variants found in the fine mapping
region. Let YS1 and X S1 denote the response and sequence
genotype data in the stage 1 sample. We assume that among
all sequence variants examined in the fine-mapping region
there is at least one functional sequence variant.

At stage 1 sampling, a good sample allocation is expected
to maximize the evidence for the functional sequence variant
and minimize the number of variants selected for evaluation
in subsequent stages. In some cases, the region may contain
a large number of variants that are in high LD with the un-
known functional sequence variant such that they account
for a large portion of the credible set (we call them hitchhiker
variants). We are interested in three representative sampling
schemes. The first scheme uses SRS, which ignores informa-
tion from the tag SNPs (or imputed SNPs) provided in the
GWAS phase. The second scheme samples an equal number of
individuals from each of the three strata defined by the GWAS
tag genotypes (equal strata [ES]). The third uses a stratified
sampling strategy in which the relative number of samples
from the rare homozygote stratum is larger than would be
expected under SRS (HO). Similarly, the relative number of
samples from the heterozygote stratum is smaller than ex-
pected under an SRS scheme. The third sampling scheme is
expected to lead to better efficiency when the genetic model
for the functional variant is additive and the tag-seq LD cor-
relation is high, (e.g., r2 > 0.8). On the other hand, if the
genetic model is not additive and/or the tag-seq LD is low,

then increasing the relative frequency of samples from the
homozygous strata does not necessarily lead to improved
efficiency, because the sampling scheme becomes more like
SRS.

Model Formulation for a Quantitative Trait

We assume there is a functional sequence variant with a
minor allele frequency (MAF) of 1% or greater. Let X be
a variable that counts the number of copies of the minor
allele at this functional variant for an individual. Without loss
of generality we consider a simple linear regression model,
but in practice a set of relevant nongenetic covariates can be
specified and included in the regression models. Although the
additive model is frequently used in GWAS for discovering
association at tag SNPs, the underlying genetic model for
a functional variant close to a promising tag SNP may not
be truly additive. Following Spencer et al. [2011], a general
three-parameter model is

Y = β0 + β1X + γ1X =1 + ε, (1)

which encompasses additive, dominant, and recessive mod-
els. Here β1 measures the increase or decrease in the value of
the trait with each additional copy of the minor allele, 1X =1

is an indicator function that takes value 1 for heterozygotes
and 0 for the two homozygotes, the dominance parameter γ

measures deviation from additivity, and ε follows a normal
distribution with mean 0 and variance σ2 independently
across individuals. Each of the genetic models can be re-
covered by setting the dominance parameter in (1) to a spe-
cific value: γ = 0 gives the additive model, and γ = β1 and
γ = –β1 correspond to the dominant and recessive mod-
els, respectively. Under additive, dominant, and recessive
models, the conditional mean E (Y|X ) of the trait value is
β0 + β1X , β0 + β1(X + 1X =1), and β0 + β1(X – 1X =1), respec-
tively. As these three models involve the same number of
regression parameters, we focus on inference about the as-
sociation parameter β1, simplifying the model comparison
procedure described in the following subsections.

Bayesian Inference

In this section, we consider Bayesian inference with a stage 1
sample of n1 subjects. Assume that a total of L variants in
the region are typed using targeted sequencing technology.
We analyze the stage 1 sample phenotype and sequence
genotype data (YS1, X S1) to narrow down the set of sequence
variants that are potentially functional, and to identify the
underlying genetic model. To develop the methods, we first
specify priors for genetic models and regression parameters.
Then, for a functional sequence variant we derive the model-
specific posterior for the regression parameters and compare
genetic models using Bayes factors. We specify selection of
the underlying genetic model for the sequence variant by
calculating the posterior probability for each of the three
genetic models. Finally, we analyze all sequence variants in
the region, and by making comparisons among variants,

Genetic Epidemiology, Vol. 38, No. 7, 599–609, 2014 601



we compute the posterior probability of each variant being
functional and select variants for the 95% credible set.

Prior Specification

Let θ = (β, σ2)T be a vector of the parameters in the
quantitative trait model, where β = (β0, β1)T are regres-
sion coefficients. Let M1, M2, and M3 denote the addi-
tive, dominant, and recessive genetic models, respectively.
Let p (Mj ) be the prior probability for Mj and p (θ |Mj )
be the prior distribution of θ under model Mj , j = 1, 2, 3.
In the absence of a priori information on the genetic
model, we assume that p (Mj ) = 1/3 and p (θ |Mj ) = p (θ),
i.e., the prior for θ is independent of the underlying genetic
model. We specify a conjugate prior p (θ) given by p (β, σ2) =

p (β | σ2)p (σ2), where p (β | σ2) = Normal(b0, σ
2B 0) and

p (σ2) = Inv – G amma(ν0/2, σ2
0ν0/2), for some ν0 > 2. That

is, the prior joint density is normal-inverse-gamma
NIG (b0, B 0, ν0/2, σ2

0ν0/2). Here σ2
0 is a prior guess at the

variance and ν0 measures the strength of belief in that guess.
The matrix B 0 is assumed diagonal. In cases of no strong a
priori belief concerning the magnitude of the genetic effect,
we specify the prior to be reasonably flat over the range of
plausible effect values. Such vague prior distributions do not
favor any particular value, letting the posterior depend largely
on the data alone.

Genetic Model Selection for a Sequence Variant

In this section we temporarily suppress the index for vari-
ants and present the model selection method for the func-
tional variant; but the same analysis is applied to each variant
in the region. The posterior for θ under genetic model Mj is

p
(
θ |YS1, X S1, Mj

)
= p

(
YS1|X S1, θ, Mj

)
p

(
θ |X S1, Mj

)
/c j ,

where c j = p (YS1|X S1, Mj ) = ∫ p (YS1|X S1, θ, Mj )p (θ |X S1,

Mj )dθ is the normalizing constant of the posterior distribu-
tion. The posterior mean and variance of θ are E (θ |YS1, X S1,

Mj ) = ∫ θp (θ |YS1, X S1, Mj )dθ and var(θ |YS1, X S1, Mj ) =

∫{θ – E (θ |YS1, X S1, Mj )} {θ – E (θ |YS1, X S1, Mj )}T p (θ |YS1,

X S1, Mj )dθ, respectively.
The posterior distribution of θ can be derived analyti-

cally when the prior distribution is specified as normal-
inverse-gamma. This is desirable as it allows for fast pro-
cessing of the data and, because it does not rely on
Monte Carlo methods for analyzing the posterior dis-
tribution, it does not require additional computational
effort. For genetic model Mj , let X S1,j be the correspond-
ing design matrix. Define B S1,j = [B –1

0 + {X S1,j }TX S1,j ]–1,
and βS1,j = B S1,j [B –1

0 b0 + {X S1,j }TYS1]. Then the poste-
rior for θ is also a normal-inverse-gamma distribution
NIG (βS1,j , B S1,j , νS1/2, σ2

S1,j νS1/2), where νS1 = ν0 + n1 does

not depend on the genetic model, and σ2
S1,j = [σ2

0ν0 + YT
S1YS1 +

bT
0 B –1

0 b0 – βT
S1,j {B S1,j }–1βS1,j ]/νS1. The posterior marginal

densities of β and σ2 as well as the marginal likelihood are
analytically tractable. Specifically, the posterior marginal for
β is a multivariate t-distribution with νS1 degrees of freedom.

It can be shown that the posterior marginal mean of β is βS1,j ,
which is essentially a weighted average of the prior guess b0

and the maximum-likelihood (ML) estimate. The posterior
marginal variance of β is νS1/[{νS1 – 2}σ2

S1,j B S1,j ]. The poste-
rior marginal for σ2 is inverse gamma with parameters νS1/2
and σ2

S1,j νS1/2.
We note that conditional on second-stage data, the

Bayesian analysis is independent of the sampling weights es-
tablished in stage 1. This follows because the stratifying vari-
able from the GWAS (tag SNP), although correlated with the
target sequence variant, is conditionally independent of the
response given the information on the functional sequence
variant. In online Supplementary Appendix A we outline a
proof that the inclusion probability and the distribution of
the sequence genotype do not enter into the calculation of
the posterior for θ.

Typically, Bayesian selection of a genetic model for a se-
quence variant involves computation of the posterior weight
of each model. Assuming all three sequence genotype cate-
gories are observed, we first compare the three genetic mod-
els using the Bayes factor [e.g., Stephens and Balding, 2009;
Wakefield, 2009]. For instance, the Bayes factor comparing
Mj to Mj ′, with Mj ′ being the reference genetic model, is

BF jj ′ = p
(
YS1|X S1, Mj

)
p
(
Mj

)
/
{

p
(
YS1|X S1, Mj ′

)
p

(
Mj ′

)}
.

In the case of each model being equally likely a priori, i.e.,
p (Mj ′ ) = p (Mj ), this is equivalent to computing the ratio of
the normalizing constants for the posteriors obtained un-
der Mj and Mj ′ . In general, 3 ≤ BF jj ′ ≤ 10 (or equivalently
1/10 ≤ BF j ′j ≤ 1/3) suggests substantial evidence that the
data are in favor of genetic model Mj over Mj ′ , whereas
BF jj ′ ≥ 10 (or equivalently BF j ′j ≤ 1/10) suggests strong
evidence in favor of Mj over Mj ′ . The conjugate prior specifi-
cation makes the calculation of Bayes factors straightforward.

The posterior probabilities, or posterior weights, of ge-
netic models are defined by wj = p (Mj |YS1, X S1), j = 1, 2, 3,

which summarize evidence for the underlying genetic mech-
anism at the seq variant after incorporating the observed
data and prior belief. These weights can be calculated as
wj = 1/{1 +

∑
j ′� =j BF j ′j }. The genetic model with the largest

posterior weight is deemed to be the underlying model. This is
equivalent to selection based on normalizing constants such
that the best genetic model corresponds to the maximum
normalizing constant cmax = max{c j }3

j =1. For variants where
only two genotype categories are observed, we assume an ad-
ditive genetic model and set cmax = c1. Using the Bayes factor
criteria, we would conclude that there is strong evidence that
the effect at the sequence variant follows genetic model Mj

whenever wj > 83.3 %, j = 1, 2, 3.

Selection of the 95% Credible Set

Having first determined a genetic model for each sequence
variant, we can compare any two variants in the region by
computing their associated Bayesian factor. But to compare
all sequence variants, we use the normalizing constant cor-
responding to the selected genetic model for each variant
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and compute the posterior probability of each variant being
functional. Following the approach of Wellcome Trust Case
Control Consortium et al. [2012] for case-control genetic
studies, we define a credible set of variants that is 95% likely
to contain the functional variant for the quantitative trait,
using the posterior probabilities computed below. Our def-
inition of the credible set is similar to Wellcome Trust Case
Control Consortium et al. [2012] except that we allow for
differences in genetic models among the variants.

Assuming that the variant being examined is a functional
variant, we compute p k = P (variant k is functional|YS1,

{X l
S1}L

l=1), the posterior weight of variant k being functional
given the quantitative trait and the genotype data of the L
variants in the stage 1 sample, where X l

S1 is the genotype data
of variant l. Specifically, the posterior weight of variant k being
functional is given by p k = ck

max/
∑L

l=1 c l
max. We sort these pos-

terior weights in descending order p (1) ≥ p (2) ≥ . . . ≥ p (L ).
Then, the 95% credible set is defined such that the variants
in the set have posterior weights p (1), . . . , p (K ), where K is
the minimum integer that satisfies

∑K
k=1 p (k) ≥ 0.95. With

a fixed number of subjects in the stage 1 sample, a smaller
value of K implies that the sampling design performs better
in narrowing down the credible set that is likely to contain
the functional variant. In particular, a good design amounts
to (1) higher probability that the correct genetic model will
be identified for the functional seq variant, (2) higher prob-
ability that the functional seq variant will be selected into
the credible set, and (3) fewer seq variants assigned to the
credible set (i.e., smaller set size).

Evaluation of Stratified Sampling Designs

Design of Simulation Studies

To demonstrate application of the Bayesian two-stage fine-
mapping design, we conducted simulation studies using data
derived from known population haplotypes. We evaluated
and compared two stratified sampling designs to a nonstrat-
ified sampling strategy and examined the impact of various
factors on the performance of the designs. We considered the
following factors: stage 1 sample size, MAFs of the tag SNP
and the functional sequence variant, tag-seq LD correlation,
and the noise-to-effect ratio (σ/β1).

Using the 1000 Genomes Project Phase 1 dataset of 381
European subjects, we simulated the genotypes of 201 com-
mon variants (MAF � 0.05) within a 100 kb genomic region
surrounding the APOE gene, i.e., 45,400–45,500 kb on chro-
mosome 19, for a total of 5,000 subjects. The GWAS sample
size was selected in such a way that when the noise-to-effect
value was 4.9 and seq MAF = 0.2, the GWAS tag SNP geno-
type correlated with the functional sequence genotype in the
region would have identified association with the quantita-
tive trait that reached GWAS significance using a frequentist
approach (see Supplementary Table S1 for required sample
sizes in other settings). We selected rs5117 to be the func-
tional variant, not typed in the GWAS phase, and rs75627662
to be the tag SNP, which was typed in GWAS and drew atten-

tion to the region. The observed MAFs were 0.20 and 0.18 for
rs5117 and rs75627662, respectively. These two variants were
selected to be the tag SNP and functional variant such that
the tag-seq LD correlation was r2 = 0.80 (r = 0.894), based
on the suggestion of Vukcevic et al. [2011] that the value of
r would be high when the tag SNP was identified in a GWAS
of the same sample, and larger than if the tag SNP had been
identified in a previous independent study. In addition to the
tag rs75627662, another two nonfunctional common vari-
ants in the same region were found to be in high LD with the
functional variant. These two “hitchhiker” variants, rs483028
and rs438811, were in perfect LD with each other and had
a correlation r2 = 0.94 (r = 0.97) with the functional variant
(Fig. 2) and a correlation of r2 = 0.87 (r = 0.93) with the tag
SNP.

Figure 2. Common variants in the 100 kb region surrounding the
APOE gene (Source: 1000 Genomes Project Phase 1). In simulation C1,
rs75627662 (red diamond) and rs5117 (blue dot) were chosen to be the
tag and functional variants, respectively.
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Table 1. Summary of simulation study scenarios with a common variant set (m = 201) or with a low-frequency and common variant set
(m = 332)

Simulation scenario Functional variant MAF GWAS tag SNP MAF
Tag-functional
correlation (r)

Number of
hitchhikers

(r > 0.8) Size (% of m) Size (m2) P (select) P (rank)

Common variant set (m = 201) with a single functional variant
C1 0.200 0.180 0.894 2 35% 70 0.95 0.35

Low-frequency and common variant set (m = 332) with a single functional variant
L1 0.022 0.142 0.372 6 65% 216 0.94 0.01
L2 0.046 0.055 0.880 9 58% 193 0.95 0.15
L3 0.087 0.099 0.936 5 58% 193 0.92 0.17
L4 0.142 0.120 0.905 3 45% 149 0.96 0.18

In scenarios C1 and L1–L4, each with a single functional variant, model parameters were specified by β0 = 5, β1 = 0.25, and σ2 = 0.1, 0.5, 1.5. (See Supplementary Table S3 for
the specific SNP variant “rs numbers” in the APOE gene). The last four columns compare performance of the fine-mapping method under selected values: n1 = 500, σ/β1 = 4.9,
additive (ADD) genetic model, and equal strata sampling (ES). Size is the number m2 of sequence SNPs in the 95% credible set, expressed as a percentage of m or as a count.
P (select) is the probability that the functional variant is selected into the credible set. P (rank) is the probability that the functional variant is top-ranked in the credible set.
(A complete set of plots across a range of values is provided as Supplementary information).

We designed additional simulations to investigate the im-
pact of the functional variant MAF and the number of hitch-
hikers on the efficiency of each sampling design. Table 1 pro-
vides details on four additional simulation scenarios, L1–L4.
These scenarios feature low-frequency and common variant
sets (m = 332) and between three and nine hitchhikers. Sup-
plementary Table S3 specifies the MAFs for the functional
SNP and the tag SNP for each scenario. For instance, in
simulation L1, the tag SNP is common (rs429358 with MAF
0.142) and the functional variant is low frequency (rs1081105
with MAF 0.022). A total of six hitchhikers have correlation
with the functional variant greater than 0.8.

We generated quantitative trait data following (1) under
additive, dominant, and recessive genetic models. For each
genetic model, the regression coefficients were specified by
β0 = 5, and β1 = 0.25, with three values of the normal resid-
ual variance σ2 = 0.1, 0.5, 1.5, corresponding to a noise-to-
effect ratio of 1.3, 2.8, and 4.9, respectively. This specification
of noise-to-effect ratio values covers a range of sampling de-
sign efficiencies, and is equivalent to the specification of fixed
σ2 and varying β1. To investigate how the stage 1 sample size
influences the performance of the design, we varied the value
of n1 from 100 to 1000 with an increment of 100.

Three sample allocation schemes were considered: (1) SRS,
(2) equal sample size for each tag genotype category (ES), and
(3) tag homozygote increased relative frequency (HO). For
the two tag-stratified sampling schemes, however, the rare
homozygote tag stratum may contain fewer subjects than
the allocated sample size when n1 is large. In such cases, we
first sampled all subjects in the rare homozygote stratum.
Then, for the ES scheme we allocated the rest of the rare
homozygote sample size equally to the common homozygote
and heterozygote strata, and for the HO scheme, we allocated
the rest of the rare homozygote sample size to the common
homozygote only. An illustration of sample sizes allocated to
each stratum under the three sampling schemes is provided
by Supplementary Table S2 for a tag SNP MAF of 0.2.

Because diffuse priors are used when one has little prior
knowledge of the genetic association, we specified equal ge-
netic model prior probabilities, i.e., p (Mj ) = 1/3, j = 1, 2, 3.

For the regression parameters, we chose a relatively flat con-
jugate prior NIG (b0, B 0, ν0/2, σ2

0ν0/2), where the hyperpa-
rameters were specified by b0 = (0, 0)T , B 0 = diag(106, 106),
σ2

0 = 0.5, and ν0 = 10.
Based on 1000 simulations, we evaluated the performance

of the three sample size allocation schemes according to the
characteristics of the credible set obtained in stage 1. Al-
though a complete two-stage study implementation would
typically incorporate joint analysis of stage 1 and stage 2
data, we did not include stage 2 data collection and joint
analysis as part of our simulation studies.

Simulation Study Results

Under the common variant scenario C1, when σ/β1 = 4.9
and the stage 1 sample size was small, e.g., n1 = 100, the per-
centage of variants selected into the credible set appeared to
be similar (at around 70% of 201) across all three sampling
schemes (Fig. 3A). The size of the credible set decreased as
n1 increased, particularly for ES and HO sampling schemes
when the underlying genetic model was additive or recessive,
with HO performing slightly better than ES. When n1 = 600,
for instance, the percentage size under an additive model was
18% and 24% for HO and ES, respectively, but was 55% for
SRS. This suggests that informative tag-stratified sampling
can dramatically reduce the number of credible set variants,
which means reduced genotyping cost in stage 2. The three
sampling schemes had similar performance for the dominant
genetic model. As expected, the size of the credible set de-
creased as the noise-to-signal ratio decreased for each given
stage 1 sample size and underlying genetic model (Supple-
mentary Figs. S1.1 and S1.2). With a stage 1 sample of size
n1 = 200 and a σ/β1 value of 1.3, for instance, ES and HO
schemes resulted in credible sets as small as 1% of the total
variants (2/201) in the region. Similar findings were obtained
for the scenarios with the low-frequency variant set (< 5%)
and various LD structures (Table 1), with the ES scheme
nearly always performing better than SRS in reducing the
size of the credible set, and often better than HO (Fig. 3B,
Supplementary Figs. S2.2.1–3, S2.3.1–3, and S2.4.1–3).
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Figure 3. The size of the selected 95% credible variant set under three sampling schemes: simple random sampling (SRS), equal sample size for
each tag genotype category (ES), and tag homozygote oversampling (HO). From left to right: Data were simulated under additive, dominant, and
recessive genetic models, respectively. Results are based on 1000 simulations. (A) Upper panels are common variant scenario C1 (m = 201) with
σ/β1 = 4.9. (B) Lower panels are low-frequency variant scenario L1 (m = 332) with σ/β1 = 2.8.

When the stage 1 sample size was small, e.g., n1 = 100, the
probability of selecting the functional variant into the credible
set under the SRS scheme was higher than that under ES and
HO (Fig. 4A, see also Supplementary Fig. S2.2.6). For modest
values of n1, SRS performed similarly to ES and HO under
additive and dominant models but underperformed under
a recessive model. When n1 = 1,000, the three schemes had
similar rates for successfully selecting the functional variant,
all close to 95% (Fig. 4A and B), likely because the variants
that had high correlation with the functional variant could
be well separated from those that had low correlation. As
the noise-to-signal ratio decreased, the rate was above 95%
in general and close to 100% for a large stage 1 sample size
(Supplementary Figs. S1.3 and S1.4).

For ranking the functional variant as the top variant, the
ES and HO schemes performed better than SRS under the
additive and recessive models for the common variant set
(Fig. 5A). However, the probability of ranking rs5117 as the
top variant was below 5% for all three schemes when n1 = 100
and σ/β1 = 4.9, regardless of the underlying genetic model.
When n1 increased to 1,000 (of a GWAS sample of 5,000),
this probability increased to about 50% for ES and HO and
40% for SRS under the additive model, and increased to 60%

for ES and HO and 20% for SRS under the recessive model.
The low probability here can be explained by the existence
of hitchhiker variants that compete with the functional vari-
ant [Faye et al., 2013]. The SRS and ES schemes performed
slightly better than HO under the dominant model, with the
probability of ranking rs5117 as the top being 75% for SRS
and ES and 60% for HO, for n1 = 100. As the noise-to-signal
ratio decreased, the probability increased for all sampling
schemes and all underlying genetic models (Supplementary
Figs. S1.5 and S1.6). For the low-frequency variant set, the
probability of the functional SNP being ranked first depends
on the MAF of the functional variants, being very low for
MAF = 0.022 under all three models (Fig. 5B). However, for
higher MAF (scenarios L2–L4, Supplementary Figs. S2.2–
2.4), these probabilities were generally moderate to high with
ES sampling often performing best.

Finally, to illustrate the value of genetic model selection
in the determination of the 95% credible set we conducted
an additional simulation that compared analyses with and
without genetic model selection. When one is not interested
in selecting the genetic model (without model selection), γ

is set to 0, –β1 or +β1 for additive, dominant, and recessive
models, respectively (according to (1)). Otherwise, when the
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Figure 4. Empirical probability of selecting the functional variant into the 95% credible set under three sampling schemes: simple random
sampling (SRS), equal sample size for each tag genotype category (ES), and tag homozygote oversampling (HO). From left to right: Data were
simulated under additive, dominant, and recessive genetic models, respectively. Results are based on 1000 simulations. (A) Upper panels are
common variant scenario C1 (m = 201) with σ/β1 = 4.9. (B) Lower panels are low-frequency variant scenario L1 (m = 332) with σ/β1 = 2.8.

genetic model is uncertain (with model selection), we com-
pute parameter estimates under the model most favored by
the data in terms of its posterior distribution. The parameters
were specified by β0 = 5 and σ/β1 = 4.9, with a stage 1 sam-
ple size of n1 = 600. For all three sample allocation schemes,
including genetic model selection consistently reduced the
size of the credible set compared to analysis without model
selection, particularly for cases in which the additivity as-
sumption was incorrect (Table 2). When the true underlying
model was dominant and ES allocation was used, for exam-
ple, the percentage size of the credible set was 22.1% assuming
additivity but was only 11.2% with genetic model selection.
The results in Table 2 and the additional results for the sim-
ulations with low-frequency variants (Supplementary Figs.)
show that with model selection, ES often dominates HO in
terms of the probability of including the functional variant
in the credible set and in terms of the probability of ranking
the functional variant as first. This may be explained largely
by the better ability of ES to identify the underlying genetic
model (Supplementary Figs. S1.7–1.9). The reduced size of

the credible set means reduced cost for typing the selected
variants in stage 2.

The two-stage approach proposed here reveals a subtle
trade-off between the costs involved in each of the two stages
of the analysis. Our simulations show that as we increase the
stage 1 sample size we reduce the size of the credible set and
thus reduce the costs involved in the second stage. In the next
section we assess this trade-off from a cost-efficiency (CE)
perspective.

CE Considerations

Assuming the sequencing cost is $c1 per individual, ob-
tained by targeted sequencing for example, the stage 1 cost is
n1 × c1. In stage 2 of the two-stage design, custom genotyping
is conducted for m2 markers at a cost of $c2 per individual per
marker, and the stage 2 cost is n2 (m2 × c2). The n2 individ-
uals are those not selected for sequencing in stage 1 (n2 = N –
n1). (Although in some circumstances, it may be desirable to
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Figure 5. Empirical probability of the functional variant being ranked as the top variant in the region under three sampling schemes: simple
random sampling (SRS), equal sample size for each tag genotype category (ES), and tag homozygote oversampling (HO). From left to right: Data
were simulated under additive, dominant, and recessive genetic models, respectively. Results are based on 1000 simulations. (A) Upper panels are
common variant scenario C1 (m = 201) with σ/β1 = 4.9. (B) Lower panels are low-frequency variant scenario L1 (m = 332) with σ/β1 = 2.8.

genotype everyone, n2 = N, to confirm the sequencing or to
create a reference panel.) For example, if N = 5000, n1 = 500,
c1 = $1000, n2 = 4500, m2 = 100, and c2 = $0.50, then the total
two-stage cost is $500,000 + $225,000 = $725,000 compared
to a one-stage cost of $5 million.

For fixed values of c1 and c2, the stage 1 cost increases lin-
early in n1, whereas the stage 2 cost decreases monotonically
in n1, because the expected size of the credible set is nonin-
creasing in n1 (as seen in Fig. 3). However, the total cost can
be increasing or decreasing in n1, depending on the values of
(c1/c2) and the rate of decline in m2. In some cases, the total
cost can be minimized (see Supplementary Appendix B for
details). As n1 increases, the probability that a functional vari-
ant falls within the 95% credible set also increases (as seen in
Fig. 4), which we loosely refer to as “power.” We define CE to
be Power divided by Cost, with higher values corresponding
to higher power and/or lower cost. Other definitions, notably
the ARCE = {(variance of lnRR)/cost} of Thomas et al. [2013]
has the advantage that the numerator is not bounded above
by 1.0. Nevertheless, it is desirable to require high power in

stage 1, so that the functional variant is unlikely to be left out
of stage 2. The trends in CE are then determined largely by
trends in the total cost. In Figure 6, we calculate CE values
based on empirical estimates of the proportion of variants
retained in the credible set (m2/m) and the probability that
the functional variant is included therein, which we obtained
from the simulations for SRS and ES sampling under the ad-
ditive model (Figs. 3A and 4A). As might be expected, high
cost ratios, (c1/c2) > 2,000, favor smaller n1, and increasing
stage 2 costs reduce CE (Fig. 6). Except for the smallest stage
1 sample size (where SRS has higher power), CE is consis-
tently higher under the ES sample allocation, in accordance
with more efficient reduction in the number of variants to
be genotyped in stage 2. Under ES, CE is maximized at n1 =

500 and 600, for c2 = 1.0 and 2.0, respectively, when c1 = 1000
(Fig. 6A), and at n1 = 800 when c1 = 100. Our observation that
ES (and often HO) allocations for low-frequency variants and
other LD structures also reduce the proportion (m2/m) more
than SRS suggests that CE patterns will be similar in these
settings.
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Table 2. Comparison of sampling design performance with and
without genetic MS under the common variant simulation scenario
C1 with the three sample allocation schemes: SRS, equal sam-
ple size for each tag genotype category (ES), and tag homozygote
oversampling (HO)

ADD DOM REC

Allocation scheme No MS MS No MS MS No MS MS

Size of the credible set (%)
SRS 55.5% 52.6% 13.0% 12.1% 83.2% 68.0%
ES 29.8% 25.8% 22.1% 11.2% 38.8% 21.8%
HO 19.3% 17.9% 12.5% 9.4% 27.0% 20.2%

P (functional variant being selected into the credible set)
SRS 0.984 0.965 0.972 0.980 0.952 0.956
ES 0.986 0.970 0.980 0.970 0.986 0.974
HO 0.964 0.952 0.958 0.963 0.964 0.974

P (functional variant being ranked #1)
SRS 0.238 0.198 0.542 0.554 0.034 0.102
ES 0.396 0.390 0.396 0.580 0.380 0.610
HO 0.392 0.376 0.306 0.448 0.404 0.563

Data were generated under each of additive (ADD), dominant (DOM), and recessive
(REC) models with n1 = 600, σ/β1 = 4.9 in a simulation independent of that reported
in Figures 3 to 5. For cases without MS (no MS), the analysis assumed an additive
genetic model.
MS, model selection; SRS, simple random sampling.

Discussion

Two-stage designs for quantitative traits or complex dis-
eases that minimize cost and maximize power are of interest
as strategies to narrow down the set of variants associated
with the traits [Stanhope and Skol, 2012]. Using a Bayesian
approach we considered a two-phase two-stage design for
fine-mapping a region detected by a GWAS of a quantita-
tive trait. The two-phase approach relies on high power in
the phase I GWAS tag SNP to correctly identify a region for
phase II fine-mapping that includes at least one functional
SNP. Under the two-stage design, all variants in the region

are first examined in a subset of subjects, using an expensive
sequencing technology, and promising potentially functional
variants are selected into a 95% credible set. In stage 2 the
selected variants are then typed in the remaining subjects
using a relatively cost-effective genotyping technology. In the
absence of knowledge of the genetic model for a candidate
functional variant, additive coding can lead to loss of effi-
ciency when the additivity assumption is incorrect. In the
stage 1 analysis, we employed genetic model selection for
each candidate variant using the Bayes factor, and compared
all variants within the region to select a credible set for further
evaluation.

As opposed to random selection of individuals into the
stage 1 sample, our simulations show that a more informa-
tive sample can be obtained by stratified sample allocation,
such as sampling an equal number from each tag SNP stratum
or a proportionately larger number from the homozygote tag
SNP strata. A well-chosen sample size allocation scheme has
the potential to improve functional variant localization and
reduce the size of the 95% credible variant set for evaluation in
a subsequent stage. Various factors, including stage 1 sample
size and tag-seq correlation can influence the performance of
a two-stage fine-mapping design. Our simulations confirm
the intuition that the efficiency of the tag-stratified sampling
strategy increases with tag-seq correlation. When the true
genetic model is correctly identified, notably by Bayesian ge-
netic model selection, an informative sample size allocation
scheme can effectively reduce the posterior variance of the as-
sociation parameter. Across the various scenarios evaluated
in the simulation studies, the ES sampling strategy gener-
ally performed equivalently or better than the HO sampling
strategy, particularly with respect to decreasing the size of the
credible set.

The number of variants that will be included in a credible
set is a random variable that depends mainly on the stage

Figure 6. Trends in cost efficiency (CE) defined as Power/Cost with stage 1 sample size n1 increasing from 100 to 1,000 for the SRS (gray lines)
and ES (black lines) sample allocation schemes. The stage 2 sample size is n2 = N – n1 with N = 5,000. A total of m sequence variants are identified
in stage 1, and a proportion q = (m2/m) are genotyped in stage 2. Empirical values for q and for power used to calculate CE as a function of n1 were
obtained from the common variant simulation study under an additive model. Cost depends on c1, the stage 1 per individual sequencing cost, and
on c2, the stage 2 per individual per marker genotyping cost. For a fixed value of c1, CE decreases as c2 increases from 0.50 to 2.00.
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1 sample size and the LD structure in the region, as well as
the sampling design. This differs from the two-stage GWAS
design considered by Skol et al. [2007], where the proportion
of variants to be typed at stage 2 can be pre-specified. If there
is more than one functional variant in the fine-mapping
region, then the probability that a secondary functional vari-
ant is included in the credible set will depend on whether it
is tagged by the GWAS SNP used for stratification, and on its
effect size and MAF relative to the primary functional variant.
We suggest that a fine-mapping region be determined such
that there is a dominant tag SNP. With complete information
available on the credible set of variants, one can jointly ana-
lyze stage 1 and 2 data and update the posterior probabilities
of these variants being functional. Efficient stage 1 sampling
and analysis for identifying a credible set of variants for
stage 2, however, remain crucial in a two-stage fine-mapping
design.

In our Bayesian analysis we focused on common and low-
frequency variants for association with the trait. In practice,
a large portion of the variants discovered in a region will
be low-frequency (MAF between 0.01 and 0.05) and rare
(MAF < 0.01). For sufficiently large samples, single variant
analysis for credible set construction is feasible even for un-
common variants, but the incorporation of aggregated rare-
variant statistics into a two-stage design is likely to be of
interest, provided the pooled rare variants comprise a mean-
ingful unit of analysis. In circumstances where these aggre-
gation methods select a large number of rare variants into
the credible set, the reduction of genotyping costs in stage 2
may be too modest compared to performing dense genotyp-
ing/sequencing, undermining the original goal of a two-stage
fine-mapping design.

In addition to tag-SNP-based two-phase sampling designs,
there are other approaches to design for sequencing studies.
Trait-dependent sampling designs, for example, have been
implemented for sequencing studies of quantitative traits, in
which subjects in the two extremes of the trait distribution
are selected with the hope that minor alleles at the functional
variant are enriched in the selected sample [e.g., Lin et al.,
2013; Yilmaz and Bull, 2011]. Sequencing data, obtained on
the selected subjects, can be analyzed for association with the
quantitative trait either using methods that correctly adjust
for the sampling design, or simply using binary regression
models by treating the selected subjects as cases and controls.
Although trait-dependent sampling is more suitable for WGS
studies in which multiple regions are examined, the work of

Schaid et al. [2013] suggests it may be worthwhile to combine
trait- and SNP-based sampling.
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