Provided by CiteSeerX

Metadata, citation and similar papers at core.ac.uk

High Performance | mplementation of Planted Motif Problem using Suffix trees

Naga Shailaja Dasari Desh

Old Dominion University
ndasari@cs.odu.edu

ABSTRACT

In this paper we present a high performance
implementation of suffix tree based solution toglanted
motif problem on two different parallel architects:
NVIDIA GPU and Intel Multicore machines. An (l,d)
planted motif problem(PMP) is defined as: Given a
sequence of n DNA sequences, each of length LMind
the set of sequences(or motifs) of length | whimhehat-
least one d-neighbor in each of the n sequencese, tée
d-neighbor of a sequence is a sequence of samé¢hleng
that differs in at-most d positions. PMP is a watlidied
problem in computational biology. It is useful in
developing methods for finding transcription factor
binding sites, sequence classification and for dog
phylogenetic trees. The problem is computationally
challenging to solve, for example a (19,7) PMP $a8ed
hours on a sequential machine. Many approacheslies
planted motif problem can be found in literaturened
approach is based on use of suffix tree data strect
Though suffix tree based methods are the mosiegffic
ones for solving large planted motif problems on
sequential machines, they are quite difficult togtlalize.
We present suffix tree based parallel solutions RtvP

on NVIDIA GPU and Intel Multicore architectures tha
are efficient and scalable. The solutions are basad
suffix tree algorithm previously presented but use
extensive adaptation to individual architecturesettsure
that the implementations work efficiently and scaddl.

KEYWORDS. PMP, DNA, multicore, BitBased, parallel,
MSPELLER, gSPELLER.

1. INTRODUCTION

The planted motif problem (PMP) is a fundamentarsk
problem with applications in computational biology,
especially in locating regulatory sites, sequence
classification and building phylogenetic trees [2], [3].
The (I, d) planted motif problem can be defined as:

Old Dominion University
dranjan@cs.odu.edu

Zubair M
Olbminion University
zubair@csddu

Ranjan

“Given a set olh DNA sequences, each of lendthfind

M, the set of sequences (or motifs) of lenigtthich have
at-least onal-neighbour in each of the sequences”. Al-
neighbour is a sequence of lengtthat differs from the
motif in at mostd positions. We refer to a sequence of
lengthl as arl-mer in the rest of the paper.

Many approaches have been previously proposedite so
the planted motif problem. These approaches can be
classified into two categories, heuristic and exact
Heuristic algorithms are very popular but they ai
guaranteed to always find the correct answer.
CONSENSUS, WINNOWER, Gibbs Sampling, Random
Projections are some approaches that fall in thiegory.
Exact algorithms on the other always produce ttreecod
answer. These algorithms are also referred to as
exhaustive enumeration algorithms. SPELLER [4],
MITRA [5], PMSprune [6], Voting [7], RISOTTO [8] ar
some approaches that fall under this category. &hes
algorithms can further be classified into patteriv&h

and sample driven approaches. Pattern-driven apipesa
search all the possib]&]' I-mers to find the motifs. These
algorithms have the time complexity 63(|Z[). These
algorithms are therefore only suitable for smaliglues of

| and perform prohibitively poorer for larger valuesl.
Sample-driven approaches on the other hand enugnerat
the I-mers in the input sequences to find the motifs.
Sample-driven approaches are often limited by space
requirements.

Sagot introduced a suffix tree based algorithmsfawing
planted motif problem [4] called SPELLER. This
algorithm starts by building a generalized suffiget for
all the input sequences and uses this tree tol"sgdethe
motifs (called models in [4]). This algorithm is rye
efficient in terms of space. MITRA [5] uses a véda of
suffix tree called Mismatch trees. MITRA works by
splitting all the possible pattern space into digjo
subspaces starting with a given prefix thus bresltire
problem into sub-problems. MITRA is more efficighan
SPELLER in terms of both memory and space. SMILE [9
PSMILE [10], RISOTTO [8] are extensions to the

https://core.ac.uk/display/24066795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SPELLER algorithm, RISOTTO being the most recent and discuss the issues in parallelizing suffix tneethod

approach. It uses maximum extensibility to effitign
spell the motifs.

Voting is a hashing based approach to solve PMBudin
it is efficient compared to brute force techniquiésyas
not able to solve problems witth greater than 5 as its
running time increases exponentially with

for this architecture. We then present adaptationthe
core suffix tree method to obtain an implementatiuat is
efficient and scalable for GPU architecture. Sect®
presents experimental results. We refer to our
implementation of SPELLER on multicore and GPU as
MSPELLER and gSPELLER respectively.

2. THE CORE SUFFIX TREE

PMS1, PMS2, PMSi, PMSP and PMSprune [6] are theALGORITHM

most recent exact approaches. PMS1 is a simple@agpipr

It enumerates all thémers in the input sequences and
finds the motifs making use of radix sort. PMSi, ¥
and PMSprune are based on similar idea. PMSpruthe is
most efficient algorithm among those. PMSprune alzls

to solve to solve the (19,7) instance which was not

reported as solve previously in the literature.

All the exact approaches discussed above have bee

designed to work on serial computers and are ritdtde
for straightforward parallelization on current nedtre or
GPU architectures. A recently proposed paralletaggh,
BitBased, is based on working with bitarrays, aad be
effectively parallelized on multicore and GPU
architectures [11] [12]. However, the memory regoient
is a bottleneck in this approach for solvifigd) PMP

The basic suffix tree based method to solve PMieca
the SPELLER algorithm, was first introduced by Sddq

It works by constructing a generalized suffix ttesing the
input sequences and then finding the motifs Jelling
the models using this generalized suffix tree. Following
that many modifications and extensions were progpadse

I'L{nprove the performance [8] [9] [10]. In this papse

adapt the original SPELLER algorithm for efficient
implementation on multicore and GPU. This requires
addressing several issues related to memory bettken
unbalanced load, conditional computation structure
inhibiting concurrent execution of threads, etce3é are
discussed and addressed in Section 3. and Section 4

problems as andd increase. There have not been many 2.1. Suffix tree

attempts to propose a parallel approach based ffix su
tree. To the best of our knowledge, PSMILE [10}tis
only parallel suffix tree based approach that hasnb

Suffix tree is a data structure that representstlzdi
suffixes of a sequence. Each suffix of the string

proposed. It can be seen from PSMILE that it is not corresponds to exactly one path from the root efttee

straightforward to parallelize a suffix tree basggbroach
as it is difficult to distribute the work equallynang all
the processors. However, the approach has nottbetu
on current multicore machines.

Tree based algorithms are notoriously hard to [eizd

to a leaf. Many algorithms exist to construct suffiee in
linear time. We choose Ukkonen's algorithm. Suifee is
compact version of suffix trie. Figure 1. shows the
difference between a suffix trie and a suffix tr&aough
nodes 2, 5, 6, 8 cannot be seen in the suffix thesy, are
implicitly present. These nodes are called impliwtes

and even more so on GPU architecture that requiresand the remaining nodes are explicit. A node can be
execution of large number of concurrent threads touniquely referenced byedgeNum, length}pair. For

achieve efficiency. Additionally when the tree sture is
not balanced, the load distribution across differares
becomes an important issue. Another issue we reeéé t
aware on multicore architectures is that cacheslaaeed
by different cores and a cache line that is upddted
different cores generates a lot of memory traffic.
Therefore it is desirable to have a parallel atyoni that
works, where different cores update different orsi of
the storage area.

The rest of the paper is organized as follows hbn next
section, we present the generalized suffix tree come
suffix tree algorithm, called the SPELLER algorithi#j,

to solve the PMP. In Section 3. we explain theidliffies

in parallelizing this algorithm for (Intel) multice
architecture and present techniques to overcomsethe
difficulties. In Section 4. we present the GPU #etture

example the explicit node 3 can be referenced hyl}2
implicit nodes 2, 5, 6, 8 can be referenced as1}1{1,

2}, {4, 1} and {4, 3}. To represent an edge sequence.

the sequence corresponding to an edge, we use
{fromindex, tolndex}pair instead of using the whole
sequence. For example in Figure 1. the edge sequanc
edge 4 is {1, 3}. For solving planted motif problese

use a generalized suffix tree which is a singldbstifee

for a set of sequences. In a generalized suffig &ach
suffix in each of the sequences corresponds totlgxaae
path from the root to a leaf node. If more than one
sequences have the same suffix, then the path rfoomn
leads to the same leaf node. To avoid that a dpecia
symbol that is not irE and that is unique to each input
sequence is appended to each input sequence. énotas
generalized suffix tree we also need to add thelesszp

number to represent an edge sequence, i.e. an edgéistance between sequengeandz of equal length. For

sequence is now represented by the tyflemindex,
tolndex, seqNum}

(b)

Figure 1. (a) Suffix trie (b) Suffix tree for the Sequence
CGGT

2.2. Finding the M ctifs

Once the generalized tre&T is constructed using the
given n input sequences, the SPELLER algorithm
proceeds by finding the motifs recursively untié thalid
motifs are found or the required length is excee@ace
we use a single suffix tree for all the sequenaesneed
to additionally store some sequence informatioth@tree.
To do this each node BT is assigned an array of sime
denoted byColors Colors[i] for a nodex is 1 if x lies on

at least one path from root to a leaf that corredpdo a
suffix of sequenceé. It is 0 otherwise. We can use a bit
vector to implementColors array. Note that in the
SPELLER algorithm color set size, CSS, informatien
also stored at each node but we don't use it ;xghper.
Let p(x) represent the path from the root®T to the node
X. (X, %) is called node occurrence of a sequencd
dist(p(x), m) = %, wheredist(y,z)denotes the Hamming

an error valuel, the occurrence list of a sequemaeOcg,

can be defined as a set of all node occurrefices.,)

such thake,, does not exceedli.e OcG, = {(X, Xerr) | Xerr <

d}. Fora € X, we can generate the occurrence listnaf

OcG,,, from the occurrence list ofh, Ocg, using the
following lemma.

Lemma 1. [4] (x, err)is a node occurrence ok if and
only if one of the following satisfy:

a. (parent(x), err)is a node occurrence nfand the
label on the edge froparent(x)tox is a..

b. (parent(x), err-1)is a node occurrence oh and
the label fronparent(x)to x is 8 # a.

The key idea of the SPELLER algorithm is presernited
Algorithm 1. The detailed algorithm can be found/4h

The original SPELLER algorithm also uses other data
structures but we do not use them as we foundthiegt

did not improve performanceSpellModelsis called
initially with parameterk=0, m = ¢, Ocg, = (root,0). It
recursively calls th&pellModelsncrementing the length
and appending a residue.

3. ADAPTING SPELLER ON MULTICORE

Tree based algorithms are not straight forward to
parallelize, especially if the tree is unbalancéd.is
especially challenging to balance the load amontjiphe
processors. SPELLER is a tree based algorithm affidt s
tree by nature is very unbalanced. A previous giteim
parallelize SPELLER can be found in [10]. In [1@t
count of the residues is used as the basis foriliishg

the load among multiple nodes.

In this paper we present a simpler and more bathnce
approach for parallelizing SPELLER. Note that wento
parallelize the construction of suffix tree in tpigper. We
only parallelize the spelling part of the approadime
main idea behind our approach is to start spefiogm a
lengthI' > 0 as opposed starting from length O in the
original SPELLER algorithm. We first generate a edidt
containing all the nodes, both explicit and imglicat
level i and then use the node list to generate the
occurrence list for a sequence of lenigtiror a node, let

p(x) denote the sequence that leads from the rootdexo
Let NodeList(i)= {(x, p(x)) | X is a node at level i We
have seen that occurrence list of a sequence myseall

the nodes that can be reached using the sequered-or
neighbor of a sequence. Node list on the other hand
represents all the nodes at a given level. So taimb
occurrence list for a sequence of lengfrom a node list

of leveli we need to filter out the nodes from the node list
that do not correspond either to the sequenced iseal-

neighbors of the sequence. Algorithm 3. gives the extremely light weight and they can be created and
procedure to obtain occurrence list from a node lis executed with zero scheduling overhead.

Algorithm 1. Finding the Motifs Algorithm 2. Finding Motifsin Parallel

. procedurespellModels(k, m, Ogg 1: for eachm of lengthl’ do
(if k =1then 2: SpellModels(I’, m OcgGy)
outputm 3: end for

1
2
3
4: else
5: for eachn in X do
6
7

generatecey, usingOcay, CUDA is a parallel programming model that enables
LetColorsy, be the sum o€olorsof the node programmers to develop scalable applications to be
occurrences af executed on GPU. It exposes a set of extensio@sand
8: if all the bits are set iGolorsy, then C++. A CUDA program is organized into sequentiastho
9: SpellModels(k + 1,m,0¢Gy,) code which is executed on CPU and calls to funstion
10: end if called kernels which are executed on GPU. A kernel
11: end for contains the device code that is executed by th&) GP
12: end if threads in parallel. CUDA threads can be grouped in

thread blocks. Using CUDA one can define the nunafer

blocks and the number of threads per block that can
As we have seen in Section 2., the functpellModelds execute a kernel.
called with argumentg0, A, Ocg) where 0 represents the
length of the model} is an empty sequence representing 4.1. Memory Organization
the model andOcg is the occurrence list of which is
(root, 0) In our approach we replace a single call to the The device RAM is virtually and physically divideato
function SpellModelswith a loop as shown in Algorithm 2. different types of memory: global, local, constatd
The loop can then be easily parallelized by distiity the texture memory. Apart from device RAM the threads c
sequences of length among all the processing nodes. also access on-chip shared memory and registestsoasm
Note that the sequences can be assigned eithiealjadr in Figure 2.. Global memory and texture memory have
dynamically among the processors. If they are iBisted highest latency compared to the other types of nmgn#o
statically, i.e equally among all the processdrs, lbad is thread has exclusive access to its local memorlythal
more unbalanced as some processors might be assignehreads in a block can access on-chip shared membry
more sequences that needs to be spelled to a l@mggh the threads across all thread blocks have accegishal,
while some processors might have very few of suchtexture and constant memory. Constant and texture
sequences keeping them idle for a longer time.t80, memories are read only while global is both read an
avoid that, we use dynamic distribution of sequende write.
this case the processors are only assigned a soratber
of sequences initially. When a processor is dortb s Device
sequences it fetches the next available sequenaiio
on.

GPU
‘Multipra-cessor
J_Multiproccssor

|Multiprocessor
Fegistors
Shaves Meroore

4. ADAPTING SPELLER ON GPU

GPU is a massively parallel, multi-threaded, mangco
processor. Each GPU device is an array of streaming
multiprocessor which in turn consists of a numbér o
scalar processor cores. GPU is capable of running
thousands of threads concurrently. It is able tosddy
employing SIMT(single-instruction multiple-threads)
architecture. The threads are created, schedulel an
executed in groups called warps. All the threads wmarp
share a single instruction unit. The threads inRUGare Figure 2. GPU Memory

4.2. Performance Consider ations In gSPELLER, we distribute the work among all the
blocks in the same way as we do for multicore. We

A CUDA program should be proper'y designed tak|ng distribute all the sequences of |eng‘ﬂ']Where|I is the
advantage of the resources for better performagiree l€ngth at which we start spelling, among all thecks.
GPU uses SIMT architecture in which all the thremda ~ Though the suffix tree itself requires less memdhg
warp use a single instruction unit, the best rescéin be runtime memory requirements of SPELLER is high.
achieved when all the threads in a warp executeowit =~ SPELLER recursively calls SpellModels function

diverging. When threads diverge they are executedgdenerating an occurrence list at each level of reéon.
Seria”y, thus decreasing performance_ Let G be the total number of nOdeS, both ImplICIt and

explicit, of leveli. LetI' be the length at which we start

Global memory has very high latency. But by codfesc spelling. The runtime memory requirement is the_naefo
the global memory accesses, high throughput can bel(G . (I-I)). For example, let's say the tree consists of
achieved. For example if the threads in a warp sicce 10000 nodes on average for each levellas®d For a(15,

contiguous address, then only two transactiongssteed. ~ 4) problem, we would require 1.2 MB of runtime memory
But if the threads access separate addresses then 3ssuming 12B for each occurrence list node. Bstighfor
transactions are issued. a single processing node. The more the number of

processing units, the more the run time memory.Hatee

Shared memory is divided into equally sized blocated ~ Seen that using CUDA we can declare very large mumb
banks. If two threads in a half warp access thessaank, of blocks. For example in Tesla, we can declare3655
this would result in bank conflict and the accesass blocks in a single row of a grid. But with only 4Gi#
serialized thus reducing the effective bandwidthotder ~ global memory, we are limited to a maximum of 3333
to avoid this, the programmer should try to make shat blocks. To overcome this limitation we once agage u
the threads in a half warp access different banks. dynamic allocation of sequences, as we do in tise o
multicore, instead of statically assigning the seues
The memory latencies can be hidden by executingroth €qually among all the blocks. Also note that thowgte
warps when a warp is paused_ So to keep the h&dwarcan declare |arge number of blocks USing CUDA, the
busy there should be enough active warps. Occupancy maximum number of blocks that can be active aine iis
the ratio of number of active warps per multi-pssm to ~ Very less, 64 for Tesla. So we only declare 64 kslcand
the maximum possible number of active warps. If the dynamically distribute the sequences among thekbloc
occupancy is too low, then the memory latency cabeo ~ We use a variable calledextSequenceao assign the
hidden resulting in performance degradation. So thesequences to the blocks. Whenever a block is datie w
programmer should try to increase the occupancy tothe sequence assigned to it, it gets the next sequesing
effectively use the hardware. GPUs have provediefft the nextSequenceariable and updates the variable. Note
for many applications. It is very challenging tdig@éntly that one must use atomic operation to achieve this.
implement SPELLER on GPU. One of the reasons being
the memory limitations of GPU. GPU offers different The CUDA programming language that we use to
kinds of memory with varying memory latencies, some implement applications on GPU does not support

with caches and some on chip memories. recursion. But theSpellModelsfunction is a recursive
function. So to implemenBpellModelson GPU, we use

Algorithm 3. Generating Occurrence list from Node two stacks. One stack contains the occurrence saaag

list the other stack contains the information about the

sequence to which the occurrence array belongs to.

Input: NodeList(l"), m In the origi_nal SPELLER algorithm, we read the
Output:Ocg, occurrence .|ISt of a sequence m aqd genere}te the
1: for each(node , seq) in NodeList(I')do occurrence list fomq wherea € T a_nd continue spelling

2: error = dist(m, seg) usingma. Whenma is done we again read the occurrence
3 if error < dthen list of mand generate the occurrence listrig where8 ¢

4: add (node, error) to Ocg, 2\ {a}. Observe that we read the occurrence list of
5 end if m four times once for each residue. We use global
6: end for memory to store the occurrence list and the reads a

writes to global memory are very expensive duehi® t

high latency rate of global memory. So to avoid tipié

reads of a single occurrence list, we read the roenoe checking if they are present in the remainifmn’)

list of m and generate the occurrence lists for all the sequences. This approach had been previously used i
residues at once so that we don't have to read thdl1l], [12]. Unlike in [11], the main purpose of ogi
occurrence list ofm again. To do this we need four times filtering is not to reduce memory requirement bat t
the memory which is still achievable as we only 6de improve performance. With decrease in number of

blocks. sequences used for construction of suffix tree nilmaber
of tree nodes decreases and so the size of occeartish
4.3. Tree Representation also decreases. Hence the time spent in reading and

writing from global memory also reduces improvirgp t

We have seen in Section 2. that to get an edgeesequ overall performance. Note that the valuenbEhould not
we needromindex tolndexandseqNurmvalues. In order ~ b€ too low in which case the time spent in filtgrin
to get a residue on the edge sequence one musitftein candidate motifs exceeds the time taken for obigitihe
the fromindex tolndex seqNumand use these values to Candidate motifs. It is straight forward to partitie the
get the index of the residue and then read thduesrom filtering step. The candidate motifs are distrillitgnong
the sequence correspondingseqNum This adds up to all the processors in case of multicore and thréadsise
four reads. To decrease the number of reads wadecl of GPU.

the sequence itself instead of the index infornmative

replacefromindex tolndex and seqNumwith bitSeqand Table 1. Time Taken by mSPELLER on multicore,
length wherebitSeqis the bit sequence corresponding to 9SPELLER on GPU and their comparison with other
the sequence arldngthis the length of the sequence. Bit approaches

seguence can be obtained by replacing A by 00, Glby

G by 10 and T by 11. For example the bit sequence| Algorithm | (13.4) | (15.5) | (I76) | (19.7) | (21.8)
corresponding to edge sequence TAACG is 110000011C| MSPELLER-16 | 3s 1658 | 25m | 236m | 37h
andlengthis 5. This would require only two reads one for | MSPELLER-8 | 27s | 228s | 3.6m | 33.8m -
bitSegand one fofength But this can be done only if the mSPELLER4 | 49s | 435s | 6.6m | L1h
sequence length is less than or equal to 16(asgumin | MSPELLER-I 185 | 2.8m | 27.3m | 4.3h -
bitSeqis an integer) because each residue needs two bit:| 2SPELLER-1 | 2.6s | 26.34s | 453m | 469m | 7.2h
and there are 32 bits in an integer. If an edgeshgaence oSPELLER-2 | 14s | 135s | 23m | 24.Im | 3.95h
length greater than 16 we split the edge into miglti gSPELLER-3 Is 9s 1.6m | 167m | 2.8h
edges each of length less than or equal to 16. tetise eSPELLER-4 | 08s | 7.2¢ | 12m | 13m | 2.2h
edges only if the edges are at a level less thamoal tol BitBased-16 2 i1s [24m | 306m | 6.9h
because otherwise we don't need them. For exarpie i PMSprune 53 | 9m | 69m | 9.2h

are solving (15,5) problem, we only split the ed¢jest

are at a level less than or equal to 15 as we niyetlmose 5. EXPERIMENTAL RESULTS
edges for spelling.

) .) We have implemented mSPELLER on a 4 quadcore 2.67
The suffix tree is represented using two arraysen@iay G |ntel Xeon X5550 machine with a total of 16 eor
and edge array. Each array element in the nody arra g gSpELLER on Nvidia TESLA C1060 with 240 cores
corresponds to a tree node and similarly each arraynq Nyidia TESLA S1070 with 960 cores. We havestést

element in the edge array corresponds to a tree. &g, cqde with 20 input sequences of length 600 .eah
use breadth first traversal to convert the suffeetfrom tested it on random sequences with motifs planted a

the tree structure into array structure. Both tbdenarray random positions in the 20 sequences. Table 1eptes

and edge array are bound to texture memories. Mate yhe reguits of mMSPELLER, gSPELLER on different
gSPELLER works only if the suffix tree fits in the ., mper of cores/devices and their comparison witiero

memory as in the case of the sequences that we havﬁpproaches. mMSPELLER- shows the results of

tested. MSPELLER onx number of cores and gSPELLBR-
)) shows the results of gSPELLER @nGPU devices. We

4.4. Filtering compare the results with the results of BitBasegr@gach

on the same machine. It can be seen from Tableat the
Instead of constructing the tree with all the $efences, mSPELLER-16 performs better than BitBased on larger
we only construct the tree for a smaller number of proplems. The reason being that BitBased falls into
sequencesy’ < n, and find the motifs that are present in memory issues for larger problems and uses thatiiter

motifs. The candidate motifs are then filtered @t mSPELLER has no such memory issues. Also it can be

seen that gSPELLER-1 which has 240 cores does noffter each time the stack top is modified. This
perform well compared to mMSPELLER-16. This is significantly reduces the performance of gSPELLHR.
because of high thread divergence of gSPELLER.@ne can be seen from the Figures 3. and 4. that mSPRLLE
and gSPELLER scale well with increase in number of
cores and devices respectively for (17,6) instarde.
other instances also have a similar scale-up.

REFERENCES

[1] P. A. Pevzner and S.-H. Sze , “Combinatorial apgitea
to finding subtle signals in DNA sequences,” IBMB,
pp. 269-278, 2000.

speed-up

[2] M. K. Das and H.-K. Dai, “A survey of DNA motif
finding algorithms,”BMC Bioinformatics Vol. 8, No. S-
7, 2007.

[3] T. Ji, K. Gopavarapu, D. Ranjan, B. Vasudevan, C.
number of processors Sengupta-Gopalan, and M. O’Connell, “Tools for cis-
element recognition and phylogenetic tree constinct
based on conserved patterns,” @Qomputers and Their
Figure 3. Plot Showing Scalability Results of Applications pp. 1-6, 2007.

MSPELLER for (17, 6) Problem
[4] M.-F. Sagot, “Spelling approximate repeated or camm

motifs using a suffix tree,” ihATIN, pp. 374-390, 1998.

+ - v [5] E. Eskin and P. A. Pevzner, “Finding composite
regulatory patterns in DNA sequences,” [[BMB, pp.
354-363, 2002.

35

[6] J.Davila, S. Balla, and S. Rajasekaran, “Fastpadtical

i 1 algorithms for planted (I, d) motif search,” |IEEEIM
Transactions on Computational Biology and
a5l] Bioinformatics, Vol. 4, pp. 544-552, 2007.

speed-up

[71 F.Y.L.ChinandH. C. M. Leung, “Voting algorittenfor
2T] discovering long motifs,” iMPBC pp. 261-271, 2005.

sl | [8] N. Pisanti, A. M. Carvalho, L. Marsan, and M.-Fg6ga
“Risotto: Fast extraction of motifs with mismatcliem
LATIN, pp. 757-768, 2006.

. . '
1 nzumbgl-ngPU de\.-acei) [9] L. Marsan and M.-F. Sagot, “Extracting structureotifs
using a suffix tree - algorithms and application to
promoter consensus identification,” IRECOMB pp.
Figure 4. Plot Showing Scalability Results of 210-219, 2000.

gSPELLER for (17, 6) Problem

[10] A. M. Carvalho, A. L. Oliveira, A. T. Freitas, arM.-F.
the main criteria for an algorithm to perform weii GPU Sagot, “A parallel algorithm for the extraction of
is minimal thread divergence. But the gSPELLER structured motifs,” in Proceedings of the 2004 ACM
algorithm is comprised of many conditional statetsen symposium on Applied computing, pp. 147-153, 2004

leading to thread divergence. Also the threads neduk [11] N. S. Dasari, R. Desh, and M. Zubair, “An efficient
synchronized at many places which adversely effieet multicore implementation of planted motif problenir
performance. For example, as we have seen in fettio Proceedings of the International Conference on High
gSPELLER uses stack to store the occurrence lt.tdp Performance Computing and Simulation, pp. 9-150201

of the stack should be carefully modified for gt
correct results. The stack top should not be mediby a
thread while some other thread is using the stapk To
avoid that, the threads must be synchronized befack

[12]N. S. Dasari, R. Desh, and M. Zubair, “Solving péh
motif problem on GPU,” in International Workshop on
GPUs and Scientific Applications, 2010.

