

High Performance Implementation of Planted Motif Problem using Suffix trees

Naga Shailaja Dasari Desh Ranjan Zubair M
Old Dominion University Old Dominion University Old Dominion University

ndasari@cs.odu.edu dranjan@cs.odu.edu zubair@cs.odu.edu

ABSTRACT

In this paper we present a high performance
implementation of suffix tree based solution to the planted
motif problem on two different parallel architectures:
NVIDIA GPU and Intel Multicore machines. An (l,d)
planted motif problem(PMP) is defined as: Given a
sequence of n DNA sequences, each of length L, find M,
the set of sequences(or motifs) of length l which have at-
least one d-neighbor in each of the n sequences. Here, a
d-neighbor of a sequence is a sequence of same length
that differs in at-most d positions. PMP is a well studied
problem in computational biology. It is useful in
developing methods for finding transcription factor
binding sites, sequence classification and for building
phylogenetic trees. The problem is computationally
challenging to solve, for example a (19,7) PMP takes 9.9
hours on a sequential machine. Many approaches to solve
planted motif problem can be found in literature. One
approach is based on use of suffix tree data structure.
Though suffix tree based methods are the most efficient
ones for solving large planted motif problems on
sequential machines, they are quite difficult to parallelize.
We present suffix tree based parallel solutions for PMP
on NVIDIA GPU and Intel Multicore architectures that
are efficient and scalable. The solutions are based on a
suffix tree algorithm previously presented but use
extensive adaptation to individual architectures to ensure
that the implementations work efficiently and scale well.

KEYWORDS: PMP, DNA, multicore, BitBased, parallel,
mSPELLER, gSPELLER.

1. INTRODUCTION

The planted motif problem (PMP) is a fundamental search
problem with applications in computational biology,
especially in locating regulatory sites, sequence
classification and building phylogenetic trees [1], [2], [3].
The (l, d) planted motif problem can be defined as:

“Given a set of n DNA sequences, each of length L, find
M, the set of sequences (or motifs) of length-l which have
at-least one d-neighbour in each of the n sequences”. A d-
neighbour is a sequence of length l that differs from the
motif in at most d positions. We refer to a sequence of
length l as an l-mer in the rest of the paper.

Many approaches have been previously proposed to solve
the planted motif problem. These approaches can be
classified into two categories, heuristic and exact.
Heuristic algorithms are very popular but they are not
guaranteed to always find the correct answer.
CONSENSUS, WINNOWER, Gibbs Sampling, Random
Projections are some approaches that fall in this category.
Exact algorithms on the other always produce the correct
answer. These algorithms are also referred to as
exhaustive enumeration algorithms. SPELLER [4],
MITRA [5], PMSprune [6], Voting [7], RISOTTO [8] are
some approaches that fall under this category. These
algorithms can further be classified into pattern-driven
and sample driven approaches. Pattern-driven approaches
search all the possible |Σ|l l-mers to find the motifs. These
algorithms have the time complexity of Ω(|Σ|l). These
algorithms are therefore only suitable for smaller values of
l and perform prohibitively poorer for larger values of l.
Sample-driven approaches on the other hand enumerate
the l-mers in the input sequences to find the motifs.
Sample-driven approaches are often limited by space
requirements.

Sagot introduced a suffix tree based algorithm for solving
planted motif problem [4] called SPELLER. This
algorithm starts by building a generalized suffix tree for
all the input sequences and uses this tree to "spell" all the
motifs (called models in [4]). This algorithm is very
efficient in terms of space. MITRA [5] uses a variation of
suffix tree called Mismatch trees. MITRA works by
splitting all the possible pattern space into disjoint
subspaces starting with a given prefix thus breaking the
problem into sub-problems. MITRA is more efficient than
SPELLER in terms of both memory and space. SMILE [9],
PSMILE [10], RISOTTO [8] are extensions to the

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CiteSeerX

https://core.ac.uk/display/24066795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SPELLER algorithm, RISOTTO being the most recent
approach. It uses maximum extensibility to efficiently
spell the motifs.

Voting is a hashing based approach to solve PMP. Though
it is efficient compared to brute force techniques, it was
not able to solve problems with d greater than 5 as its
running time increases exponentially with d.

PMS1, PMS2, PMSi, PMSP and PMSprune [6] are the
most recent exact approaches. PMS1 is a simple approach.
It enumerates all the l-mers in the input sequences and
finds the motifs making use of radix sort. PMSi, PMSP,
and PMSprune are based on similar idea. PMSprune is the
most efficient algorithm among those. PMSprune was able
to solve to solve the (19,7) instance which was not
reported as solve previously in the literature.

All the exact approaches discussed above have been
designed to work on serial computers and are not suitable
for straightforward parallelization on current multicore or
GPU architectures. A recently proposed parallel approach,
BitBased, is based on working with bitarrays, and can be
effectively parallelized on multicore and GPU
architectures [11] [12]. However, the memory requirement
is a bottleneck in this approach for solving (l,d) PMP
problems as l and d increase. There have not been many
attempts to propose a parallel approach based on suffix
tree. To the best of our knowledge, PSMILE [10] is the
only parallel suffix tree based approach that has been
proposed. It can be seen from PSMILE that it is not
straightforward to parallelize a suffix tree based approach
as it is difficult to distribute the work equally among all
the processors. However, the approach has not been tested
on current multicore machines.

Tree based algorithms are notoriously hard to parallelize
and even more so on GPU architecture that requires
execution of large number of concurrent threads to
achieve efficiency. Additionally when the tree structure is
not balanced, the load distribution across different cores
becomes an important issue. Another issue we need to be
aware on multicore architectures is that caches are shared
by different cores and a cache line that is updated by
different cores generates a lot of memory traffic.
Therefore it is desirable to have a parallel algorithm that
works, where different cores update different portions of
the storage area.
The rest of the paper is organized as follows. In the next
section, we present the generalized suffix tree and core
suffix tree algorithm, called the SPELLER algorithm [4],
to solve the PMP. In Section 3. we explain the difficulties
in parallelizing this algorithm for (Intel) multicore
architecture and present techniques to overcome these
difficulties. In Section 4. we present the GPU architecture

and discuss the issues in parallelizing suffix tree method
for this architecture. We then present adaptations to the
core suffix tree method to obtain an implementation that is
efficient and scalable for GPU architecture. Section 5.
presents experimental results. We refer to our
implementation of SPELLER on multicore and GPU as
mSPELLER and gSPELLER respectively.

2. THE CORE SUFFIX TREE
ALGORITHM

The basic suffix tree based method to solve PMP, called
the SPELLER algorithm, was first introduced by Sagot [4].
It works by constructing a generalized suffix tree using the
input sequences and then finding the motifs (or spelling
the models) using this generalized suffix tree. Following
that many modifications and extensions were proposed to
improve the performance [8] [9] [10]. In this paper we
adapt the original SPELLER algorithm for efficient
implementation on multicore and GPU. This requires
addressing several issues related to memory bottleneck,
unbalanced load, conditional computation structure
inhibiting concurrent execution of threads, etc. These are
discussed and addressed in Section 3. and Section 4.

2.1. Suffix tree

Suffix tree is a data structure that represents all the
suffixes of a sequence. Each suffix of the string
corresponds to exactly one path from the root of the tree
to a leaf. Many algorithms exist to construct suffix tree in
linear time. We choose Ukkonen's algorithm. Suffix tree is
compact version of suffix trie. Figure 1. shows the
difference between a suffix trie and a suffix tree. Though
nodes 2, 5, 6, 8 cannot be seen in the suffix tree, they are
implicitly present. These nodes are called implicit nodes
and the remaining nodes are explicit. A node can be
uniquely referenced by {edgeNum, length} pair. For
example the explicit node 3 can be referenced by {2, 1},
implicit nodes 2, 5, 6, 8 can be referenced as {1, 1}, {1,
2}, {4, 1} and {4, 3}. To represent an edge sequence, i.e.
the sequence corresponding to an edge, we use
{fromIndex, toIndex} pair instead of using the whole
sequence. For example in Figure 1. the edge sequence of
edge 4 is {1, 3}. For solving planted motif problem we
use a generalized suffix tree which is a single suffix tree
for a set of sequences. In a generalized suffix tree each
suffix in each of the sequences corresponds to exactly one
path from the root to a leaf node. If more than one
sequences have the same suffix, then the path from root
leads to the same leaf node. To avoid that a special
symbol that is not in Σ and that is unique to each input
sequence is appended to each input sequence. In case of
generalized suffix tree we also need to add the sequence

number to represent an edge sequence, i.e. an edge
sequence is now represented by the tuple {fromIndex,
toIndex, seqNum}.

Figure 1. (a) Suffix trie (b) Suffix tree for the Sequence

CGGT

2.2. Finding the Motifs

Once the generalized tree, GT is constructed using the
given n input sequences, the SPELLER algorithm
proceeds by finding the motifs recursively until the valid
motifs are found or the required length is exceeded. Since
we use a single suffix tree for all the sequences, we need
to additionally store some sequence information in the tree.
To do this each node in GT is assigned an array of size n
denoted by Colors. Colors[i] for a node x is 1 if x lies on
at least one path from root to a leaf that corresponds to a
suffix of sequence i. It is 0 otherwise. We can use a bit
vector to implement Colors array. Note that in the
SPELLER algorithm color set size, CSS, information is
also stored at each node but we don't use it in this paper.
Let p(x) represent the path from the root of GT to the node
x. (x, xerr) is called node occurrence of a sequence m if
dist(p(x), m) = xerr where dist(y,z) denotes the Hamming

distance between sequences y and z of equal length. For
an error value d, the occurrence list of a sequence m, Occm
can be defined as a set of all node occurrences (x, xerr)
such that xerr does not exceed d i.e Occm = {(x, xerr) | xerr ≤
d}. For α ϵ Σ, we can generate the occurrence list of mα,
Occmα, from the occurrence list of m, Occm using the
following lemma.

Lemma 1. [4] (x, err) is a node occurrence of mα if and
only if one of the following satisfy:

a. (parent(x), err) is a node occurrence of m and the
label on the edge from parent(x) to x is α..

b. (parent(x), err-1) is a node occurrence of m and
the label from parent(x) to x is β ≠ α.

The key idea of the SPELLER algorithm is presented in
Algorithm 1. The detailed algorithm can be found in [4].
The original SPELLER algorithm also uses other data
structures but we do not use them as we found that they
did not improve performance. SpellModels is called
initially with parameters k=0, m = ε, Occm = (root,0). It
recursively calls the SpellModels incrementing the length
and appending a residue.

3. ADAPTING SPELLER ON MULTICORE

Tree based algorithms are not straight forward to
parallelize, especially if the tree is unbalanced. It is
especially challenging to balance the load among multiple
processors. SPELLER is a tree based algorithm and suffix
tree by nature is very unbalanced. A previous attempt to
parallelize SPELLER can be found in [10]. In [10] the
count of the residues is used as the basis for distributing
the load among multiple nodes.

In this paper we present a simpler and more balanced
approach for parallelizing SPELLER. Note that we do not
parallelize the construction of suffix tree in this paper. We
only parallelize the spelling part of the approach. The
main idea behind our approach is to start spelling from a
length l' > 0 as opposed starting from length 0 in the
original SPELLER algorithm. We first generate a node list
containing all the nodes, both explicit and implicit, at
level i and then use the node list to generate the
occurrence list for a sequence of length l'. For a node x, let
p(x) denote the sequence that leads from the root to node x.
Let NodeList(i) = {(x, p(x)) | x is a node at level i }. We
have seen that occurrence list of a sequence represents all
the nodes that can be reached using the sequence or a d-
neighbor of a sequence. Node list on the other hand
represents all the nodes at a given level. So to obtain
occurrence list for a sequence of length i from a node list
of level i we need to filter out the nodes from the node list
that do not correspond either to the sequence itself or d-

neighbors of the sequence. Algorithm 3. gives the
procedure to obtain occurrence list from a node list.

Algorithm 1. Finding the Motifs

1: procedure SpellModels(k, m, Occm)
2: if k = l then
3: output m
4: else
5: for each α in Σ do
6: generate Occmα using Occm
7: Let Colorsmα be the sum of Colors of the node

occurrences of mα
8: if all the bits are set in Colorsmα then
9: SpellModels(k + 1,mα,Occmα)
10: end if
11: end for
12: end if

As we have seen in Section 2., the function SpellModels is
called with arguments (0, λ, Occλ) where 0 represents the
length of the model, λ is an empty sequence representing
the model and Occλ is the occurrence list of λ which is
(root, 0). In our approach we replace a single call to the
function SpellModels with a loop as shown in Algorithm 2.
The loop can then be easily parallelized by distributing the
sequences of length l' among all the processing nodes.
Note that the sequences can be assigned either statically or
dynamically among the processors. If they are distributed
statically, i.e equally among all the processors, the load is
more unbalanced as some processors might be assigned
more sequences that needs to be spelled to a longer length
while some processors might have very few of such
sequences keeping them idle for a longer time. So, to
avoid that, we use dynamic distribution of sequences. In
this case the processors are only assigned a small number
of sequences initially. When a processor is done with its
sequences it fetches the next available sequence to work
on.

4. ADAPTING SPELLER ON GPU

GPU is a massively parallel, multi-threaded, manycore
processor. Each GPU device is an array of streaming
multiprocessor which in turn consists of a number of
scalar processor cores. GPU is capable of running
thousands of threads concurrently. It is able to do so by
employing SIMT(single-instruction multiple-threads)
architecture. The threads are created, scheduled and
executed in groups called warps. All the threads in a warp
share a single instruction unit. The threads in a GPU are

extremely light weight and they can be created and
executed with zero scheduling overhead.

Algorithm 2. Finding Motifs in Parallel

1: for each mi of length l’ do
2: SpellModels(l’, mi, Occmi)
3: end for

CUDA is a parallel programming model that enables
programmers to develop scalable applications to be
executed on GPU. It exposes a set of extensions to C and
C++. A CUDA program is organized into sequential host
code which is executed on CPU and calls to functions
called kernels which are executed on GPU. A kernel
contains the device code that is executed by the GPU
threads in parallel. CUDA threads can be grouped into
thread blocks. Using CUDA one can define the number of
blocks and the number of threads per block that can
execute a kernel.

4.1. Memory Organization

The device RAM is virtually and physically divided into
different types of memory: global, local, constant and
texture memory. Apart from device RAM the threads can
also access on-chip shared memory and registers as shown
in Figure 2.. Global memory and texture memory have
highest latency compared to the other types of memory. A
thread has exclusive access to its local memory. All the
threads in a block can access on-chip shared memory. All
the threads across all thread blocks have access to global,
texture and constant memory. Constant and texture
memories are read only while global is both read and
write.

Figure 2. GPU Memory

4.2. Performance Considerations

A CUDA program should be properly designed taking
advantage of the resources for better performance. Since
GPU uses SIMT architecture in which all the threads in a
warp use a single instruction unit, the best results can be
achieved when all the threads in a warp execute without
diverging. When threads diverge they are executed
serially, thus decreasing performance.

Global memory has very high latency. But by coalescing
the global memory accesses, high throughput can be
achieved. For example if the threads in a warp access
contiguous address, then only two transactions are issued.
But if the threads access separate addresses then 32
transactions are issued.

Shared memory is divided into equally sized blocks called
banks. If two threads in a half warp access the same bank,
this would result in bank conflict and the accesses are
serialized thus reducing the effective bandwidth. In order
to avoid this, the programmer should try to make sure that
the threads in a half warp access different banks.

The memory latencies can be hidden by executing other
warps when a warp is paused. So to keep the hardware
busy there should be enough active warps. Occupancy is
the ratio of number of active warps per multi-processor to
the maximum possible number of active warps. If the
occupancy is too low, then the memory latency cannot be
hidden resulting in performance degradation. So the
programmer should try to increase the occupancy to
effectively use the hardware. GPUs have proved efficient
for many applications. It is very challenging to efficiently
implement SPELLER on GPU. One of the reasons being
the memory limitations of GPU. GPU offers different
kinds of memory with varying memory latencies, some
with caches and some on chip memories.

Algorithm 3. Generating Occurrence list from Node
list

Input: NodeList(l’), m
Output: Occm
1: for each (nodel’ , seql’) in NodeList(l’) do
2: error = dist(m, seql’)
3: if error ≤ d then
4: add (nodel’ , error) to Occm

5: end if
6: end for

In gSPELLER, we distribute the work among all the
blocks in the same way as we do for multicore. We
distribute all the sequences of length l', where l' is the
length at which we start spelling, among all the blocks.
Though the suffix tree itself requires less memory, the
runtime memory requirements of SPELLER is high.
SPELLER recursively calls SpellModels function
generating an occurrence list at each level of recursion.
Let ci be the total number of nodes, both implicit and
explicit, of level i. Let l' be the length at which we start
spelling. The runtime memory requirement is therefore
O(ci . (l-l')). For example, let’s say the tree consists of
10000 nodes on average for each level and l'=5 . For a (15,
4) problem, we would require 1.2 MB of runtime memory,
assuming 12B for each occurrence list node. But this is for
a single processing node. The more the number of
processing units, the more the run time memory. We have
seen that using CUDA we can declare very large number
of blocks. For example in Tesla, we can declare 65535
blocks in a single row of a grid. But with only 4GB of
global memory, we are limited to a maximum of 3333
blocks. To overcome this limitation we once again use
dynamic allocation of sequences, as we do in the case of
multicore, instead of statically assigning the sequences
equally among all the blocks. Also note that though one
can declare large number of blocks using CUDA, the
maximum number of blocks that can be active at a time is
very less, 64 for Tesla. So we only declare 64 blocks and
dynamically distribute the sequences among the blocks.
We use a variable called nextSequence to assign the
sequences to the blocks. Whenever a block is done with
the sequence assigned to it, it gets the next sequence using
the nextSequence variable and updates the variable. Note
that one must use atomic operation to achieve this.

The CUDA programming language that we use to
implement applications on GPU does not support
recursion. But the SpellModels function is a recursive
function. So to implement SpellModels on GPU, we use
two stacks. One stack contains the occurrence arrays and
the other stack contains the information about the
sequence to which the occurrence array belongs to.

In the original SPELLER algorithm, we read the
occurrence list of a sequence m and generate the
occurrence list for mα where α ϵ Σ and continue spelling
using mα. When mα is done we again read the occurrence
list of m and generate the occurrence list for mβ where β ϵ
Σ \ {α}. Observe that we read the occurrence list of
m four times once for each residue. We use global
memory to store the occurrence list and the reads and
writes to global memory are very expensive due to the
high latency rate of global memory. So to avoid multiple

reads of a single occurrence list, we read the occurrence
list of m and generate the occurrence lists for all the
residues at once so that we don't have to read the
occurrence list of m again. To do this we need four times
the memory which is still achievable as we only use 64
blocks.

4.3. Tree Representation

We have seen in Section 2. that to get an edge sequence
we need fromIndex, toIndex and seqNum values. In order
to get a residue on the edge sequence one must first obtain
the fromIndex, toIndex, seqNum and use these values to
get the index of the residue and then read the residue from
the sequence corresponding to seqNum. This adds up to
four reads. To decrease the number of reads we include
the sequence itself instead of the index information. We
replace fromIndex, toIndex and seqNum with bitSeq and
length where bitSeq is the bit sequence corresponding to
the sequence and length is the length of the sequence. Bit
sequence can be obtained by replacing A by 00, C by 01,
G by 10 and T by 11. For example the bit sequence
corresponding to edge sequence TAACG is 1100000110
and length is 5. This would require only two reads one for
bitSeq and one for length. But this can be done only if the
sequence length is less than or equal to 16(assuming
bitSeq is an integer) because each residue needs two bits
and there are 32 bits in an integer. If an edge has sequence
length greater than 16 we split the edge into multiple
edges each of length less than or equal to 16. We split the
edges only if the edges are at a level less than or equal to l
because otherwise we don't need them. For example if we
are solving (15,5) problem, we only split the edges that
are at a level less than or equal to 15 as we use only those
edges for spelling.

The suffix tree is represented using two arrays node array
and edge array. Each array element in the node array
corresponds to a tree node and similarly each array
element in the edge array corresponds to a tree edge. We
use breadth first traversal to convert the suffix tree from
the tree structure into array structure. Both the node array
and edge array are bound to texture memories. Note that
gSPELLER works only if the suffix tree fits in the
memory as in the case of the sequences that we have
tested.

4.4. Filtering

Instead of constructing the tree with all the n sequences,
we only construct the tree for a smaller number of
sequences, n' ≤ n, and find the motifs that are present in
all these n' sequences. These motifs are called candidate
motifs. The candidate motifs are then filtered out by

checking if they are present in the remaining (n-n')
sequences. This approach had been previously used in
[11], [12]. Unlike in [11], the main purpose of using
filtering is not to reduce memory requirement but to
improve performance. With decrease in number of
sequences used for construction of suffix tree, the number
of tree nodes decreases and so the size of occurrence list
also decreases. Hence the time spent in reading and
writing from global memory also reduces improving the
overall performance. Note that the value of n' should not
be too low in which case the time spent in filtering
candidate motifs exceeds the time taken for obtaining the
candidate motifs. It is straight forward to parallelize the
filtering step. The candidate motifs are distributed among
all the processors in case of multicore and threads in case
of GPU.

Table 1. Time Taken by mSPELLER on multicore,
gSPELLER on GPU and their comparison with other

approaches

5. EXPERIMENTAL RESULTS

We have implemented mSPELLER on a 4 quadcore 2.67
GHz Intel Xeon X5550 machine with a total of 16 cores
and gSPELLER on Nvidia TESLA C1060 with 240 cores
and Nvidia TESLA S1070 with 960 cores. We have tested
our code with 20 input sequences of length 600 each. We
tested it on random sequences with motifs planted at
random positions in the 20 sequences. Table 1. presents
the results of mSPELLER, gSPELLER on different
number of cores/devices and their comparison with other
approaches. mSPELLER-x shows the results of
mSPELLER on x number of cores and gSPELLER-x
shows the results of gSPELLER on x GPU devices. We
compare the results with the results of BitBased approach
on the same machine. It can be seen from Table 1. that the
mSPELLER-16 performs better than BitBased on larger
problems. The reason being that BitBased falls into
memory issues for larger problems and uses the iterative
approach which reduces its performance, whereas
mSPELLER has no such memory issues. Also it can be

seen that gSPELLER-1 which has 240 cores does not
perform well compared to mSPELLER-16. This is
because of high thread divergence of gSPELLER. One of

Figure 3. Plot Showing Scalability Results of
mSPELLER for (17, 6) Problem

Figure 4. Plot Showing Scalability Results of
gSPELLER for (17, 6) Problem

the main criteria for an algorithm to perform well on GPU
is minimal thread divergence. But the gSPELLER
algorithm is comprised of many conditional statements
leading to thread divergence. Also the threads need to be
synchronized at many places which adversely effect the
performance. For example, as we have seen in Section 4.
gSPELLER uses stack to store the occurrence list. The top
of the stack should be carefully modified for getting
correct results. The stack top should not be modified by a
thread while some other thread is using the stack top. To
avoid that, the threads must be synchronized before and

after each time the stack top is modified. This
significantly reduces the performance of gSPELLER. It
can be seen from the Figures 3. and 4. that mSPELLER
and gSPELLER scale well with increase in number of
cores and devices respectively for (17,6) instance. All
other instances also have a similar scale-up.

REFERENCES

[1] P. A. Pevzner and S.-H. Sze , “Combinatorial approaches

to finding subtle signals in DNA sequences,” in ISMB,
pp. 269–278, 2000.

[2] M. K. Das and H.-K. Dai, “A survey of DNA motif
finding algorithms,” BMC Bioinformatics, Vol. 8, No. S-
7, 2007.

[3] T. Ji, K. Gopavarapu, D. Ranjan, B. Vasudevan, C.
Sengupta-Gopalan, and M. O’Connell, “Tools for cis-
element recognition and phylogenetic tree construction
based on conserved patterns,” in Computers and Their
Applications, pp. 1–6, 2007.

[4] M.-F. Sagot, “Spelling approximate repeated or common
motifs using a suffix tree,” in LATIN, pp. 374–390, 1998.

[5] E. Eskin and P. A. Pevzner, “Finding composite
regulatory patterns in DNA sequences,” in ISMB, pp.
354–363, 2002.

[6] J. Davila, S. Balla, and S. Rajasekaran, “Fast and practical
algorithms for planted (l, d) motif search,” IEEE/ACM
Transactions on Computational Biology and
Bioinformatics, Vol. 4, pp. 544–552, 2007.

[7] F. Y. L. Chin and H. C. M. Leung, “Voting algorithms for
discovering long motifs,” in APBC, pp. 261–271, 2005.

[8] N. Pisanti, A. M. Carvalho, L. Marsan, and M.-F. Sagot,
“Risotto: Fast extraction of motifs with mismatches,” in
LATIN, pp. 757–768, 2006.

[9] L. Marsan and M.-F. Sagot, “Extracting structured motifs
using a suffix tree - algorithms and application to
promoter consensus identification,” in RECOMB, pp.
210–219, 2000.

[10] A. M. Carvalho, A. L. Oliveira, A. T. Freitas, and M.-F.
Sagot, “A parallel algorithm for the extraction of
structured motifs,” in Proceedings of the 2004 ACM
symposium on Applied computing, pp. 147–153, 2004

[11] N. S. Dasari, R. Desh, and M. Zubair, “An efficient
multicore implementation of planted motif problem,” in
Proceedings of the International Conference on High
Performance Computing and Simulation, pp. 9–15, 2010.

[12] N. S. Dasari, R. Desh, and M. Zubair, “Solving planted
motif problem on GPU,” in International Workshop on
GPUs and Scientific Applications, 2010.

