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ABSTRACT 
 
In this paper we present a high performance 
implementation of suffix tree based solution to the planted 
motif problem on two different parallel architectures: 
NVIDIA GPU and Intel Multicore machines. An (l,d) 
planted motif problem(PMP) is defined as: Given a 
sequence of n DNA sequences, each of length L, find M, 
the set of sequences(or motifs) of length l which have at-
least one d-neighbor in each of the n sequences. Here, a 
d-neighbor of a sequence is a sequence of same length 
that differs in at-most d positions. PMP is a well studied 
problem in computational biology. It is useful in 
developing methods for finding transcription factor 
binding sites, sequence classification and for building 
phylogenetic trees. The problem is computationally 
challenging to solve, for example a (19,7) PMP takes 9.9 
hours on a sequential machine. Many approaches to solve 
planted motif problem can be found in literature. One 
approach is based on use of suffix tree data structure. 
Though suffix tree based methods are the most efficient 
ones for solving large planted motif problems on 
sequential machines, they are quite difficult to parallelize. 
We present suffix tree based parallel solutions for PMP 
on NVIDIA GPU and Intel Multicore architectures that 
are efficient and scalable. The solutions are based on a 
suffix tree algorithm previously presented but use 
extensive adaptation to individual architectures to ensure 
that the implementations work efficiently and scale well.  
 
 
KEYWORDS: PMP, DNA, multicore, BitBased, parallel, 
mSPELLER, gSPELLER.  
 
 

1. INTRODUCTION 
 
The planted motif problem (PMP) is a fundamental search 
problem with applications in computational biology, 
especially in locating regulatory sites, sequence 
classification and building phylogenetic trees [1], [2], [3]. 
The (l, d) planted motif problem can be defined as: 

“Given a set of n DNA sequences, each of length L, find 
M, the set of sequences (or motifs) of length-l which have 
at-least one d-neighbour in each of the n sequences”. A d-
neighbour is a sequence of length l that differs from the 
motif in at most d positions. We refer to a sequence of 
length l as an l-mer in the rest of the paper.  
 
Many approaches have been previously proposed to solve 
the planted motif problem. These approaches can be 
classified into two categories, heuristic and exact. 
Heuristic algorithms are very popular but they are not 
guaranteed to always find the correct answer. 
CONSENSUS, WINNOWER, Gibbs Sampling, Random 
Projections are some approaches that fall in this category. 
Exact algorithms on the other always produce the correct 
answer. These algorithms are also referred to as 
exhaustive enumeration algorithms. SPELLER [4], 
MITRA [5], PMSprune [6], Voting [7], RISOTTO [8] are 
some approaches that fall under this category. These 
algorithms can further be classified into pattern-driven 
and sample driven approaches. Pattern-driven approaches 
search all the possible |Σ|l  l-mers to find the motifs. These 
algorithms have the time complexity of Ω(|Σ|l). These 
algorithms are therefore only suitable for smaller values of 
l and perform prohibitively poorer for larger values of l. 
Sample-driven approaches on the other hand enumerate 
the l-mers in the input sequences to find the motifs. 
Sample-driven approaches are often limited by space 
requirements. 
 
Sagot introduced a suffix tree based algorithm for solving 
planted motif problem [4] called SPELLER. This 
algorithm starts by building a generalized suffix tree for 
all the input sequences and uses this tree to "spell" all the 
motifs (called models in [4]). This algorithm is very 
efficient in terms of space. MITRA [5] uses a variation of 
suffix tree called Mismatch trees. MITRA works by 
splitting all the possible pattern space into disjoint 
subspaces starting with a given prefix thus breaking the 
problem into sub-problems. MITRA is more efficient than 
SPELLER in terms of both memory and space. SMILE [9], 
PSMILE [10], RISOTTO [8] are extensions to the 
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SPELLER algorithm, RISOTTO being the most recent 
approach. It uses maximum extensibility to efficiently 
spell the motifs. 
 
Voting is a hashing based approach to solve PMP. Though 
it is efficient compared to brute force techniques, it was 
not able to solve problems with d greater than 5 as its 
running time increases exponentially with d. 
 
PMS1, PMS2, PMSi, PMSP and PMSprune [6] are the 
most recent exact approaches. PMS1 is a simple approach. 
It enumerates all the l-mers in the input sequences and 
finds the motifs making use of radix sort. PMSi, PMSP, 
and PMSprune are based on similar idea. PMSprune is the 
most efficient algorithm among those. PMSprune was able 
to solve to solve the (19,7) instance which was not 
reported as solve previously in the literature. 
 
All the exact approaches discussed above have been 
designed to work on serial computers and are not suitable 
for straightforward parallelization on current multicore or 
GPU architectures. A recently proposed parallel approach, 
BitBased, is based on working with bitarrays, and can be 
effectively parallelized on multicore and GPU 
architectures [11] [12]. However, the memory requirement 
is a bottleneck in this approach for solving (l,d) PMP 
problems as l and d increase. There have not been many 
attempts to propose a parallel approach based on suffix 
tree. To the best of our knowledge, PSMILE [10] is the 
only parallel suffix tree based approach that has been 
proposed. It can be seen from PSMILE that it is not 
straightforward to parallelize a suffix tree based approach 
as it is difficult to distribute the work equally among all 
the processors. However, the approach has not been tested 
on current multicore machines. 
 
Tree based algorithms are notoriously hard to parallelize 
and even more so on GPU architecture that requires 
execution of large number of concurrent threads to 
achieve efficiency. Additionally when the tree structure is 
not balanced, the load distribution across different cores 
becomes an important issue. Another issue we need to be 
aware on multicore architectures is that caches are shared 
by different cores and a cache line that is updated by 
different cores generates a lot of memory traffic. 
Therefore it is desirable to have a parallel algorithm that 
works, where different cores update different portions of 
the storage area.  
The rest of the paper is organized as follows. In the next 
section, we present the generalized suffix tree and core 
suffix tree algorithm, called the SPELLER algorithm [4], 
to solve the PMP. In Section 3. we explain the difficulties 
in parallelizing this algorithm for (Intel) multicore 
architecture and present techniques to overcome these 
difficulties. In Section 4. we present the GPU architecture 

and discuss the issues in parallelizing suffix tree method 
for this architecture. We then present adaptations to the 
core suffix tree method to obtain an implementation that is 
efficient and scalable for GPU architecture. Section 5. 
presents experimental results. We refer to our 
implementation of SPELLER on multicore and GPU as 
mSPELLER and gSPELLER respectively. 
 

2. THE CORE SUFFIX TREE 
ALGORITHM  
 
The basic suffix tree based method to solve PMP, called 
the SPELLER algorithm, was first introduced by Sagot [4]. 
It works by constructing a generalized suffix tree using the 
input sequences and then finding the motifs (or spelling 
the models) using this generalized suffix tree. Following 
that many modifications and extensions were proposed to 
improve the performance [8] [9] [10]. In this paper we 
adapt the original SPELLER algorithm for efficient 
implementation on multicore and GPU. This requires 
addressing several issues related to memory bottleneck, 
unbalanced load, conditional computation structure 
inhibiting concurrent execution of threads, etc. These are 
discussed and addressed in Section 3. and Section 4. 
 
2.1. Suffix tree 
 
Suffix tree is a data structure that represents all the 
suffixes of a sequence. Each suffix of the string 
corresponds to exactly one path from the root of the tree 
to a leaf. Many algorithms exist to construct suffix tree in 
linear time. We choose Ukkonen's algorithm. Suffix tree is 
compact version of suffix trie. Figure 1. shows the 
difference between a suffix trie and a suffix tree. Though 
nodes 2, 5, 6, 8 cannot be seen in the suffix tree, they are 
implicitly present. These nodes are called implicit nodes 
and the remaining nodes are explicit. A node can be 
uniquely referenced by {edgeNum, length} pair. For 
example the explicit node 3 can be referenced by {2, 1}, 
implicit nodes 2, 5, 6, 8 can be referenced as {1, 1}, {1, 
2}, {4, 1} and {4, 3}. To represent an edge sequence, i.e. 
the sequence corresponding to an edge, we use 
{fromIndex, toIndex} pair instead of using the whole 
sequence. For example in Figure 1. the edge sequence of 
edge 4 is {1, 3}. For solving planted motif problem we 
use a generalized suffix tree which is a single suffix tree 
for a set of sequences. In a generalized suffix tree each 
suffix in each of the sequences corresponds to exactly one 
path from the root to a leaf node. If more than one 
sequences have the same suffix, then the path from root 
leads to the same leaf node. To avoid that a special 
symbol that is not in Σ and that is unique to each input 
sequence is appended to each input sequence. In case of 
generalized suffix tree we also need to add the sequence 



number to represent an edge sequence, i.e. an edge 
sequence is now represented by the tuple {fromIndex, 
toIndex, seqNum}.                     
 

                  

                

                                       
 
Figure 1. (a) Suffix trie (b) Suffix tree for the Sequence 

CGGT 
 
 
2.2. Finding the Motifs 
 
Once the generalized tree, GT is constructed using the 
given n input sequences, the SPELLER algorithm 
proceeds by finding the motifs recursively until the valid 
motifs are found or the required length is exceeded. Since 
we use a single suffix tree for all the sequences, we need 
to additionally store some sequence information in the tree. 
To do this each node in GT is assigned an array of size n 
denoted by Colors. Colors[i]  for a node x is 1 if x lies on 
at least one path from root to a leaf that corresponds to a 
suffix of sequence i. It is 0 otherwise. We can use a bit 
vector to implement Colors array. Note that in the 
SPELLER algorithm color set size, CSS, information is 
also stored at each node but we don't use it in this paper. 
Let p(x) represent the path from the root of GT to the node 
x. (x, xerr) is called node occurrence of a sequence m if 
dist(p(x), m) = xerr where dist(y,z) denotes the Hamming 

distance between sequences y and z of equal length. For 
an error value d, the occurrence list of a sequence m, Occm 
can be defined as a set of all node occurrences (x, xerr) 
such that xerr does not exceed d i.e Occm = {(x, xerr) | xerr ≤ 
d}. For α ϵ Σ, we can generate the occurrence list of mα, 
Occmα, from the occurrence list of m, Occm using the 
following lemma. 
 
Lemma 1. [4] (x, err) is a node occurrence of mα if and 
only if one of the following satisfy: 

a. (parent(x), err) is a node occurrence of m and the 
label on the edge from parent(x) to x is α.. 

b. (parent(x), err-1) is a node occurrence of  m and 
the label from parent(x) to x is β ≠ α. 

 
The key idea of the SPELLER algorithm is presented in 
Algorithm 1. The detailed algorithm can be found in [4]. 
The original SPELLER algorithm also uses other data 
structures but we do not use them as we found that they 
did not improve performance. SpellModels is called 
initially with parameters k=0, m = ε, Occm = (root,0). It 
recursively calls the SpellModels incrementing the length 
and appending a residue. 
 

3. ADAPTING SPELLER ON MULTICORE 
 
Tree based algorithms are not straight forward to 
parallelize, especially if the tree is unbalanced. It is 
especially challenging to balance the load among multiple 
processors. SPELLER is a tree based algorithm and suffix 
tree by nature is very unbalanced. A previous attempt to 
parallelize SPELLER can be found in [10]. In [10] the 
count of the residues is used as the basis for distributing 
the load among multiple nodes.  
 
In this paper we present a simpler and more balanced 
approach for parallelizing SPELLER. Note that we do not 
parallelize the construction of suffix tree in this paper. We 
only parallelize the spelling part of the approach. The 
main idea behind our approach is to start spelling from a 
length l' > 0 as opposed starting from length 0 in the 
original SPELLER algorithm. We first generate a node list 
containing all the nodes, both explicit and implicit, at 
level i and then use the node list to generate the 
occurrence list for a sequence of length l'. For a node x, let 
p(x) denote the sequence that leads from the root to node x. 
Let NodeList(i) = {(x, p(x))  | x  is a node at level  i }. We 
have seen that occurrence list of a sequence represents all 
the nodes that can be reached using the sequence or a d-
neighbor of a sequence. Node list on the other hand 
represents all the nodes at a given level. So to obtain 
occurrence list for a sequence of length i from a node list 
of level i we need to filter out the nodes from the node list 
that do not correspond either to the sequence itself or d-



neighbors of the sequence. Algorithm 3. gives the 
procedure to obtain occurrence list from a node list. 
 
Algorithm 1. Finding the Motifs 
 
 
1: procedure SpellModels(k, m, Occm) 
2: if k = l then 
3:  output m 
4: else 
5: for each α in Σ do 
6:  generate Occmα  using Occm 
7:  Let Colorsmα be the sum of Colors of the node 

occurrences of mα 
8:  if all the bits are set in Colorsmα then 
9:   SpellModels(k + 1,mα,Occmα) 
10:  end if 
11: end for 
12: end if 
 
 
As we have seen in Section 2., the function SpellModels is 
called with arguments (0, λ, Occλ) where 0 represents the 
length of the model, λ is an empty sequence representing 
the model and Occλ is the occurrence list of λ which is 
(root, 0). In our approach we replace a single call to the 
function SpellModels with a loop as shown in Algorithm 2. 
The loop can then be easily parallelized by distributing the 
sequences of length l' among all the processing nodes. 
Note that the sequences can be assigned either statically or 
dynamically among the processors. If they are distributed 
statically, i.e equally among all the processors, the load is 
more unbalanced as some processors might be assigned 
more sequences that needs to be spelled to a longer length 
while some processors might have very few of such 
sequences keeping them idle for a longer time. So, to 
avoid that, we use dynamic distribution of sequences. In 
this case the processors are only assigned a small number 
of sequences initially. When a processor is done with its 
sequences it fetches the next available sequence to work 
on. 
 

4. ADAPTING SPELLER ON GPU 
 
GPU is a massively parallel, multi-threaded, manycore 
processor. Each GPU device is an array of streaming 
multiprocessor which in turn consists of a number of 
scalar processor cores. GPU is capable of running 
thousands of threads concurrently. It is able to do so by 
employing SIMT(single-instruction multiple-threads) 
architecture. The threads are created, scheduled and 
executed in groups called warps. All the threads in a warp 
share a single instruction unit. The threads in a GPU are 

extremely light weight and they can be created and 
executed with zero scheduling overhead.  
 
Algorithm 2. Finding Motifs in Parallel 
 
 
1: for each mi of length l’  do 
2:  SpellModels(l’, mi, Occmi ) 
3: end for 
 
 
CUDA is a parallel programming model that enables 
programmers to develop scalable applications to be 
executed on GPU. It exposes a set of extensions to C and 
C++. A CUDA program is organized into sequential host 
code which is executed on CPU and calls to functions 
called kernels which are executed on GPU. A kernel 
contains the device code that is executed by the GPU 
threads in parallel. CUDA threads can be grouped into 
thread blocks. Using CUDA one can define the number of 
blocks and the number of threads per block that can 
execute a kernel. 
 
4.1. Memory Organization 
 
The device RAM is virtually and physically divided into 
different types of memory: global, local, constant and 
texture memory. Apart from device RAM the threads can 
also access on-chip shared memory and registers as shown 
in Figure 2.. Global memory and texture memory have 
highest latency compared to the other types of memory. A 
thread has exclusive access to its local memory. All the 
threads in a block can access on-chip shared memory. All 
the threads across all thread blocks have access to global, 
texture and constant memory. Constant and texture 
memories are read only while global is both read and 
write. 
 

 
 

Figure 2. GPU Memory 
 



 
4.2. Performance Considerations 
 
A CUDA program should be properly designed taking 
advantage of the resources for better performance. Since 
GPU uses SIMT architecture in which all the threads in a 
warp use a single instruction unit, the best results can be 
achieved when all the threads in a warp execute without 
diverging. When threads diverge they are executed 
serially, thus decreasing performance. 
 
Global memory has very high latency. But by coalescing 
the global memory accesses, high throughput can be 
achieved. For example if the threads in a warp access 
contiguous address, then only two transactions are issued. 
But if the threads access separate addresses then 32 
transactions are issued. 
 
Shared memory is divided into equally sized blocks called 
banks. If two threads in a half warp access the same bank, 
this would result in bank conflict and the accesses are 
serialized thus reducing the effective bandwidth. In order 
to avoid this, the programmer should try to make sure that 
the threads in a half warp access different banks.  
 
The memory latencies can be hidden by executing other 
warps when a warp is paused. So to keep the hardware 
busy there should be enough active warps. Occupancy is 
the ratio of number of active warps per multi-processor to 
the maximum possible number of active warps. If the 
occupancy is too low, then the memory latency cannot be 
hidden resulting in performance degradation. So the 
programmer should try to increase the occupancy to 
effectively use the hardware. GPUs have proved efficient 
for many applications. It is very challenging to efficiently 
implement SPELLER on GPU. One of the reasons being 
the memory limitations of GPU. GPU offers different 
kinds of memory with varying memory latencies, some 
with caches and some on chip memories. 
 
Algorithm 3. Generating Occurrence list from Node 
list 
 
 
Input: NodeList(l’), m 
Output: Occm 
1: for each (nodel’  , seql’  ) in NodeList(l’) do 
2:  error = dist(m, seql’  ) 
3:  if error ≤  d then 
4:   add (nodel’  , error) to Occm 

5:  end if 
6: end for 
 
 

 
In gSPELLER, we distribute the work among all the 
blocks in the same way as we do for multicore. We 
distribute all the sequences of length l', where l' is the 
length at which we start spelling, among all the blocks. 
Though the suffix tree itself requires less memory, the 
runtime memory requirements of SPELLER is high. 
SPELLER recursively calls SpellModels function 
generating an occurrence list at each level of recursion. 
Let ci be the total number of nodes, both implicit and 
explicit, of level i. Let l' be the length at which we start 
spelling. The runtime memory requirement is therefore 
O(ci . (l-l')). For example, let’s say the tree consists of 
10000 nodes on average for each level and l'=5 . For a (15, 
4) problem, we would require 1.2 MB of runtime memory, 
assuming 12B for each occurrence list node. But this is for 
a single processing node. The more the number of 
processing units, the more the run time memory. We have 
seen that using CUDA we can declare very large number 
of blocks. For example in Tesla, we can declare 65535 
blocks in a single row of a grid. But with only 4GB of 
global memory, we are limited to a maximum of 3333 
blocks. To overcome this limitation we once again use 
dynamic allocation of sequences, as we do in the case of 
multicore, instead of statically assigning the sequences 
equally among all the blocks. Also note that though one 
can declare large number of blocks using CUDA, the 
maximum number of blocks that can be active at a time is 
very less, 64 for Tesla. So we only declare 64 blocks and 
dynamically distribute the sequences among the blocks. 
We use a variable called nextSequence to assign the 
sequences to the blocks. Whenever a block is done with 
the sequence assigned to it, it gets the next sequence using 
the nextSequence variable and updates the variable. Note 
that one must use atomic operation to achieve this. 
 
The CUDA programming language that we use to 
implement applications on GPU does not support 
recursion. But the SpellModels function is a recursive 
function. So to implement SpellModels on GPU, we use 
two stacks. One stack contains the occurrence arrays and 
the other stack contains the information about the 
sequence to which the occurrence array belongs to. 
 
In the original SPELLER algorithm, we read the 
occurrence list of a sequence $m$ and generate the 
occurrence list for mα where α ϵ Σ and continue spelling 
using mα. When mα is done we again read the occurrence 
list of m and generate the occurrence list for mβ where β ϵ 
Σ \ {α}. Observe that we read the occurrence list of 
$m$ four times once for each residue. We use global 
memory to store the occurrence list and the reads and 
writes to global memory are very expensive due to the 
high latency rate of global memory. So to avoid multiple 



reads of a single occurrence list, we read the occurrence 
list of m and generate the occurrence lists for all the 
residues at once so that we don't have to read the 
occurrence list of m again. To do this we need four times 
the memory which is still achievable as we only use 64 
blocks. 
 
4.3. Tree Representation 
 
We have seen in Section 2. that to get an edge sequence 
we need fromIndex, toIndex and seqNum values. In order 
to get a residue on the edge sequence one must first obtain 
the fromIndex, toIndex, seqNum and use these values to 
get the index of the residue and then read the residue from 
the sequence corresponding to seqNum. This adds up to 
four reads. To decrease the number of reads we include 
the sequence itself instead of the index information. We 
replace fromIndex, toIndex and seqNum with bitSeq and 
length where bitSeq is the bit sequence corresponding to 
the sequence and length is the length of the sequence. Bit 
sequence can be obtained by replacing A by 00, C by 01, 
G by 10 and T by 11. For example the bit sequence 
corresponding to edge sequence TAACG is 1100000110 
and length is 5. This would require only two reads one for 
bitSeq and one for length. But this can be done only if the 
sequence length is less than or equal to 16(assuming 
bitSeq is an integer) because each residue needs two bits 
and there are 32 bits in an integer. If an edge has sequence 
length greater than 16 we split the edge into multiple 
edges each of length less than or equal to 16. We split the 
edges only if the edges are at a level less than or equal to l 
because otherwise we don't need them. For example if we 
are solving (15,5) problem, we only split the edges that 
are at a level less than or equal to 15 as we use only those 
edges for spelling.  
 
The suffix tree is represented using two arrays node array 
and edge array. Each array element in the node array 
corresponds to a tree node and similarly each array 
element in the edge array corresponds to a tree edge. We 
use breadth first traversal to convert the suffix tree from 
the tree structure into array structure. Both the node array 
and edge array are bound to texture memories. Note that 
gSPELLER works only if the suffix tree fits in the 
memory as in the case of the sequences that we have 
tested.  
 
4.4. Filtering 
 
Instead of constructing the tree with all the $n$ sequences, 
we only construct the tree for a smaller number of 
sequences, n' ≤ n, and find the motifs that are present in 
all these n' sequences. These motifs are called candidate 
motifs. The candidate motifs are then filtered out by 

checking if they are present in the remaining (n-n') 
sequences. This approach had been previously used in 
[11], [12]. Unlike in [11], the main purpose of using 
filtering is not to reduce memory requirement but to 
improve performance. With decrease in number of 
sequences used for construction of suffix tree, the number 
of tree nodes decreases and so the size of occurrence list 
also decreases. Hence the time spent in reading and 
writing from global memory also reduces improving the 
overall performance. Note that the value of n' should not 
be too low in which case the time spent in filtering 
candidate motifs exceeds the time taken for obtaining the 
candidate motifs. It is straight forward to parallelize the 
filtering step. The candidate motifs are distributed among 
all the processors in case of multicore and threads in case 
of GPU. 
 

Table 1. Time Taken by mSPELLER on multicore, 
gSPELLER on GPU and their comparison with other 

approaches 
 

 
 

5. EXPERIMENTAL RESULTS 
 
We have implemented mSPELLER on a 4 quadcore 2.67 
GHz Intel Xeon X5550 machine with a total of 16 cores 
and gSPELLER on Nvidia TESLA C1060 with 240 cores 
and Nvidia TESLA S1070 with 960 cores. We have tested 
our code with 20 input sequences of length 600 each. We 
tested it on random sequences with motifs planted at 
random positions in the 20 sequences. Table 1. presents 
the results of mSPELLER, gSPELLER on different 
number of cores/devices and their comparison with other 
approaches. mSPELLER-x shows the results of 
mSPELLER on x number of cores and gSPELLER-x 
shows the results of gSPELLER on x GPU devices. We 
compare the results with the results of BitBased approach 
on the same machine. It can be seen from Table 1. that the 
mSPELLER-16 performs better than BitBased on larger 
problems. The reason being that BitBased falls into 
memory issues for larger problems and uses the iterative 
approach which reduces its performance, whereas 
mSPELLER has no such memory issues. Also it can be 



seen that gSPELLER-1 which has 240 cores does not 
perform well compared to mSPELLER-16. This is 
because of high thread divergence of gSPELLER. One of  

 
 

Figure 3. Plot Showing Scalability Results of 
mSPELLER for (17, 6) Problem 

 
 

 
 

Figure 4. Plot Showing Scalability Results of 
gSPELLER for (17, 6) Problem 

 
the main criteria for an algorithm to perform well on GPU 
is minimal thread divergence. But the gSPELLER 
algorithm is comprised of many conditional statements 
leading to thread divergence. Also the threads need to be 
synchronized at many places which adversely effect the 
performance. For example, as we have seen in Section 4. 
gSPELLER uses stack to store the occurrence list. The top 
of the stack should be carefully modified for getting 
correct results. The stack top should not be modified by a 
thread while some other thread is using the stack top. To 
avoid that, the threads must be synchronized before and 

after each time the stack top is modified. This 
significantly reduces the performance of gSPELLER. It 
can be seen from the Figures 3. and 4. that mSPELLER 
and gSPELLER scale well with increase in number of 
cores and devices respectively for (17,6) instance. All 
other instances also have a similar scale-up. 
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