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1 Introduction

Granular materials are ubiquitous in our world, and we can see examples in everyday life. Examples of
granular materials include grains, sand, pebbles among other things. Technically, the definition of granular
materials is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy at
every particle interaction. Such grains can be of any size, be it from small sizes like 1 µm to large ones like
icebergs.
Sand belongs to a class of granular materials called powders, which have the special property of being
more cohesive and able to be suspended in a gas, due to their small particles. The simulation of granular
materials is of interest to engineers due to their varied applications in various industries, be it agriculture,
pharmaceuticals to even energy production. In addition, they find application in numerous movies and games
as part of the surrounding environment.
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1.1 Physical properties

Sand, and other granular materials have properties which differ from other states of matter, i.e. they can’t
be exactly classified as either solids, liquids or gases. They can support small amounts of shear stresses
indefinitely, an example of which can be seen in sand dunes and their like. Such a feature differs them from
liquids and other fluids, as fluids deform under any amount of shear stress. Due to their ability to flow, they
are definitely different from solids as well. Both of these properties combined can sometimes manifest as
clogging in a constriction, as the normal stresses can make the material withstand large shear stresses. In
addition, they are often inhomogeneous and anisotropic, and can often exhibit avalanches.
As shall be detailed later, such materials have this ability to withstand shear stresses due to the effect of
friction, including interaction with other particles as well as any solid contact with the boundaries. Due
to this, the hydrostatic pressure in granular materials tends to cap off rather than increase indefinitely, as
the weight load is distributed to the surrounding walls due to static friction. This is of special interest to
civil engineers involved in silo construction, as this friction can cause grain silos to collapse if not designed
properly.
As mentioned earlier, granular materials are also characterized by a loss of energy at every particle interaction.
Thus all particle collisions can be assumed to inelastic. Though this is not accurate, it is qualitatively
similar, as due to the large number of particles, the number of particle interactions in finite time approach
infinity. This leads to the accumulation of the loss of energy resulting in the in-elasticity assumption. This
phenomenon is also known as inelastic collapse. [4] provides some useful examples of this, and other behavior
described in this section.

2 Sand Simulation

This project deals with the simulation of sand, and to do so we must understand the problem at hand. Sand
exists in various states of density, which can affect its behavior. The most common form in which sand exists
is the medium-to-high density sand which can flow, and also stand. In this form, some parts of sand actually
behave as solids, so even if any flow exists, it will not propagate to the bulk of the material. Rather it will
remain restricted to the boundaries. The other common form is as a suspension in a gas. This is naturally
observed as sandstorms.
Any simulation methods designed have a natural extension to granular materials. For example, situations
like avalanches and landslides can also be simulated to techniques very similar to the methods described
later.

2.1 Stress

To understand the behavior of sand, it is essential to understand the underlying physical quantities. The
first such physical quantity is stress. Stress is defined as the force acting on a surface per unit area, i.e.
σ = F/A. In 3-D space, this can be naturally expressed as 2nd order tensor:

σ =

σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

 (1)

Though a general 2nd order tensor would have 9 independent components, under equilibrium conditions, the
stress tensor has only 6 independent components as shown above, which results in a symmetric matrix. This
definition of stress is clearly dependent on the definition of a basis x-y-z in 3-D space, and so we can have
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an infinite number of stress tensors for any point in space. To talk about stress, certain invariants need to
be defined, so behavior can be defined in a manner independent of the frame of reference.
The first and most natural way to do so, would be to use the eigendecomposition of this matrix. The resulting
3 eigenvalues, σ1, σ2, and σ3 are called the principal eigenvalues. Another way is to define stress invariants.
In fact, hydrostatic pressure is an example of a stress invariant, being equal to 1/3 times the trace of stress
matrix. Thus in stress notation it is also known as I1, the first stress invariant. Similarly, 2 other stress
invariants can also be described.
Another alternate set of invariants(J1, J2) can defined on σ − I1δ, which are known as the deviatoric stress
invariants. We shall be using the invariant J1 in later description.

2.2 Yield Condition

The yield condition describes whether a materials will yield under the application of stress. It is specific to
materials, and many different yield conditions have been proposed for different materials. The one relevant
to granular materials is the Mohr-Coulomb yield condition, and it is defined using I1 (also written as mean
stress or σm), i.e. our hydrostatic pressure, and an invariant called the Tresca equivalent stress. However,
Tresca equivalent stress has smoothness issues in simulation, and thus a J2 (or σ̄), i.e. our 2nd deviatoric
stress, also known as Von Mises equivalent stress can be used. It is defined as:

J2 =
‖σ − I1‖F√

2
(2)

The yield condition, or the no-slip condition can then be defined as:
√

3σ̄ < σmsinΦ (3)

where, sinΦ is the coefficient of friction, defined as the yield angle. Thus, any point lying inside the yield
surface by the above equation will not yield to that stress value, remaining rigid. It is important to note,
that the Frobenius norm is used to define the equivalent stress, and as such is a non-linear function.

2.3 Simulation complexity

Any scene involving sand simulation contains of the order of tens of millions to even billions and trillions of
sand grains. Thus any simulation method must scale well to such a large scale. The scale of the problem also
throws up a representational issue, i.e. whether sand in the simulation should be represented as a continuum,
or as discrete particles. As we shall see later, both approaches have been tried out in existing approaches. In
addition, due to the non-linearity of the yield condition, it is difficult to define an efficient numerical method,
as most methods exist for linear problems.

3 State-of-the-Art

In this section we give a brief overview of existing work on sand simulation. We encourage the reader to
refer to the source material for further details.

3.1 Particle-Based simulation of Granular Materials, Bell et al. [2]

This paper approaches the granular material simulation problem from the discrete domain. Every grain is
constructed from spherical primitive particles, and a simplified rigid body simulation is run on the set of
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spheres. For defining rigid body interaction, the paper uses Molecular dynamics, in which every interact-
ing/colliding particle pair is allowed to intersect, and the depth of intersection is used to define the interacting
forces. The paper then details the normal and tangential forces that act on each particle pair.
Since no amount of tangential forces can keep to spherical particles in an unstable equilibrium, there is a
need for forces that will keep these particles at rest. Without such forces, we would be unable to observe
something as simple as sand piles. To do so, instead of using spring forces between interacting particles, the
paper proposes the construction of grains as tetrahedral arrangements of spheres. The normal forces arising
from the interaction of such grains would result in the desired stability in sand piles.
In order for the system to interact with rigid bodies, the paper decomposes rigid bodies into similar con-
glomerations of spheres by sampling sphere on the surface of the mesh, or at a certain distance away from
the mesh by using a distance field. To improve the efficiency of collision detection, the proposed method uses
uniform grids to bin each object. Since particles move under adaptive timesteps restricting them to move
fractions of grid cell dimensions at each timesteps, every grid cell contains links to every particle lying in it,
and those lying in the 26 neighboring cells. This results in lesser number of updates to the grid, and move
memory coherency when retrieving these lists from each cell. For such simulations where stagnant regions
abound, this is a massive gain in efficiency.
The paper has an advantage of being accurate and faithful to all aspects of the behavior of granular materials.
However, it suffers from issues of scale, being able to handle scenes of the order or 100k spheres, and thus
not suited to large scale sand simulation.
With this in mind, we look at the continuum approach to the problem.

3.2 Animating Sand as a Fluid, Zhu et al. [5]

This paper attempts to simulate sand as an extension of an existing fluid simulator. It attempts to add on
the additional behavior as a “bootstrap” addition to grid based fluid solvers. Thus after doing the regular
fluid simulation steps of advection, body forces, and pressure solve, it evaluates the effect of friction on sand.
To do so, it first estimates the stress of the material in 2 cases, whether the sand is acting as a fluid, or solid.
This is done as a function of the deformation rate or strain rate D = [∇u +∇uT ] The solid stress is used to
check whether the cell satisfies the yield condition or not. If it does not, the fluid stress is used to modify
the grid velocity by the frictional force. If it does, then the velocities of such rigid cells are projected to the
space of rigid body motions, i.e. D = 0. This is done by an approach outlined in [3].
This results is relatively accurate behavior and can handle most cases of sand simulation. However, it still
simulates sand as a perfect fluid, and thus does not simulate the pressure capping effect of sand. As a result
it cannot simulate examples such as a simple hourglass, which relies on this property. Still, the method is
extremely robust and scales very well to large scale scenes, as it is independent of the number of grains in
the scene.
I wish to propose a method to improve this solution method, as the method to add the effect of friction is
bootstrapped and not an integral part of the simulation. At the least, an iterative solution is necessary to
properly map the frictional behavior of sand.

4 Proposed Method and Progress

4.1 Proposed method

As noted in the paper [5], the yield condition must be checked for different continuum behavior to be applied.
However, the approach presented in the paper applied only one iteration of an optimization. In actuality,
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application of frictional stress would destroy the divergence-free property of the velocity field. As is apparent,
we have multiple constraints which must simultaneously satisfied. The constraints are:

• Incompressibility: ∇.v = 0 or Unilateral incompressibility: ρ < ρmax⊥p > 0

• Boundary conditions: u.n ≥ 0

• Yield condition:
√

3σ̄ < σmsinΦ

The first 2 conditions are linear, but the 3rd is not. But linearized the yield condition is simple, the only
thing making it non-linear is the norm used to define the equivalent stressσ̄, which can simply be converted
to a 1-norm or the infinity norm.
Then we rely on the initial observation of granular materials, that all interactions are inelastic. Thus, from
the observation made in [1], the incompressibility solution can be expressed as a minimization of kinetic
energy. To clarify, since interactions are inelastic, any force, in this case stress, will attempt to minimize the
total energy of the system, which here is the kinetic energy.
Thus, our problem can be expressed as a Quadratic minimization problem with linear constraints. However,
methods for solution of general quadratic problems are slow, as noted in [1], where the KKT based PATH
solver was used. Instead, we can attempt to solve the problem in an iterative fashion, where we solve for
each of the constraints independently using different methods, and recurse. In such a method, a LCP (Linear
Complementarity Problem) solver can be used for constraints 1 and 2, while we can apply constraint 3 as a
post process and iterate. The overall problem is not an LCP problem as the frictional yield constraints are
not orthogonal to the other constraints, as is required for the LCP formulation.

4.2 Progress Made

For this approach to be tested out, I started out trying to develop a 3-D fluid simulator. I used the
variational approach outlined in [1] as a base model, i.e. instead of using a conventional incompressibility
solve formulation, I used a variational formulation based on kinetic energy formulation. This model allows for
better solid-fluid interaction, and it can handle sub-grid interactions, which can result in stair-case artifacts
in conventional incompressibility solvers.

4.2.1 Coding effort

I reused the earlier implemented particle system for use in the this solver. In addition, I used a Conjugate
Gradient solver developed by Bridson et. al. for solving sparse linear systems.
Apart from that, the system was developed from scratch. The following list outlines the overall coding effort
made:

• 3D grid based simulator developed

• Uses variational incompressibility solver, and grid based advection

• Rigidity projection: for projecting velocity fields of rigid components to the space of rigid body motions

– All rigid body motions must be of the form vp = vC +ω× (rp− rC), where C is the center of mass

– Accumulate mass(M), momentum(Mv) and angular momentum(Mω) for each set of connected
rigid cells
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– Determine vC and ω as MvC = Mv, Iω = Mω. The inertia tensor can be constructed as well in
the previous step

• Particle system coupled with the grid simulator

– Density field built each frame from particle distribution using linear interpolation weights
– Particles are tracers, i.e. they get velocity from grid

• Other minor components like code to check the yield condition after evaluating stress, rendering etc.

4.2.2 Results

I developed a simple example of falling sand to demonstrate the simulator. It demonstrates 10k grains of
loose sand falling under the action of gravity. Notice how even the sand eventually ends up spread on a
larger area on the floor than the cross-sectional area of the initial pile. The figures below show some samples
of the example: The example runs in real time with 10k particles, on a 10x10x10 grid.

Figure 1: Falling sand example

4.3 Future Work and Conclusion

Due to problems faced in the theoretical formulation and the implementation of a fluid simulator, I was not
able to complete all of my set goals for the project. I have the following targets for the near future:

• Remove any remaining bugs in the simulator

• Add an LCP solver to test out the constraints listed in previous sections

Over a longer time frame, I aim to develop a better numerical solution method for sand, which would solve
the minimization satisfying all of the constraints. This includes testing with a KKT solver for the quadratic
problem, and attempting an LCP formulation.
In addition, I came across an interesting problem while trying to implement the solver. In involves trying to
calculate the fluid mass in any grid cell, which is essentially the fraction of the cell occupied by fluid. To do
so, we need to find the volume of the tetrahedron generated by the intersection of arbitrary tetrahedra with
this cuboidal grid cell. I tried searching for possible efficient solutions to this problem, all to no avail, so I
aim to try to find an efficient method to do this, which would let my solver interact with arbitrary solids.
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