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1. A brief review of new theoretical developments

Over the last ten years or so demography has made considerable progress on the theoretical

front. Old theories have been modified or discarded and  new theories have emerged to explain either

phenomena not observed before or those that stubbornly resist reduction to conventionally accepted

theories. A few examples will suffice to illustrate the point. First, explanations of fertility changes were

traditionally fairly loose and imprecise. A case in point is the set of rather disconnected propositions that

drawn from the so-called demographic transition framework (Notestein, 1945). More tightness was

introduced through contributions by sociologists  as Caldwell (1982), Coale and Watkins (1986), 

Mason(1997), and Retherford (1985),  as well as economists as Becker (1960) and Easterlin and

Crimmins (1985) who, armed with utility maximization frameworks, lent more rigor though not

necessarily more truth, to theories of fertility change. The price paid for this extra amount of rigor was

high: for the last twenty years a rigid dichotomy prevailed in the field whereby a paradigm rooted in

economic calculus competes with a paradigm where individuals accomodate to social and cultural

constraints. However, as illustrated by a recent volume of the US National Academy of Science (1998)

such dichotomy is desintegrating as economic theories and corresponding models increasingly

incorporate social and cultural factors into the more conventional cost-benefit analysis with rational

actors. The new models attempt to explain behavior persistence and change as a function of both

individual economic calculations and accommodation to a social and cultural milieu. The models involve

complicated feedback mechanisms, and enable us to understand better the exogenous (and sometime

endogenous) impact of changes in policies (coordinating agents). Without exception, these models are

very demanding of  computing technology and empirical information.

Second, although the epidemiological literature on the spread of illnesses benefited very early

on from the insights of various deterministic and stochastic models, it remained somewhat stunted and

failed to yield the returns expected at the outset. Plagued with mathematical intractability and

informational demands that defied even the most ambitious data collection enterprise,  the sophisticated

machinery developed by Bailey (1975) or Bartholomew (1973), for example, was utilized only
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minimally, if at all by demographers. It is only recently and mainly through the influential work by

Anderson and May (1991) that such models were revived, fine-tuned,  and implemented to answer

empirical questions. An example of this are applications  to understand the spread of HIV/AIDS.

Although these  models are still on the shelves of practitioners of demography, there is growing pressure

to use them on  issues  ranging from health and mortality to those regarding relations between events in

the life cycle of young adults (Billari, et al., 1999). A very promising avenue of investigation has been

pursued by Phillipson and colleagues who embark in an attempt to marry epidemiological models that

operate in a social and political vacuum with a utility maximization framework that enables them to

introduce rational actors, define mechanism through which their actions can have an impact on

aggregate dynamics and those through which aggregate properties of the system influences individual

decision making. These, as the aforementioned  models involving social interactions, allow feedback to

exist between individual decision-making and aggregate properties of the system and, therefore, must

face and solve issues related to possibly multiple equilibria.

Third, demographers and sociologists alike have been aware for a long time that some

outcomes in the life of individuals--age at marriage,  pregnancy, divorce, health status, retirement--are

closely connected not just to isolated events or with fixed characteristics acquired in the past,  but with

entire strings of events and with rapidly changing characteristics. We have even developed a term to

refer to this type of strings, namely, ‘ life cycle stages’. For example, we are now coming to the

realization that propensity to divorce may be linked to the kind of family  environment and peer groups

experienced during early adolescence, and even the propensity to divorce of parents themselves. In

social stratification there is a fair amount of research that shows that occupational status at one point in

time is a function of the entire past occupational career (as well as marital careers and educational

careers), namely, the sequence of status the individual occupied in the past. Similarly, the literature on

health status and mortality has produced convincing evidence showing that events in adult  life may be

traced to events that occurred earlier in life, even in utero (Barker, 1998). Finally, in criminology, a field

where demographers and economists have contributed a great deal, we have developed the notion of

‘criminal careers’ to understand persistent criminal behavior. This conceptualization enables us to
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understand how a particular sequence of events in the past  locks individuals into a future path where

the likelihood of engaging in additional criminal behavior increases.

In all these examples, the key issue seems to be that it is the precise sequence of states that an

individual occupies in the past that is relevant for the occurrence (non-occurrence) of events in the

future. The study of such phenomena has proven to be quite hard in part because it requires richer data

than are commonly unavailable to us. But the difficulties also stem from the fact that this type of

approach demands well developed technical tools that most demographers do not know or do not care

to learn. An additional obstacle is that feasible and promising procedures are insufficiently developed

and have not yet diffused broadly enough in the research community nor have they  been tested

extensively. Multistate hazard models and sequence analyses are good examples. I will review both

below.

Fourth, there are a number of demographic phenomena that require an  understanding of how

individuals eventually match with each other in terms of some a priori defined resources. Marriage is a

prototypical example of a matching problem but so are the processes whereby individuals get jobs, or 

when entire households are involved in decision making about migration of some of their members, or 

when siblings and parents agree on particular forms of social, material and emotional support, the so-

called intra-family intergenerational transfers. Characteristic of all these examples is the existence of

some type of dynamic process which requires search and agreement by several actors, all of whom are

trying to maximize some sort of benefit in cooperation (competition) with others. Thus, it is not

surprising that game theoretical approaches and bargaining models have been brought to bear to

elucidate some of them. But the models are difficult, the literature is opaque to most demographers, and

the estimation procedures are  involved and computer intensive.

Fifth, and lastly, we have known for sometime that exogenous economic, social and cultural

changes lead to the transformation of families and households. However,  inferences about the

occurrence of such transformations from observable family or household configurations--and about the

relation between these changes and exogenous factors--are hampered by the simple fact that the same

exogenous factors that lead to changes in individual propensities to group under the umbrella of various
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family or household forms affect demographic conditions as well. These, in turn, influence the 

availability of kin thereby constraining the actual frequency of certain family and household

configurations (Wachter, Hammel and Laslett,1978; Wachter et al., 1999). The problem is unsolvable

except via micro simulation models which enable us to estimate and factor out the magnitude of the 

impact of changes in demographic conditions, thus leaving a ‘uncontaminated’ observed change to be

explained by the operation of exogenous factors. The first such model was proposed by Wachter  and

colleagues although a new version by Wachter (Wachter et al., 1999) has been also used. There are a

number of alternative models and alternative uses proposed by Ruggles (1987) and Wolf (Wolf et al.,

1995) which have not yet found their way into mainstream demography. We will review some of these

later in the paper. 

Micro simulation models such as these are potentially useful in a number of other context, not

just for the study of families and households. And some of our increasingly complex theories will

necessitate that we test them using a blend of observed data and micro simulation. 

This paper is a brief review of  the models and associated estimation procedures  being applied

in each of the aforementioned. In each case I will present the main features of  the models, identify how

they enable us to improve over previous models by examining the range of their testable theoretical

implications  and, finally, review the estimation procedures and associated computational technology

needed to make some headway. I hope that my main point is rendered clearly: a substantial amount of

improvement is possible but  whether we succeed in realizing it or not  will depend on our ability to

increase the complexity of our explanatory frameworks, formulate novel study designs for the collection

of new data and, last but not least, take advantage of new computer technology. The domination of

standard statistics is rapidly giving way to alternative approaches that free the analyst from the need to

invoke restrictive and sometimes unrealistic assumptions. These approaches, however, are viable only

through intensive computing applications. Simultaneously, we should be able to formulate theories 

incorporating complexities that heretofore could not be reflected in the models designed to test them.

Since I am not the first to make this point (see Burch, 1999; Hanemman, 1988; Wachter, 1987),  I am

not solely responsible for issuing an assessment that could turn out to be wrong.
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2. Economic versus ideational theories of fertility

 Although the final conclusion of the Princeton fertility study has been recently challenged in at

least one country and attributed to incomplete data and faulty modeling (Galloway et al., 1994), it still

stands out in the form of a negative sweeping generalization: a significant fraction of the total decline of

fertility in Northern and Western Europe during the period 1870-1930 was not due to measurable

social and economic transformations, as the conventional demographic transition theory would have it.

The observation that fertility levels as well as the pace of decline tend to cluster along regional, ethnic

and language boundaries prompted the inference that changes were driven by a diffusion mechanism

whereby regional, cultural and language barriers could sometimes offer resistance to a wave of change

or, vice versa, precipitate further changes. 

Whilst the idea that diffusion may drive the process of fertility decline is quite reasonable and

attractive, it was never well formulated, that is, the mechanisms through which diffusion was supposed

to operate were never spelled out with precision. Further, testing of this weakened version of the

hypothesis was rarely done directly and instead proceeded via a residual test, e.g., what could not be

explained by measurable (“structural”) factors must be attributable to diffusion. 

In the aftermath of the Princeton fertility study the field experienced the fierce and rigid

opposition between two explanatory frameworks. One reduced fertility behavior to the outcome of

rational decision making by individuals seeking to maximize some type of utility. Although in its most

rigorous form, this framework was introduced in demography as a direct import from economics, a

much looser form had already been applied by demographers (the demographic transition theory is a

good example), and was also present in formulations apparently very distanced from the utility

maximization framework (Caldwell’s intergenerational flows is an illustration of this). The other

framework , a  much more loosely formulated one, was erected on the idea that fertility decision making

was respondent to influences from cultural factors and adherence to practices and beliefs characteristic

of ethnic, language or other groups to which actors belong. Waves of ideational  change originating in a

particular social context could sometimes (and under conditions that usually remain opaque) invade
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other social contexts and, if adopted, could go a long way toward explaining the demise of a high

fertility regime. An example of this is the idea that ‘westernization’ is at the root of fertility changes in

some developing areas.

Nowhere is the contrast between these two frameworks more starkly formulated than in

Cleland and Wilson’s rendition (Cleland and Wilson, 1987). In this review  the authors describe the

differences between the frameworks and  mount an attack on the economic explanation showing  that

all the available evidence regarding fertility decline in developing areas point to the existence of

influences associated with ideational factors that far outweigh those associated with individual

socioeconomic positions. Whether this is the case or not is not as fundamental as the  resolution of two

key theoretical issues. First,  is it reasonable to reify these two frameworks as if they were truly

competing entities in a zero-sum game ? Second, can we conceive of diffusion or ideational processes

where a new behavior is adopted without incorporating constraints imposed by individual’s

socioeconomic positions? In my view the answer to both is negative. I will  deal with each of them in

reverse order.

a. Diffusion processes do not occur in a socio-economic vacuum.

Elsewhere  (Palloni, 1998),  I offer  a definition of diffusion processes that captures the

complexities involved in representing the mechanisms through which diffusion occurs: ‘A diffusion

process is one where selection or adoption (rejection) of a behavior or practice depends on an

individual decision-making process that assigns significant influence to the adoption(rejection) behavior

of other individuals within the social system” (see also Montgomery and Chung, 1994; Montgomery

and Casterline, 1996; Montgomery and Casterline, 1998). The  definition implies the adoption of two

important premises. First,  diffusion results from individual decision making processes and are not, as

conventionally thought, the outcome of a somewhat mindless, a-rational choice of behavior. From this

point of view the contrast between, on the one hand, a rational actor whose decision depends on prices

and individual budgets and, on the other,  an impulsive individual whose actions depend on the

operation of obscure inclinations toward or against adopting some behavior,  is a false one. Second, the

distinction between  a situation involving diffusion and another that does not is the existence (non
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existence) of social influences, that is, effects of other’s behavior on ego’s behaviors. A key element is

thus the identification of the set of ‘significant others’ for a given individual and for a given behavior.

b. Integrating models I: sociological models 

Armed with this definition we can  translate theoretical propositions invoking diffusion process

into more or less refined models to be tested directly so that the diffusion explanation ceases to be

validated by default. There a number of ways of doing this and all involve integration into a single model

incorporating factors associated with both individual maximization calculus and social influences. For the

sake of brevity of exposition I choose to describe two models, one of sociological and the other of

economic inspiration. Unfortunately this does not do justice to the richness of this models (see also

Montgomery and Casterline, 1998; Strang and Tuma, 1993; Durlauf, 1999; Brock and Durlauf, 1995;

1999; Durlauf and Walker, 1998; Kohler, 1997) 

The first model is one of sociological inspiration. Here we  represent individuals choosing

among a set of alternative behaviors under a set of individual and social constraints. This

can be accomplished most efficiently positing the existence of a system with two states,

one representing adoption of the target behavior and the other representing adoption of a

different behavior. Subjects are allowed to move between these two states as a function of

individuals characteristics associated with social and economic conditions (costs and

utilities), external characteristics acting as constraints (or facilitators), influence of

external sources of ideas and effects of individual’s social networks. To capture the

dynamic of this two-state system we can formulate a pair of equations for the risk or hazard

of transitions between the two states:

:12i(t)=:o12(t) exp($Xi(t)+(Zi(t)+"Wi(t)G(Y(t))+gi12)

(1)

:21i(t)=:o21(t) exp($*X*i(t)+(Z*i(t)+"W*i(t)G*(Y*(t))+g*i21)

where :12i(t) is the risk of moving from state 1 (non adopter) to state 2 (adopter) for
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individual i at time t, :o12(t) is a baseline hazard, Xi is a vector of ‘structural characteristics’

of individual i, Zi is a vector valued function containing information on external sources of

information that may influence i’s choice, Wi is a contiguity vector for individual i

containing the weight assigned to the influence of contacts with individuals j=1,...i-1,

i+1,...N, where is N is the total number of members in the system, G is a functional

transform and Y is a vector of responses for members j=1,...i-1,i+1,...N. Finally, g12i is an

error term. The second equation defines the risk of moving from state 2 to state 1

(abandoning the new behavior). It is analogous to the first but with the possibility of

different baselines, different effects, and different matrices of covariates. The contiguity

vector is time dependent  to allow for changing influences derived from social networks

during the process. Similarly,  the vectors of responses Y and Y* allow for updating of

information about members of the system.

This model confronts a number of problems. The most important one is that its nature is  t ad

hoc since there is no theoretical formulation from which one can infer or translate specific mechanisms

through which  social influences and individual characteristics  affect decision making. This problem

disappears if one chooses an economic framework.

b. Integrating models II: economic models    

Although there are other formulations involving social learning (Kohler, 1997; Montgomery and

Casterline, 1998) I summarize here an attractive  model of effects of social interactions developed by

Brock and Durlauf (1995), Durlauf (1999) and Durlauf and Walker (1998).  The appeal of this

formulation is that it effectively marries an individual  utility maximization model incorporating social

interactions with discrete choice models that are  familiar and estimable from empirical data, at least

when the system is in equilibrium. One starts with a set of actors, i=1,...,I,  in some social context; each

actor desires to maximize utility at time t from adoption (non adoption) of a behavior wit that can attain

values 1(adoption) or -1 (non adoption). Their decision depends on maximization of a function V of 

individual characteristics Xit, perceived (average) response from other actors, wt*, and unobserved

external shock, git. The fundamental steps in the formulation of the models are to posit the nature of V
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and that of git. First, V is assumed to have a linear structure so that:

V(wit,Xit, git(wit ))= u(wit,Xit)-J/2(wit-wt*)2+git(wit)  (2)

The model is composed of  two types of utility: one is the individual utility embodied in the first

component u(.); the other is the social utility represented by the second component. This depends on a

parameter  J and a measure of social conformity (wit-wt*). When J is 0 the model collapses to a

classical individual utility maximization problem. Second, the random utility terms are assumed to be

extreme value distributed so that their difference is distributed as a logistic function. It is this assumption

that renders the model tractable via conventional discrete choice approaches. The next step in the

formulation is to solve for the equilibrium mean choice. This solution is sought by investigating the nature

of the individual probability of adopting the behavior at each point in time, given the desire of extracting

maximum utility. Asymptotically (when the number of individuals grows to be very large) it is verified

that the system may have one or three equilibria with distinct mean behaviors. Which equilibria takes

place depends on the strength of social utility and the magnitude of the bias toward one choice induced

by private utility. In environments where social utility overwhelms individual utility one is more likely to

observe multiple equilibria. The model also implies that in the presence of large social effects, small

amounts of initial changes motivated, for example, by adoption among a few forerunners, may lead to a

cascade of individual changes precipitating a rapid fertility decline.

Either model (1) or (2) implies that (a) individual decision making is not independent from social

effects and (b) that adoption behavior takes place in a setting where individual make rational decisions.

Applications of either of these models encounter similar difficulties. The first is the need for information

about decision-making on the part of other actors,  and on who among  these may be significant actors

for any ego. Admittedly, choosing a matrix of weights for others’ choices (required in model (1) but not

in the current form of  model (2)) is not a trivial matter and must be resolved theoretically. Even if

resolved though, one needs to assess such weights empirically and this inevitably entails challenging

problems for data collection. None of these models can be estimated with a minimal degree of
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robustness without access to  longitudinal information. 

The second difficulty is that empirical estimation of the models is not simple and usually special

techniques and procedures are needed. Model (1) requires to posit the existence of individual

heterogeneity which normally leads to serious identification problems and is only solvable at the expense

of carrying out complicated integration and, at least in some cases, application of Markov Chain Monte

Carlo (MCMC). Estimation of the models derived from the more economic framework above are

usually problematic since they involve the assumption that the system has reached a steady state.

Finally, confirmatory analysis may require us to perform micro simulations as an aid to decide between

alternative feasible formulations. 

3. Individual behaviors and systemic properties

Modern demographic applications frequently focus on the following type of problem: individuals

occupy a limited number of states, i=1,...k, and transit between them according to an intensity or hazard

rate, :ij(t). For example, in the analysis of adult health we postulate the existence of a multistate system

with four states, healthy, with chronic illness, with disability and dead. A family demographer may desire

to focus on stages in the family life cycle in which case we are interested in states such as marriage and

cohabitation, divorce and separation, childbearing. Or, finally, we may wish to test theories regarding

fertility in which case one could use the equivalence between states and birth orders. In sum, an

impressive array of demographically interesting problems can be so conceptualized. Multistate hazard

models have been designed to enable us to estimate basic parameters or functions, namely, the baseline

hazard rates (the :’s)  and the effects of covariates (some fixed and some time dependent) on the

baseline hazard rates. Estimation of these models requires fairly detailed information on the timing and

order of the events, on the characteristics of individuals, and on the nature of unmeasured

characteristics. It must be said that precious little empirical research has made use of these models even

though they could yield high returns. Since the data requirements are fairly stiff, formulating the problem

at the outset as one involving multistate hazards could enable us to suggest new data collection designs

that meet the desiderata for estimation and identification of these models.

But the plain application of these procedures is not the only activity that will enrich demographic
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analysis. There are two additional promising lines of work that analysts are beginning to study in some

detail. The first has to do with the macro implications of micro processes. Estimation of a multistate

hazard models on observed sequences of individual processes does not in itself provide information

about aggregate properties, e.g . about the net effects of the micro processes (those taking place among

individuals) on a macro level (the implied aggregate characteristics). For example, given estimates of the

hazard rates and effects of covariates from a multistate model describing health and morbidity, we may

want to know what is the implied distribution of the population by health status, by duration in each

state and by age. Anderson and May (1991) provide a complete machinery linking individual transition

rates and aggregate distributional characteristics. Billari and colleagues (1999) applied some of

Anderson and May tools in order to study the steady state characteristics of young adults that

corresponds to a particular set of rates at the individual level. These inferences, however, require the

assumption of a steady state, the existence of which is by no means assured and should be explored ex

ante Alternatively, one must focus on the dynamic of the system, that is, on the trajectory of the

aggregate system over time, as a function of evolving individual processes. This is not a trivial task

because it is frequently plagued by analytic difficulties and requires substantial computing power

The study of the relation between macro and micro processes can also provide tools for

discriminating between different micro models. Most of these models are non nested and their

relative performance cannot be assessed with conventional log likelihood ratio tests but require

Bayesian assessments (such as the use Akaike criterion or the  BIC measure) . However, it is clear that

using the macro implications of an estimable  micro-model one could assess the degree to which

observed aggregate distributional properties more or less approximate the ones directly implied by the

micro models. I have yet to see analyses where this strategy is fully deployed. Take, for example, the

estimation of a multistate model for the analysis of fertility. The models can get as complicated as we

may wish to make them but, for the sake of simplicity, let us a assume that one has a series of states

representing  n birth orders and n-1 transition rates to estimate. Estimates of the rates and of the effects

of covariates on the rates directly implies a measure of aggregate fertility, such as TFR. If the implied

value for TFR does not approximate observed TFR values, then the model is probably incorrect,
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regardless of what the likelihood ratio or t-tests may suggest to the analyst.

There are other applications and implications as well. Consider again a multistate model for

health, morbidity, disability and mortality. This model is or ought to be the foundation for calculating

measures such as Active Life Expectancy (ALE). Yet we know that in most cases ALE estimates are

derived from cross-sectional information and one never tests for distortions induced by the fact that

what we observe currently is one of many possible stages in a dynamic process. It may be possible,

however, to adjust conventional ALE measures using micro simulation in conjunction with estimated

multistate models.

The second line of research alluded to above regards the formulation, implications and

estimation of the influence of characteristics of the aggregate system on individual decision making. This

theme is the same as the one just reviewed in the case of diffusion models for fertility but in a context

with multiple states. I will provide two examples which should shed light on the problem

a. Occupational choices and aggregate saturation

Suppose we are interested in the occupational behavioral choices of women who face  labor

markets where there are two types of occupations: female dominated and male dominated. For the

sake of illustration let us define a male (female) dominated occupation as one  where more than fifty

percent of the incumbents are males (females). The theory tells us that female’s transition rates into and

out of  the labor force is a positive function of the density of female dominated occupations, so that the

rates are higher as the  availability of female dominated occupations exceed some threshold value. This

is an example of a phenomenon where  individual behavior has an impact on the average characteristics

of the system and this, in turn, affects the structure of incentives for individual behavior. Our intuition

tells us that the system may either collapse to a unisex occupational structure or that there could be

some (one, two, multiple) equilibrium points. The type of asymptotic behavior will most likely depend

on the relative magnitude of the baseline rates and the relative magnitude of the effects of relevant

covariates on the male (female) transition rates. In some cases an analytic solution to the problem may

be available, but in most cases one will need to resort to simulation models in order to investigate the

implied dynamics of the system.
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b. The spread of disease in social contexts with choice of preventable behaviors

Classical epidemiology tells us that as the prevalence of an infectious disease grows, the

prevalence of the disease also increases. In the absence of retreats to immunity or of subgroups

 with very low infectivity and unconnected with groups of high infectivity, the infection will overwhelm

the population. Suppose, however, that individuals are allowed to choose a preventable behavior, such

as protected sex or vaccinations, and that the adoption of  this behavior depends on prices of adoption

and on the perceived (expected) levels of prevalence of the disease. A modified Anderson-May system

of differential equations can describe this situation (see also Phillipson, 1998):

where S(t), I(t), R(t)  are the proportions susceptible, infected and recovered (and then immune) at time

t, P(.) is the fraction demanding immunity (say vaccines), and p(t) are prices at time t. The parameters

are rates: b for births into the population, $ for  infectivity of a contact between an infected and a

susceptible individual at time t,  T for recovery into immunity, and m for  mortality rate. There are all

sorts of simplifications in this system, not the least of which is that it completely overlooks the role of

age. But for the purpose of illustration, it will suffice.

From this system, it is clear that the rate of change of I(t) is positive provide that $S(t)/( T+m)

>1. Suppose that we let actors make  decisions about whether to use the preventative behavior. The

choice can depend on a decision-making rule involving discounted streams of expected values

associated with the susceptible and infectious states, current utility in the two states,  as well as the
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levels of prevalence and $ (Phillipson, 1998). The outcome of such a formulation is that individuals will

adopt the behavior only if prevalence of the disease exceeds a threshold value which is unobserved for

all individuals. Under an assumed (any continuous) distribution for individual thresholds, it is possible to

show that as long as  the individual response to levels of prevalence is sufficiently pronounced, the

hazard of becoming infected decreases with prevalence. This is contrary to the classic epidemiological

scenario. Similarly, to the extent that prevalence decreases to very low values, the attractiveness of

adopting the preventative behavior decreases for all individuals who are still susceptible, and this will

trigger the emergence of a new stream of infections and new increases in prevalence.  This too is

contrary to conventional wisdom in classical epidemiological models.

This scheme can certainly be enriched with a number of modifications.  For example, individuals

may not  respond to average levels of prevalence but to average levels observed or expected in

selected groups of membership. This will necessitate to define the nature of those groups for each

individual in the system. In so doing we approximate the situation faced in the study of diffusion of

fertility behavior. More complexity may be needed to apply the model to other areas of behaviors such

as residential mobility, deviant behavior, and the like.

Issues revolving around the relation between individual behavior and systemic properties are

inherent in the work of sociologists, demographers, and economists. Sociologists and demographers

have traditionally avoided explicit formulations to solve the problem whereas economists have resorted

to formulations of market mediated actions. Surely neither of these two research practices is sufficient

to deal with the complexity of social interactions.

4. Transitions and sequences in life cycle analyses

Suppose we wish to study the following type of situation: we suspect that a particular outcome

or behavior, say health status during late adulthood, H(t), depends on behaviors practiced and positions

occupied during the past. Among these positions we include types of jobs, type of family environments,

and residential choices. The theory may suggest that H(t) is not simply a function of independent effects

of all these behaviors and positions but a result of the particular sequence of positions and behaviors

followed by the individual. Another example where sequences of events acquire importance is in the
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study of onset of family planning programs, F(t). One could argue that in order for the institutionalization

of such programs to occur,  societies must undergo a series of transitions involving, for example, the

formation of a strong central state, the resolution of the conflict of interest between state and Church,

the emergence of organized labor,  the birth of neighborhood organizations, and the formulation of

economic plans involving massive foreign credit programs. Here too, a theory may posit that early

adoption of family planning requires the passage through a particular set of stages, and that in its

absence early adoption is more difficult or impossible. Other examples can be drawn from the literature

on occupations and status attainment, retirement, and from the literature on criminal careers.

All these examples could conceivably be studied using multistate hazard models. However, it is

not difficult to show that deploying multistate hazard models could lead to intractability and/to excessive

data demands. This is because to test the theory it will not be enough to estimate effects of covariates

on the various transitions. What one needs is to estimate the effects of particular configurations of past

trajectories on a particular outcome. This can be done using time dependent covariates reflecting states

visited in the past, duration of sojourn, frequency of visits and the order of a subset of transitions. As

practitioners know well, this can  get out of hand quickly if the positions or states are more than a

handful, and if trajectories are long.

More recently a number of social scientists have begun to work on sequence analysis (Abbott

and Tsay, 1999; Abbott and Barman, 1997). The inspiration for this approach is drawn from tools

designed in molecular biology and genetics for the analysis of resemblance/diversity of protein and

DNA sequences. In particular, the applications involve the study or ordered arrays using Optimal

Matching (OM) algorithms, one of a number of alternative computing algorithms developed to study

ordered arrays in a number of different fields.

 OM algorithms rest on three key stages: coding, assessing distances, and clustering. Coding is

a theoretically driven activity to define the various states on which the analyst will focus. This will involve

decisions about lumping or splitting events and will, therefore, shape the nature of the sequences that

one will use in the remainder of the analysis. For example, one could study careers using officially

defined occupations or, alternatively, a theoretically inspired occupational classification that partially
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lumps together some of the official categories. In the study of life cycle stages one may want to partition

the category ‘ two parent family of origin’ into two subcategories, one  with and the other without

resident grandparents. Note that it is possible to define a state so that it captures multiple states and the

order of transitions between them. For example, if one is interested in studying labor force participation,

it would be feasible to define as a state the transition from unemployed to employed, and as a different

state the transition from employed to unemployed. Timing is taken into account in simpler ways as

well, such as designing arrays where the loci are states or positions occupied on, say a particular year

(if year is the appropriate time unit).

The next step is assessing distances. This is done by generating matrix of distances between

pairs of  individual arrays. The dimension of the matrix depends, of course, on the number of cases in

the sample. In order to assess distances between arrays or sequences it is first necessary to use three

operations that can translate one array into another. These operations are replacements, insertions and

deletions. Since the arrays are strings of characters--drawn from the alphabet of states defined in the

coding stage--the distance between any two arrays can be measured by counting the minimum number

of replacements,  insertions or deletions of characters necessary to transform one array into the other.

For example, the strings LAZIO and MILAN require a minimum of two replacements to be identical (a

maximum of five is ordering of the sequence is relevant), whereas the strings LAZIO and

FIORENTINA requires 5 insertions (or deletions) and two replacements (five if order is relevant). But

not all replacements and insertions or deletions may be equally important from a theoretical point of

view. In order to let these operations have theoretical meaning it is necessary to define a matrix of

weights or costs so that certain operations are more heavily taxed (and mean more in terms of distance)

than others. This weights must be chosen by the investigator and should be derived from theory rather

than being arbitrary. At this stage computing intensive technology comes in: the assessment of distances

depends on the application of computer algorithms involving a very large number of operations and, in

some cases, one needs to resort to  approximation techniques, such as Gibbs sampling, in order to get

solutions.

The final stage of OM algorithms is the analysis and utilization of the distance matrix, D.
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If this is a N x N matrix, it will define N (N/2-1) observed non-redundant distances between the sample

arrays. At this point one attempts to reduce the dimensions of the observed distances into a smaller

number of  typical distances. This can be done displaying a number of  classification algorithms, such

as cluster analysis. In the end, we will be able to map an N(N/2-1) dimensional space into, say,  a K

dimensional space where, hopefully, K<N/(N/2-1). These K distinct distances (or, more precisely,

clusters of distances) are produced by a reduced subset of the N possible sequences. Sequence

membership in clusters of sequences is a discrete variable that can be used to explain outcomes or as

an outcome to be explained by other factors.

OM algorithms and the entire skeleton of sequence analysis is the object of intense scrutiny and

much skepticism (Wu, 1999). The required intensive computation at the second stage of the OM

algorithm is an obvious problem. But the Achilles-hill of OL is the definition of the cost matrix:  how can

one define a non-arbitrary cost matrix? And how sensitive are final analyses to changes in this matrix?

An important issue here is that apparently identical replacements may mean different things and different

weights ought to be assigned to preserve such differences. Thus, from a theoretical point of view it is

not the same to move from unemployed to employed than to move from employed to unemployed (Wu,

1999). Yet, if these are treated as sequences the assessment of distances involves symmetry and the

two will be treated alike. Finally, the reduction of the distance matrix using clustering algorithms is

another step where arbitrary decisions may influence the analysis and cause lack of robustness.

Clustering algorithms are notorious for their sensitivity to a priori specified rules of clustering.  Although

it is too early to say what the pay off of this methodological approach will be,  it is worth exploring and

developing further since, in theory at least,  offers solutions for testing theoretical complex formulations

that are intractable with extant models and procedures.

5. Matching problems

The marriage problem is well known to demographers. It involves understanding the rules that

regulate the matching of males and females in a marriage market. What we normally observe are

frequencies of matches already made and frequencies of unmatched individuals. Each member of the

pair in a match and each unmatched individual possess relevant characteristics such as age, education,
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race, etc...More rarely we may observe the dynamic of match making over time, with individuals

entering a union, remaining without partners or dissolving the union. In either case the problem is to

identify how individual’s preferences for partners, for remaining unmatched, or for disrupting a union

operate to render the set of observed matches or couples at any point in time.

Job searching and employment are also match-making phenomena. In this case employers seek

and attempt to hire workers and workers seek and attempt to get offers from employers. And, here

again, what we frequently observe is a cross sectional set of matches (and non-matches) and, more

rarely, the evolution of the  job-searching and job offering process.

Finally,  intra-family transfers from, say, children to parents (and vice versa) 

is another example of a process whereby individuals attempt to establish a contract so that each

member of a partnership makes a commitment to the other to supply services, emotional support,

income or to secure access to assets. This particular example, however, introduces a new complication

since, by and large, parents confront not one child but several children who may cooperate (or

compete) among themselves. Thus, one of the partners in this exchange is a collectivity wherein second

order processes may be occurring, namely, siblings may bargain amongst themselves to coordinate the

supply of transfers to their parents.

Up until recently the marriage problem as well as the problem of intra family transfers have been

approached in rather ad hoc ways, using conventional multi variate techniques that identify the strength

of selected individual characteristics on the probabilities that such an individual enters a match. Typically

one does not  know the context in which choices were made since we have no information on the pool

of potential ‘partners’ available at the time. Therefore, it is difficult to infer individual preferences for one

cannot distinguish them from the degree of availability of desirable matches. These approaches are

usually atheoretical or based on very loosely formulated theories, and overlook the fact that in all cases

the formation (non-formation or dissolution) of a match involves confrontation of two, not one, 

individuals who make decisions about the gains (losses) associated with each potential match. 

In contrast, job search theory in economics uses a rigorous theoretical framework, with explicit

formulation of individual preferences and explicit decision-making rules according to which individuals
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may decide to form a match or continue searching among a set of potential preferred partners.

However, except for rare situations where one normally knows the availability of desirable matches,

application of these frameworks is also limited by the same difficulty mentioned above, namely that of

discriminating preferences from availability.

In a recent paper devoted to the study of matching between employers and workers,

Logan(1996) proposed a Two Sided Logit (TSL) model to estimate the effects that individual

preferences have on the observable worker-employer matches. The key element of the procedure is to

replace the unobserved choices available to one side in the match by estimates of the preferences of

individuals on the other side. These estimates are retrieved from a cross section of matches where there

is limited information on employers and/or employee characteristics. In a recent extension of the 

procedure  Logan and colleagues (Logan et al., 1999) tackle the marriage problem when one has full

information on individual characteristics that enter in their decision making process. In what follows I

will illustrate the main features of the approach for the case of marriage.

One starts from the proposition that a male i has a preference for women j that depends on a

limited set of her characteristics, say Xj. Analogously, man j has preferences for remaining single

(choosing partner j=0) that depend on his characteristics, Xio. The same applies for a woman j. The

second proposition is that these preferences can be expressed as utility functions that translate a

preference into a (not discounted) utility for each actor. This imply the existence of four equations

representing the ith  man’s utility derived from a woman j and from staying single, and the utility of

woman j derived from man’s i and from staying single:

Uij="Xj+gij

Uio="Xio+gio

(4)

Vji=$Yi+gji

Vj0=$Yjo
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where Uij is the utility derived by man i from woman j who possesses characteristic Xj, Uio is the utility

derived from man i from remaining unmatched, " measures the strength of preference and gij and gio

are continuous independent and identically distributed errors. The symbols in the last two equations

have analogous interpretations for woman j. The main idea is that men and women proceed to rank

potential partners (including staying single) while attempting to maximize their utility. Given a single draw

of error terms, each man can order his preferences regarding all women available. The same applies to

women. The X’s and Y’s (as well as the " and $) may be scalars or vectors.  Under these conditions

the problem is equivalent to a two-sided matching model, well known in economics, and  which can be

shown to have a fundamental property: there is always a stable state of matches in which no man could

find a partner whom he would prefer and who would also prefer him over any other man,  with the

same holding for women. This property is fundamental for estimation is possible only if one assumes

that the observed set of matches is a stable set. This is not as strong assumption as it may sound since it

only requires that the stability be transitory, subject to variation as new people enter into the market and

when characteristics change. All is needed is that matches be the result of voluntary decisions, not that

they be unchanging as individual preferences or characteristics change. However, the uniqueness of this

stable set of matched requires the assumption of complete utility transfers and may not hold when there

are constraints on both side of the match on the transferability of utility (Buder and Wright, 1994).

The advantage of this formulation over the more simplistic ones available in the standard

literature on the subject is that the match making process takes into account the preferences of

individuals on one side of the match,  and the constraints on availability imposed by the preferences of

individuals on the other side of the match.

The objective of an empirical analysis is to retrieve estimates of " and $ from an observed set

of matches. This is done utilizing the TSL model which can be reasonably implemented through

application of MCMC methods, a technique through which one can approximate the ‘true’ value of  

parameters governing complex probability distributions. 

Can this procedure be applied to other areas in demography? With some simplifications, one

could certainly study intergenerational transfers between parents and children. These have been the
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object of study by economists with  utility maximization frameworks (see for example Lillard and Willis,

1995; 1997) but neglecting the issue of availability noted above, except in an ad hoc manner. The first

step to apply the model is to redefine who the actors are: parents can be treated as a one side of the

exchange and each child in turn (or all children or a combination of them) as the other side of the

exchange. The second step is to define what the matching involves. It could be living arrangements, or

monetary support or the supply of services or a combination of all of these. The third step is to

formulate an explicit model for preferences that takes into account characteristics of the parents and

children and the hypothetical weights (preferences) assigned to these characteristics by each side of the

exchange. The final stage is to start from the assumption that the observed configuration of transfers is

indeed a stable set and then proceed with the MCMC estimation algorithm. 

This set up is not devoid of difficulties. Thus, the fact that transfers are two-sided, in the sense

that children provide for parents after parents have invested in children, poses the problem that the

latter type of transfers, if they occurred at all, took place in the past and are, for all purposes,

unobserved. That is, the observed flow of transfers from children to parents may be a function of past

(unobserved) transfers from parents to children. The second problem is that the true nature of the

process surely involves bargaining among children themselves and these are thoroughly masked by a

reduction of one side of the match to a single actor. 

These difficulties that may plague applications of  TSL to the study of intergenerational transfers

and, no doubt, to other areas where its use could be advantageous, do not detract from the fact that

TSL is a reasonable approach for the study of phenomena that have been heretofore  intractable.

6. Micro simulation models

Micro simulation models have been around demographers for a long time but their uses have

been limited to the study of fertility (Ridley and Sheps, 1966; Wood and Weinstein, 19xx; Larson,

19xx; Barrett, 1971), evaluation of family planning programs (Inoue, 1977), and  specially to evaluation

of kin availability (Wachter et al., 1999a; 1999b; Ruggles, 1987; Wolf et al., 1995). These micro-

simulation models have also been proposed as refined tools for performing more accurate population

projection (Land, 1986; Wolf, 1999; Nakamura and Nakamura, 1978). More recently Wachter,
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Knodel and Van Landingham (1999b) suggest ways in which micro simulation models can be used to

assess the impact on kin availability for the elderly in countries such as Thailand that have been affected

by HIV/AIDS. Wolf and Laditka (1996) propose their applicability to studying issues related to active

life expectancy.

In order to understand the main properties of these simulation models, it is convenient to

introduce a simple example. Suppose one desires to study the process whereby individuals are subject

to transitions to and from a limited number of states, say health, chronic illness, disability and death.

One starts with an initial or jump-off population distribution by state, usually obtained from secondary

data sources or as a result of applications of the micro simulation model itself  to data describing

transitions in the past. After deciding on an appropriate time scale, the initial population is subjected to

the hazard or risk of transitions characterizing the states initially occupied by individuals in the

population. These hazard rates are estimated from empirical data or, if projecting into the future, they

must reflect the investigator’s belief in their future values. Once the hazard rates are identified, transition

probabilities are calculated and a waiting time is imputed to each individual by selecting a random

number, R, from the unit closed interval. The hazard rates and the probabilities are sequentially applied

from the  first until the final interval of time, say the Kth interval. In the nth interval of time (n<K) there

are two decisions to be made for each individual:

a. Does the individual experience the transition from state i to state j (j=1,2,...i-1, i+1,...S)?

If the transition rate from state i to state jÖi in the nth interval is constant and equal to :ij(n), the

probability of experiencing the event is given by hij(n)=1-exp(:ij(n) *(n)),  where *(n) is the width of

the interval. A random number R1 is drawn from an unit interval and one decides that the individual will

move from i to j if R1<=hij(n). 

b. If the event occurs, what is the waiting time?

If the individual moves from state i to state j one must decide the associated waiting time. A

second random number is drawn, R2, and the waiting time in the nth time interval, )<*,  is calculated

as 
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) = ln (1-R2 hij(n))(:ij(n))-1

Since individuals will normally be exposed to a number of competing risks--corresponding to

each of the feasible transitions out of the state currently occupied--these two decisions ought to be

made for all competing transitions. If, as a result of the calculations, an individual is scheduled to

experience several events, one choose the one with the smallest associated waiting time. It immediately

follows that the frequency of an event, say moving from state 1 to state 2, is calculated aggregating the

individual events instead of being, as it happens in macro simulations, the expected number of events in

the time interval.

These calculations are applied to each and everyone of the K intervals over which the

investigator decides to follow the process. In the end, it will be possible to calculate indicators

characterizing the multistate process such as, for example, the mean number of times that an individual

visits state j, the distribution of individuals by state at the end of the process etc...

If a  Monte Carlo simulation is performed, the calculations are repeated a large number of

times, large enough to be able to calculate approximate distributions for the indicators of interest. This is

important for it allows the investigator to assess measures of central tendency as well as of dispersion of

the distribution, thus enabling one to associate a measure of uncertainty to the calculations.

Unlike micro simulations, macro simulations are designed to calculate expected number of

events within each interval thus neglecting the inherent randomness at every time step and rendering

impossible the calculation of variances or of other measures of dispersion that reflect randomness. This

is a key property distinguishing micro from macro simulations. 

A second important feature of micro simulation models is that one can make the state space as

complicated as one needs to without running into constraints associated with number of observed

frequencies. This is because, as long as one is able to estimate the rates for each pair of transitions, it

will be always possible to estimate the frequency of associated events in an arbitrary initial population.

In contrast,  in macro simulations this is frequently not possible since the estimation of probabilities for a

given path of events is made difficult or impossible when the number of cases to which such path is
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applicable is too small. Said otherwise, in a micro simulation model the probability measure associated

with a given path of events is a result obtained at the end of the simulation, whereas in a macro

simulation such probability must be known in advance before obtaining results.

A third property of micro simulation models is that one can introduce individual heterogeneity,

measured and unmeasured. Measured heterogeneity is taken into account by defining different rates for

individuals with different characteristics such as age, social class, cohort etc...Unmeasured

heterogeneity is taken into account choosing for each individual an adjusting factor for each transition

rate. Typically one defines a probability distribution to characterize such unmeasured adjusting factors

and, in each time step and for each transition rate to which each individual is exposed, we randomly

draw adjusting factors and then inflate (deflate) correspondingly the rate  before calculating waiting

times.

Macro simulations cannot take into account individual heterogeneity (except only as averages)

and the scope for measured heterogeneity is limited since, once again, the  number of cases in each a

priori defined category (age, cohort, social class) may be very small thus compromising the stability of

the rates.

This machinery is,  in principle at least, not overly complicated. It allows representation of

processes with many individuals, complex state spaces, measured and unmeasured heterogeneity, and

even with stochastic versions of parameters. In addition, micro simulations of kin can also establish and

retrieve kin and cognate relations between individuals in the simulated population thus permitting us to

examine the effects of variability in demographic rates on the distribution of the population by kin types.

These properties make simulation suitable for population projections, for projection of kin frequencies,

for the study of kin frequencies in hypothetical demographic regimes, for the study of long term

properties of complicated multi state models, for the study of emergence of behaviors that depend on

individual membership in social networks, etc... The range of applications is truly formidable. 

But there is no free-lunch. Indeed, micro simulations do have limitations. The

first and perhaps most important shortcoming  is that one must rely on a typically large set of 

parameters, some of which may not be known or estimated  at all and must be guessed. The advantage
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of micro simulation in this case is that one can assess--although this is rarely done--the degree of

sensitivity of the simulation results to different specification of the unknown parameters.

In addition to a large set of parameters, micro simulations necessitate a jump-off population

which is usually estimated from sample data. These data may be subject to sampling errors and may

contain missing information that one must impute before proceeding.

Finally, the implementation of micro simulation rests on computer programs that are long and

complicated,  and where the opportunities for hidden errors (‘bugs’) abounds. I am not referring here

to code errors that result in glaring inconsistencies. I am speaking of code errors that are subtle because

they distort calculations only if a set of  conditions occur but not at all when those conditions do not

apply. The only way in which such errors can be detected  is performing costly and time consuming

validation tests that investigators are rarely willing to undertake (for an exception to this rule see

Wachter et al., 1999b)

A final shortcoming that plagued micro simulations models in the past twenty years was

associated with the storage capacity and computer speed limitations inherent in the available computer

technology of the time. This is,  I think, no longer a relevant obstacle.

7. Summary and conclusions

I have reviewed the development of approaches suitable to test new and more complex

demographic theories. The review illustrates the point that demographers have made substantial

progress in the sense that simplistic theories have been abandoned and replaced with more precise,

albeit more complex, theoretical formulations. 

Models translating these new theories and procedures to estimate these models have also

evolved in the direction of increasing complexity but their implementation are demanding new and more

data--particularly longitudinal observations--and, not trivially, vast amounts of computer power, in

terms of both speed and storage capacity.  Indeed, rapid changes in computer technology may, for a

while at least, drive progress in the modeling and testing front of research and these, in turn, will

facilitate the formulation of newer and bolder theories.

I doubt that the progress experienced in the past ten years is a blip in an otherwise irregular
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landscape of very slow and gradual improvements. I venture to say that in the  near future the unusually

rapid developments that I reviewed here will be multiplied several times, completely transforming the

way we do demography and social sciences in general.
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