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ABSTRACT
We study duopoly competition between two interconnected
Internet Service Providers (ISPs) that compete in quality
and prices for both Content Providers (CPs) and consumers.
We develop a game theoretic model using a two-sided market
framework, where ISP’s are modeled as interconnected plat-
forms with quality bottlenecks; a consumer on a low quality
platform accessing content on a high quality platform expe-
riences low quality. Platforms first pick quality levels from
a bounded interval and in the subsequent stages compete in
prices for both CP’s and consumers. CP’s are heterogenous
in content quality which is uniformly distributed between
[γ − 1, γ]. We first establish the existence of a price sub-
game perfect equilibrium (SPE) given any asymmetric pair
of platform quality choices. We show that the higher the
asymmetry, the more likely the CP market is to be uncov-
ered if the average content quality (represented by γ) is low.
In contrast, if γ is high then the market is always covered.
We then show that an SPE for the whole game exists and
characterize all the equilibrium choices of the quality game.
In particular, we show that the equilibria involve either max-
imal differentiation or partial differentiation depending on
γ. Moreover, we characterize the resulting market configu-
rations in the final stage and show that they depend on γ
and the asymmetry between platforms represented by the
ratio of the qualities.

1. INTRODUCTION
Consumers and Content Providers (CPs) base their choice
of ISP not only on prices but also on other features such as
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speed of access, special add-ons like spam blocking and virus
protection [2]. These extra features can be abstracted as
quality. ISP’s have the ability to influence quality through
upgrade of infrastructure, offering of enhanced services or
even traffic-management [4]. A key question that arises in
the provision of network access is what quality profit maxi-
mizing ISP’s will offer in a competitive environment and its
concomitant effect on market coverage.

In this paper we study this question using a model of duopoly
competition in interconnected two-sided-market platforms
in the presence of quality choice. We develop a game-theoretic
model where ISP’s are represented as profit maximizing two-
sided interconnected platforms that choose quality levels and
then compete in prices for both CP’s and consumers. In ad-
dition, we model quality of service effects through a bottle-
neck effect. While there is much work on competition mod-
els between two-sided platforms (see for example, [9, 1, 10,
6]), most existing work focuses on determinants of pricing.
These works do not address interconnection between plat-
forms, endogenous quality choice by platforms and market
coverage. In this paper we consider these effects in tandem.
Our objective is to understand what strategic quality choices
interconnected platforms make and their effects on market
structure.

Our model consists of two interconnected platforms, a het-
erogenous mass of CP’s, and a heterogenous mass of con-
sumers. Platforms provide connection services to consumers
and CP’s and charge a flat access fee to both. We model
the interaction between ISP’s and end-users1 as a six-stage
game. In the first stage, platforms simultaneously pick a
quality level from a bounded interval. Second, they simulta-
neously compete in CP prices. Third, the CP’s decide which
platforms, if any, to connect to. Fourth, the platforms si-
multaneously compete in consumer prices. In the fifth stage,
consumers decide what platforms to join. In the last stage
consumers decide which CP’s to patronize.

We first derive results relating to the price competition SPE
between the platforms given exogenous quality choices and
then use these results to solve for the quality choice SPE.
The results show that given an asymmetric quality pair, a
subgame perfect equilibrium (SPE) in both consumer and
CP prices exists. In addition, we show the relationship be-
tween the ISPs’ quality choices and market structure on the

1The term end-users refers to both CP’s and Consumers
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CP side. Specifically, we show that the resulting market
configuration depends on the average content quality char-
acteristic, γ, of the CP’s and the asymmetry between the
platforms. We show that if γ is low, then an increase in
the quality ratio, I, defined as the ratio between platform
qualities, increases the platforms market power resulting in
an uncovered content provider market. On the other hand,
when γ is high, the relative difference in content quality
amongst CP’s diminishes and content providers make sim-
ilar connection decisions regardless of quality ratio levels,
i.e., they all join the high quality network. The above re-
sults suggest that platforms which are highly differentiated
in quality pose a barrier to entry for CP’s that have low con-
tent quality. Indeed, the high asymmetry in quality induces
market power on the platforms which enables them to raise
prices and thus exclude low quality content CP’s from the
market.

Our second set of results pertain to the quality choice SPE.
We show that if we assume a fixed cost (or costless) qual-
ity investment model, then an SPE in quality choice stage
exists. We characterize all such equilibria and show that de-
pending on γ, one of the following three types of equilibrium
exists in the final stage of the game: a)Maximal differenti-
ation equilibrium which involves one platform picking the
highest quality and the other the lowest, b)Partial differ-
entiation equilibrium where one platform picks the highest
quality and the other chooses a proportion of the highest
quality that depends on γ, c)Partial differentiation where
one platform picks the lowest quality and the other picks
some positive fraction of the highest quality.

In addition, we also give the market configurations that arise
at the various SPE. In particular, we show that the CP
market is covered when γ is high or when it is low and
the bounded interval from which quality is chosen is small.
In the former case the heterogeneity between CP’s is low.
Therefore, if one CP joins a platform all the others make
a similar decision as previously discussed and the market
is covered. In the latter case, though the heterogeneity is
high, the bounded interval from which quality is chosen is
small and thus the level of differentiation is limited. This im-
plies that price competition results in low prices such that
the market is covered. When γ is low and the bounded
interval from which quality is chosen is large, the CP mar-
ket is uncovered. In this case the level of differentiation
is large. Platforms exercise market power charging higher
prices which leads to less enrollment of CP’s and an uncov-
ered market.

Other than the papers cited above on two sided-markets,
our paper builds on contributions to the industrial organi-
zation literature on price competition and quality choice in
vertically differentiated markets, [5, 13, 3, 7, 11]. Some-
what related to our work are the competition models ana-
lyzed in Mussachio et al [8]. Although they study the effect
of net neutrality on CP investments and network quality,
their neutral and non-neutral models can be independently
viewed as modeling competition between network providers
where quality choice is endogenous. In both of these models,
the providers are assumed to be symmetric. Moreover, con-
sumers and CP’s are viewed as homogenous and the user
base on both sides of the market is fixed. The resulting

equilibrium in network quality is therefore symmetric with
all network providers choosing the same quality. Issues of
market coverage are also not addressed. The distinguishing
feature our work is to consider the strategic interactions be-
tween quality-picking platforms and heterogenous end-users
and their effect on market entry by the CP’s.2

The rest of this paper is organized as follows. In Section 2
we present the model. In Section 3 we analyze the model
solving for the SPE of this game as well as discussing our
findings. In Section 4 we conclude. Due to space limitations
certain proofs have been omitted and those that are essential
have been relegated to the Appendix.

2. MODEL
We consider two platforms denoted by α and β, and a contin-
uum of consumers and content providers with a unit volume.
Let yα and yβ be the quality-of-service chosen by platforms
α and β, respectively. We represent the quality of a CP
j by the scalar γj . We assume γj is uniformly distributed
with support [γ − 1, γ] where γ ≥ 1. We also assume γj are
independent identically distributed random variables across
the population of content providers. Let φ : [0, 1] → {α, β}
and φ̂ : [0, 1] → {α, β} be mappings from the space of con-
sumers and providers respectively to the set of platforms. A
consumer i on a platform φ(i) ∈ {α, β} connecting to a CP

j on platform φ̂(j) ∈ {α, β} receives utility,

uij(yφ(i), yφ̂(j), γj) = γj + min{yφ(i), yφ̂(j)}. (1)

The consumer utility implies that a consumer on a high qual-
ity platform, connecting to a content provider present on a
high quality platform, receives more utility than if he con-
nected to a content provider of the same quality on the lower
quality platform. In essence, utility captures the fact that
service quality depends on the bottleneck, see [12].

A consumer i on platform φ(i) connects with CP j if and
only if uij ≥ 0. Let Fi(yφ(i), rα, rβ , γ) be the quality per-
ceived by consumer i when he joins platform φ(i). Formally,

Fi(yφ(i), rα, rβ , γ) =
∫ 1

0

E
[
max{uij(yφ(i), yφ̂(j), γj), 0}

]
dj.

Here rα and rβ are the masses of content providers that join
platform α and β respectively. We assume that consumers
have heterogenous preferences represented by a taste param-
eter θi which is uniformly distributed in the interval [0,1].
A consumer i perceives the quality of platform φ(i) as his
expected utility, Fi(yφ(i), rα, rβ , γ). In addition, each con-
sumer has a reservation utility R. The prices charged by
the platforms are pα and pβ for platforms α and β respec-
tively. Each consumer connects to at most one platform but
once connected has access to all content due to the inter-
connection of the platforms. Therefore, the net utility of a
consumer i connecting to platform φ(i) is given by,

Ui(φ(i)) = max{R + θiFi(yφ(i),rα,rβ ,γ)− pφ(i), 0}.
Consumers prefer the platform with the higher perceived
quality, ceteris paribus.

2Market entry is proxied by market coverage.



Platforms also charge a fixed connection fee wα and wβ to
CP’s that connect to them. We assume that CP’s make rev-
enues by selling advertising. Let qα and qβ denote the mass
of consumers locating on platforms α and β respectively.
Without loss of generality we assume yα ≥ yβ . We also
assume that yφ(i) > ε for some ε > 0, where ε is some min-
imum quality level that platforms have to guarantee. The
utility vj of a CP j is defined to be his profit

vj = V (γj , yα, yβ , qα, qβ)− wφ̂(j), (2)

where,

V (·) =

{
g(γj , yα)qα + g(γj , yβ)qβ , if φ̂(j) = α,

g(γj , yβ)qβ + g(γj , yβ)qα, if φ̂(j) = β.

Here g(γj , yφ̂(i)) is a function that represents the advert price

and is increasing in both parameters; CP j gets a higher
advert price for having a higher content quality and also for
locating on a platform with higher quality. The function
V (γj , yα, yβ , qα, qβ) represents the gross revenue earned by
a CP j. This function depends on which platform the CP
joins as well as the number of consumers on the other side
of the market. In particular, if a CP j joins the high quality
platform, it is able to command a higher advert price for
connections arising from consumers on that platform. If a
CP joins the lower quality platform its advert price is the
same for the two platforms, i.e, the advert price depends on
the platform that acts as the bottleneck.

Finally we consider the payoff functions of the platforms:
we assume that platforms incur no cost(or a fixed cost) in
choosing the quality level. The payoff of platform α, which
we denote by πα, is given by

πα = pαqα + wαrα,

where qα is the mass of consumers attached to platform α
and rα is the mass of CP’s attached to platform α. The
payoff for platform β is similar. The model we have outlined
corresponds to a dynamic game with the following timing of
events:

1) Quality Choice Stage: Platforms α and β simultane-
ously choose quality-of-service from the interval [ε, y.]3

2) Pricing Decisions: Platforms simultaneously choose con-
nection fees wα and wβ .

3) Connection Decisions: CPs decide which platform to
join.

4) Pricing Decisions: Platforms simultaneously choose prices
pα and pβ .

5) Connection Decisions: Users decide which platform to
join.

6) Consumption Decisions: Consumers decide which CPs
to connect.

3ε represents a minimum quality that a platform is required
to maintain. y represents the maximum quality that can be
achieved, for instance due to technological limits.

We solve this game by considering its subgame perfect equi-
libria (SPE), which we find using backward induction. Steps
4-6 are similar to a pricing game with vertical differentia-
tion; steps 1-3 are similar to a quality choice and pricing
game with vertical differentiation.

3. MODEL ANALYSIS
Let I = {α, β, [0, 1]j , [0, 1]i} denote the set of players in the
multi-stage game, where α and β are the platforms, [0, 1]j
and [0, 1]i are the continuum of content providers and con-
sumers respectively, both with unit volume. We denote the
information set at stage k of the game for a player i ∈ I by
hk

i . Let the set of actions available to a player i at stage k
and information set hk

i be denoted as Ai(h
k
i ).

3.1 Consumption Decisions.
We begin by analyzing the last stage of the game, i.e, the
consumption decisions of the consumers. Only the con-
sumers make a move in this stage. The choice set of a con-
sumer i ∈ [0, 1]i given an information set hk

i is Ai(h
k
i ) ⊂

2[0,1]j . A consumer i on a platform φ(i) ∈ {α, β} access-

ing content of a CP j on platform φ̂(j) ∈ {α, β} receives
utility uij which is defined in Eq. (1). As previously dis-
cussed, this implies that a consumer connecting to a higher
quality platform gets more utility when he accesses content
providers on that platform, compared to when he connects
to the same content providers while connected to the lower
quality platform. Consumer i on platform φ(i) connects with
CP j whenever uij ≥ 0 which implies that i connects with
CP j if γj ≥ −min{yφ(i), yφ̂(j)}. Since γj > 0, whenever a

consumer joins any of the platforms he will connect to all
content providers on that platform and those on the other
platform.

3.2 Consumer Platform Connection Decisions.
In this stage the consumers are the only movers and they
decide which platforms to join. The choice set of a consumer
i given any hk

i is Ai(h
k
i ) = {α, β}. Through his information

set, a consumer has knowledge of the number of content
providers on each platform, the prices that the platforms
charge and the quality level of each platform. Each con-
sumer i solves the following utility maximization problem,

maximize Ui(φ(i))

s.t. φ(i) ∈ {α, β}.
A consumer that does not join any platform receives a utility
of zero. We proceed next to give the demand functions faced
by each platform based on consumer choices in this stage.
We first make the following assumption on the reservation
price which we invoke through out the analysis of this paper.

Assumption 1. R is large enough that the consumer mar-
ket is covered.

Let yα > yβ , then it follows that Fi(yα, ·) > Fi(yβ , ·). If θ̃ ≡
pα−pβ

Fi(yα,·)−Fi(yβ ,·) consumers with a taste parameter θi ≥ θ̃

join the platform with the higher perceived quality, Fi(yα, ·),
since θiFi(yα, ·)− pα ≥ θiFi(yβ , ·)− pβ if and only if θi ≥ θ̃.

Those whose taste parameter θi < θ̃ will join platform β if



and only if θi ≥ pβ−R

Fi(yβ ,·) . From Assumption 1 we can deduce

that if R is large enough then all consumers get a positive
utility by participating in the market. In such a market, the
demands for the platforms are characterized as follows,

qβ(pα, pβ) =

(
pα − pβ

Fi(yα, ·)− Fi(yβ , ·)
)

,

qα(pα, pβ) =

(
1− pα − pβ

Fi(yα, ·)− Fi(yβ , ·)
)

since θi is uniformly distributed on [0, 1]. We will show
in the next stage that if yα = yβ then any allocation of
demand across platforms is possible at the resulting price
equilibrium.

3.3 Platform Pricing Decisions for the Con-
sumer Side.

In this stage of the game the platforms are the only movers
and they decide what prices to charge to the consumers.
The choice set of platform i ∈ {α, β}, given any hk

i , is
Ai(h

k
i ) = pi ∈ R. Thus the platforms simultaneously decide

what prices pα and pβ to charge to consumers. Through
his information set, a platform has knowledge of the num-
ber of content providers on each platform and the quality
level of each platform. Profit for platform i is given by,
πi = piqi + wiri, where wi is the price charged to content
providers and ri is the mass of content providers on plat-
form i. The demand for platform i denoted by qi is defined
by the set of consumers who maximize their utility when
they join platform i. The Nash equilibrium in this price
subgame depends on the information set hk

i . In particular,
if hk

i is such that yα > yβ it can be shown that, pβ =
1
3
(Fi(yα, ·) − Fi(yβ , ·)), and pα = 2

3
(Fi(yα, ·) − Fi(yβ , ·)),

and the consumer demands addressed to the platforms at
this equilibrium are qα = 2

3
and qβ = 1

3
. If hk

i is such
that yα = yβ then Fi(yα, ·) = Fi(yβ , ·). A Bertrand com-
petition ensues and the resulting subgame Nash equilibrium
has pα = pβ = 0. The consumer demands addressed to
the platforms at this equilibrium price are indeterminate,
i.e any allocation such that qα + qβ = 1, is a solution to the
Bertrand game.

3.4 Content Provider Connection Decisions
Given the quality of service offered by platforms yα and yβ

and the prices wα and wβ , the content providers decide on
which platform to locate. The choice set of a CP j given
any hk

j is Aj(h
k
j ) = {α, β}. As mentioned in Section 3,

γj is uniformly distributed with a support [γ, γ − 1] where
γ ≥ 1. The utility vj gained by a content provider when
he joins a platform is given by Eq. (2). A CP’s utility is
zero if he doesn’t join any platform. In this stage, CP’s take
the investment(choice) in quality as given. Moreover, they
anticipate the mass of consumers on each platform qα and
qβ . Let g(γj , yφ̂(j)) = γjyφ̂(j), a CP j perceives the quality

of platform α to be yαqα + yβqβ and that of platform β to
be yβqα + yβqβ .

For the rest of this section we assume yα > yβ
4. A CP j

maximizes the utility vj and is indifferent between the two
platforms if and only if γj(yαqα + yβqβ) − wα = γj(yβqα +

4We will show later that yα = yβ is not a SPE

yβqβ)−wβ . Let γ̃j =
wα−wβ

qα(yα−yβ)
, then the content providers

with quality exceeding γ̃j join the high quality platform α.
Those whose content quality is lower than γ̃j , but larger
than wβ/(yβ(qβ + qα)), join the lower quality platform β.
The others do not join any platform. Since yα > yβ there’s a
possibility of platform α preempting the market with a limit
price wα = wβ + (γ − 1)(qα(yα − yβ)). The mass of content
providers rα(rβ) is defined by those content providers who
maximize vj when they join platform α(β). It follows that
given the n-tuple (γ, yα, yβ , wα, wβ), there are four possible
market configurations that may arise depending on the de-
mands addressed to the platforms. We next describe the
market configurations of content providers at different CP
prices.

1. Uncovered Market: rα(wα, wβ) < 1, rβ(wα, wβ) = 0. We
denote this configuration as CI.

2. Uncovered Market: rα(wα, wβ) + rβ(wα, wβ) < 1, 0 <
rα(wα, wβ) < 1, 0 < rβ(wα, wβ) < 1. We denote this con-
figuration as CII.

3. Covered market: rα(wα, wβ)+rβ(wα, wβ) = 1, rα(wα, wβ)
> 0 and rβ(wα, wβ) > 0. We denote this configuration as
CIII.

4. Preempted covered market: rα(wα, wβ) = 1, rβ(wα, wβ) =
0. We denote this as configuration CIV .

3.5 Platform Pricing Decision for the Content
Provider Side

In this stage of the game the platforms are the only movers
and they decide what prices to charge to the CPs. The choice
set of platform i ∈ {α, β} given any hk

i is Ai(h
k
i ) = wi ∈ R.

Thus the platforms simultaneously decide what prices wα

and wβ to charge to CPs. Before proceeding we make the
following definition of a subgame price equilibrium.

Definition 1. A (subgame perfect) Nash price equilib-
rium pair (w∗α, w∗β) is a pair of price strategies such that
πα(w∗α, w∗β) ≥ πα(wα, w∗β) for all wα ∈ R and πβ(w∗α, w∗β) ≥
πβ(w∗α, wβ) for all wβ ∈ R.

At the price subgame Nash equilibrium each platform i max-
imizes its own profit, πi = piqi + riwi, given the other plat-
form’s price strategy and has no incentive to deviate to an-
other price.

In this section, we provide results showing that given a tu-
ple (yα, yβ , γ) such that yα > yβ there exists a pure strategy
price subgame Nash equilibrium pair (w∗α, w∗β)5. In addi-
tion we characterize the market configurations that result.
Specifically, we show the conditions under which particu-
lar market configurations arise depending on the parameters
γ, yα, and yβ .

Our results show that the uncovered market configuration,
(CI), does not occur at a subgame price equilibrium. On the
other hand, we show that given a tuple (yα, yβ , γ) one of the

5The actual price characterizations can be found in the LIDS
report.



other configurations, CII, CIII or CIV , will emerge. In
doing so, we determine the set of parametric values (γ, yα, yβ)
for which these different configurations exist.

We prove the existence of the price SPE by a construction
argument. The proofs, which are omitted due to space limi-
tations6, involve first identifying candidate equilibrium price
pairs in each possible market configuration. We then check
to see whether these price equilibrium pairs are indeed Nash
equilibria of the price subgame. We do so by verifying that
the equilibrium price candidates are best replies on the whole
domain of strategies: That is, not only are they best re-
sponses in their respective market configurations but that
they are also best replies if the other market configurations
are taken into account.

For ease of presenting our first theorem that summarizes the
above results we define the following sets of prices which we
use in the theorem,

RII = {(wα, wβ)|rα + rβ < 1, rα > 0, rβ > 0},
RIII = {(wα, wβ)|rα + rβ = 1, rα > 0, rβ > 0},
RIV = {(wα, wβ)|rα + rβ = 1, rα = 1, rβ = 0}.

The setsRII , RIII and RIV consists of price pairs (wα, wβ)
that result in configuration CII, CIII and CIV respec-
tively. We next present a theorem that shows for any tuple
(γ, yα, yβ), a price subgame Nash equilibrium exists and only
one market configuration is feasible. In addition, for market
configurations CII and CIII, the price characterizations
are unique.

Theorem 1. Let Assumption 1 hold. Given (γ, yα, yβ)
there exists a Nash equilibrium pair (w∗α, w∗β) in the price-
subgame. Moreover, the resulting market configuration is
unique and the following hold:

1. If 1 < γ <
5yβ+22yα

9(yβ+2yα)
, then the equilibrium price pair is

unique and (w∗α, w∗β) ∈ RII .

2. If
5yβ+22yα

9(yβ+2yα)
≤ γ ≤ min

{
yβ+8yα

3(2yα+yβ)
,

17yβ+10yα

3(2yα+7yβ)

}
then the

equilibrium price pair is unique and (w∗α, w∗β) ∈ RIII .

3. If
17yβ+10yα

3(2yα+7yβ)
< γ < 7

6
then the equilibrium price pair is

unique and (w∗α, w∗β) ∈ RIII.

4. If max
{

7
6
,

yβ+8yα

3(2yα+yβ)

}
≤ γ < ∞ then (w∗α, w∗β) ∈ RIV .

Figure 1 shows the resulting market configurations for dif-
ferent values of the investment ratio, yα/yβ = I, and the
average CP quality characteristic, γ. In particular, given a I
and γ, Figure 1 shows the distinct resulting market configu-
ration. For a fixed I as the quality characteristic γ increases
the covered market is more likely. At the extreme, when γ
is high, the CPs content qualities are relatively close to each
other since as γ →∞, the ratio γ

γ−1
→ 1. Thus CPs are less

distinguishable from each other; a decision made by a CP
will be mirrored by the other close CPs and a covered mar-
ket is likely. On the other hand, for a fixed value of low γ,

6The proofs can be found in the LIDS technical report
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Figure 1: Content Quality Characteristic γ versus
Investment Ratio yα/yβ = I and Resulting Market
Configurations

.

as the investment ratio increases the two platforms become
more differentiated. This means that the platforms can ex-
ert some market power. Specifically, one platform serves
the high quality CP market and the other the low quality
CP market. Price competition becomes less intense as the
two platforms focus on different markets. This softening of
price competition results in an uncovered market because
the platforms pricing strategies involve them pricing above
the utility that would be derived by the lowest quality CP.
However, for a fixed high γ, the relative closeness of the con-
tent providers quality, dominates the differentiation effects
of the platforms and a preempted covered market is realized
as all CP’s flock to one platform.

3.6 Quality Choice
In this stage of the game the platforms are the only movers
and they decide what quality to set. We assume that once
platforms are in operation, quality choice is costless. The
choice set of platform i ∈ {α, β} given any hk

i is Ai(h
k
i ) = yi

where yi ∈ [ε, y]. Thus the platforms simultaneously decide
what quality to choose. We find the equilibrium quality
choices by considering the best reply responses of the two
platforms. We find the set that contains platform β’s best
replies to platform α’s choices and vice versa. We then ana-
lyze the points where these sets intersect and show that they
indeed are the subgame perfect equilibria. Due to space lim-
itations the analysis is provided in Appendices A.1 and A.2.

For ease of presenting the Theorem that characterizes the
subgame perfect equilibrium of the quality choice game, and
the Corollaries that characterize the resulting market con-
figurations, we make the following classifications: C.1 1 <

γ < 7
6
, C.2 7

6
≤ γ < 24

18
and ε ≥ −y 2(3γ−4)

3γ−1
, C.3 7

6
≤ γ <

24
18

and ε < −y 2(3γ−4)
3γ−1

, C.4 γ ≥ 8
6

The above classifications
follow from the analysis in the Appendix where we parti-
tion the range in which γ lies into three sections depending
on the types of market configurations that are possible in
each partition. From a qualitative view, the partitions rep-
resent the ranges in which the average content quality is
low, medium or high. In the medium range we make two
further classifications that depend on the bounded interval
from which quality is chosen. For a given γ in the medium
range, if the bounds satisfy condition C.2(C.3) then we have
a small(large) quality choice range.



We will now present the theorem that characterizes the re-
sults of the quality choice game.

Theorem 2. Given (γ, y, ε) there exists a subgame per-
fect Nash equilibrium (SPE) in the quality choice game. More-
over, the following hold:

(i)If C.1 holds then the SPE entails maximal differentiation
where one platform chooses the best quality, y, and the other
chooses the lowest quality, ε.

(ii) If C.2 or C.4 holds then the SPE entails partial to max-
imal differentiation where one platform chooses a quality,
ỹ ∈ [f(y, ε), y], and the other chooses the lowest quality, ε.

(iii) If C.3 holds then the SPE entails one platform choos-
ing the highest quality, y, and the other one choosing a
proportion of y that depends on the average quality char-
acteristic, γ. In particular, the low quality platform picks

yl = −y 2(3γ−4)
3γ−1

.

In general, the above results suggest that the platforms dif-
ferentiate in platform quality to soften price competition. If
the platforms are undifferentiated both platforms earn zero
profits due to Bertrand price competition on both sides of
the market. Therefore, platforms have incentive to choose
different quality levels in equilibrium. The level of the dif-
ferentiation depends on the average CP quality characteris-
tic, γ. When γ is low, platforms soften price competition
through maximal differentiation, i.e. one platform picks the
highest quality and the other the lowest. This enables the
platforms to corner different segments of the market and
exert market power.

When γ is in the medium range the resulting equilibrium
depends on the quality choice interval, [ε, y]. If the qual-
ity choice interval is large, platforms differentiate between
themselves with one picking the highest quality while the
other picks a fraction that is a function of γ. As γ increases
this fraction diminishes and platforms become more differ-
entiated. Since the CP’s are less heterogenous for higher
values of γ, there is a more intense competition for them
by the platforms. To soften this competition platforms also
increase the level of differentiation in quality. Hence the pos-
itive correlation between γ and the level of differentiation.

In contrast, when the quality choice interval is small, plat-
forms still differentiate between themselves but with one
picking the lowest quality while the other picks either the
highest quality or some fraction of it(which is higher than
the lowest quality). Since the quality choice interval is small,
the level of differentiation is bounded. Indeed, no amount
of differentiation is able to segment the market. Therefore
a fierce competition ensues and a pre-empted market con-
figuration where all CP’s join one platform results. Since
there are multiple price equilibria in this configuration there
also exists multiple quality choice equilibria. When γ is high,
there is partial differentiation similar to that when condition
C.2 is met and a similar explanation holds. We next present
the corollaries that show which market configurations result
given the quality choice interval [ε, y] and γ.

Corollary 1. If C.1 holds both platforms enjoy positive
market share in the content provider market with the result-
ing market configuration depending on the investment ratio
I and γ. In particular,

1. If 1 < I < − 21γ−17
2(3γ−5)

then a covered market with an

interior solution is the outcome.

2. If − 21γ−17
2(3γ−5)

≤ I < − 9γ−5
2(9γ−11)

then a covered market with

a corner solution is the outcome.

3. If − 9γ−5
2(9γ−11)

≤ I < Φ, where Φ < ∞, then an uncovered

market is the outcome.

Corollary 2. If C.2 or C.3 or C.4 holds, one platform
has all the market share in the content provider market, i.e.,
a pre-empted market is the outcome. This market configu-
ration is independent of the investment ratio, I.

The first corollary shows that when γ is low, any of the three
market configurations can occur depending on the quality
choice range. Since there is maximal differentiation, the
quality choice range can be proxied by the level of differen-
tiation between the platforms at the SPE, characterized by
the Investment ratio.When I is low, a covered market results
since the level of asymmetry is small and price competition
is intense. In contrast, high values of asymmetry result in an
uncovered market since the differentiation level is high and
price competition is relaxed. The second corollary shows
that for medium to high values of γ only a preempted mar-
ket results regardless of the asymmetry between platforms.
In this case, the relative difference in content provider qual-
ity is too low to be able to distinguish amongst them via
platform differentiation. Therefore, the fierce price compe-
tition results in a pre-empted market where all CP’s flock
to the high quality platform.

4. CONCLUSIONS
We study duopoly competition between two interconnected
ISP’s in the presence of quality choice and service bottle
neck effects. We show that given two asymmetric platforms
(i.e. with different quality levels), a price SPE on both sides
of the market exists. Moreover, we show that the higher the
asymmetry the more likely the CP market is to be uncovered
if γ is low. This suggests that highly differentiated platforms
provide a barrier to entry because of their market power.
Our final results show that a SPE exists for the Quality
choice game and the equilibrium involves differentiation in
quality. The level of differentiation depends on γ and the
quality choice interval. In addition, we also show the types
of market configurations that result from the quality choices.

A limitation of our model is the assumption a fixed invest-
ment cost for quality (or costless quality choice). Neverthe-
less we believe that with low marginal costs of investment
the effects captured in this model will still hold. Moreover, in
certain cases ISP’s can increase or lower their quality with-
out cost. For example once an ISP invests a fixed amount on
a router it can increase or decrease bandwidth(hence altering
quality) for certain traffic types by simply setting parame-
ters at no additional costs.
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APPENDIX
A.
A.1 Best Replies
We first show that a symmetric equilibrium is not feasible.
Let j, i ∈ {α, β} and Bi(yj) be the set of y∗i ∈ [ε, y] such
that, y∗i ∈ arg maxyi∈[ε,y] πj(yi, yj).

Lemma 1. Let yj ∈ [ε, y] then yj /∈ Bi(yj).

Proof. We show that given yj platform i never chooses
yi = yj and therefore a symmetric equilibrium is not possi-
ble. A symmetric argument applies for the other platform.
Assume yj ∈ Bi(yj) so that yi = yj , then both platforms
would make zero profits because of Bertrand competition
on both sides of the market. We show that there exists
profitable deviations for platform i. We consider two cases:
Case I ε ≤ yi = yj < y. Let platform i increase its quality
to yi + δ < y, where δ > 0; platform i becomes the high
quality platform. Results from Theorem 17 imply that the
resulting equilibrium price wi for the high quality platform
given the subgame (γ, yi+δ, yj) is less than the utility earned

7The full version of this Theorem gives the price character-
izations and can be found in the LIDS report.

by the highest quality content provider under all the market
configurations, i.e., wi < γ(qjyj + qiyi) for all γ > 1, there-
fore ri > 0. Moreover, from Theorem 1, we can show that
wi > wj ≥ 0. This implies that πi > 0. Thus platform i
would prefer to set quality yi = yj + δ instead of yi = yj .

Case II ε < yi = yj = y. Let platform i decrease its quality
to yi − δ < y; platform i becomes the low quality platform.
Since the platforms are now differentiated, the price charged
to consumers by platform i is pi > 0 and qi = 1/3. Therefore
piqi+wiri = πi > 0 since wi ≥ 0. We conclude that platform
i would prefer to set quality yi = yj − ε instead of yi = yj =
y.

Given quality choice yα, platform β can choose a best reply
that depends on whether it acts as a high quality or a low
quality platform. In the former case it chooses a reply in the
domain (yα, y] and in the latter case it chooses a reply in the
domain [ε, yα). In order to avoid confusion when platform β
is the high quality firm we will change notation as follows; we
label the high(low) quality platform as h(l) and the quality
associated with it as yh(l).

A.1.1 Best reply in the domain (yl, y]
We will first analyze the best reply when platform β chooses
a reply in the domain (yα, y]. In this case platform β is the
high quality platform and is labeled as yh. We will show that
the profit of the high quality firm is increasing in quality in
every configuration. In Theorem 1 we have characterized
the conditions for various market configurations to occur
in the price subgame as a function of γ, yl and yh. These
characterizations can be viewed as restrictions on yh given
γ, yl. When viewed as such the following hold,

1. Market is uncovered, with positive masses of consumers
on both platforms, in the in the price subgame whenever,

yh > −yl
9γ − 5

2(9γ − 11)
. (3)

2. Market is covered and a corner solution applies in the
price subgame whenever,

yh ∈
[
−yl

21γ − 17

2(3γ − 5)
,−yl

9γ − 5

2(9γ − 11)

]
, (4)

if 1 < γ ≤ 7
6
,

yh ∈
(
−yl

3γ − 1

2(3γ − 4)
,−yl

9γ − 5

2(9γ − 11)

]
, (5)

if 7
6

< γ < 22
18

.

3. Market is covered and an interior solution applies in the
price subgame whenever,

yh ∈
(

yl,−yl
21γ − 17

2(3γ − 5)

)
. (6)

4. Market is preempted whenever,

yh ∈
(

yl,−yl
3γ − 1

2(3γ − 4)

]
, if 21

18
≤ γ < 24

18
, (7)

γ ≥ 24

18
(8)

One can also deduce from the above that the uncovered con-
figuration is possible only if 1 < γ < 22

18
; a covered mar-



ket configuration with a corner solution is possible only if
1 < γ < 24

18
; a covered market configuration with an interior

solution is possible only if 1 < γ < 7
6
; and preempted market

configuration is possible only if γ ≥ 7
6
. The following lemma

shows that the profit of a high quality platform is increasing
in its quality in all configurations.

Lemma 2. Given yl, γ and the domain (yl, y], the profit
function πh(yl, yh) is increasing in yh for the market config-
urations CI, CII, and CIV .

Proof. We show that for each configuration the profit
function πh(yl, yh) is increasing in yh.

Uncovered Configuration CI: The profit function in this
configuration is given by,

πu
h =

(yh(24γ + 16) + yl(12γ − 1))2(yh − yl)

54(yl + 8yh)2
.

The derivative of the above function is positive for γ > 1
and yh > yl, hence the profit function in this configuration
is increasing in yh.

Covered Configuration with corner solution CIII: The profit
function in this configuration is given by,

πcc
h =

(yh(16γ + 4) + yl(3γ − 13))2

216(yh − yl)
.

The second derivative of the above function is given by,

∂2πcc
h

∂2yh
=

3y2
l (1− 2γ + γ2)

4(yh − yl)3
.

The above derivative is positive for γ > 1 and yh > yl, which
implies that the function is convex under these restrictions.
Moreover, the profit function πh has a single root at ỹ =

− yl(3γ−13)
2(3γ+2)

. Since ỹ < max
{
−yl

3γ−1
2(3γ−4)

,−yl
21γ−17
2(3γ−5)

}
hence

the profit function in this configuration is increasing in yh.

Covered Configuration with interior solution CIII: The profit
function in this configuration is given by,

πci
h =

(6γ + 11)2(yh − yl)

486
.

The derivative of the above function is given by,

∂πci
h

∂yh
=

(6γ + 11)2

486
.

and the derivative is positive. Therefore the profit function
is increasing in yh.

From Theorem 1 we can deduce that the preempted market
configuration CIV is possible whenever γ ≥ 7

6
. Several price

equilibria exist in this configuration depending on the tuple
(yh, yl, γ). Given yl, and γ the correspondence W : R+ ⇒
R+ gives the set of best response prices for each choice of
ỹ ∈ (yl, γ]. When 7

6
≤ γ < 24

18
, we can partition the set in

which yh lies into two. These are,

(yl, yl(9γ − 8)] and

[
yl(9γ − 8),−yl

3γ − 1

2(3γ − 4)

]
.

The set of prices in these two regions given the tuple yl, yh and γ
are given below.

a. 7
6
≤ γ < 24

18
and (yl, yl(9γ − 8)].

We deduce from Theorem 18 that given γ in the above
range and yh in the above partition many price equilib-
ria exist. In particular, platform h will offer the price,

wh =
1

3
(γ − 1)(yl + 2yh)− c,

where,

c ∈ [
(9γ − 8)

9
yl − 1

9
yh,

(3γ − 1)

9
yl +

(6γ − 8)

9
yh].

The choice of c depends on the price that platform l will
pick. Specifically, the highest price charged by platform
h for a particular yh is by 1

9
(yh − yl)(6γ − 5) and the

lowest price is given by 1
9
(5− 3γ)(yh − yl).

b. 7
6
≤ γ < 24

18
and

[
yl(9γ − 8),−yl

3γ−1
2(3γ−4)

]

In the second partition, we deduce from Theorem 1
that the highest price that platform h can charge is
wh = 1

3
(γ−1)(yl +2yh). The lowest price that platform

h can charge at equilibrium for a particular yh is given
by 1

9
(5− 3γ)(yh − yl).

When γ ≥ 24
18

platform h will offer the price, wh = 1
3
(γ −

1)(yl + 2yh)− c, where,

c ∈
[
max

{
(9γ − 8)

9
yl − 1

9
yh, 0

}
,

min

{
(3γ − 1)

9
yl +

(6γ − 8)

9
yh, (γ − 1)yl

}]
,

where c depends on the price offered by platform l. Given
(yl, γ) the correspondence Π : R+ ⇒ R+ gives the set of
profit values that platform h can attain for each choice ỹ ∈
(yl, y]. We define the set of profit functions that have a
maximum over the domain (yl, y]. Let

P (yh) = {πp
h(yh)|l(yh) ≤ πp

h(yh) ≤ g(yh)}.
where g(yh) = max{ 1

3
(γ − 1)(yl + 2yh), 1

9
(yh − yl)(6γ − 5)}

and l(yh) = max{ 1
9
(5− 3γ)(yh− yl), 2

3
(γ− 1)(yh− yl)}. We

will now show that if more than one market configuration is
possible, for a given interval (yl, y], given γ, platform h will
prefer to pick yh = y

Lemma 3. Given yl, γ and an interval (yl, y] assume that
either (i) γ ≤ 7

6
, or (ii) γ > 7

6
and y

yl
≥ − 3γ−1

2(3γ−4)
, then the

best response, Bh(yl) = y.

Proof. It is sufficient to show that the profit function is
increasing across the different market configurations under
the above assumptions. We partition the domain in which
γ is defined according to the types of market configurations
that are possible for each γ. We will then show that for each
of these partitions the profit function is non decreasing in
yh.

8The full version of this Theorem gives the price character-
izations and can be found in the LIDS report.



Case I: 1 < γ < 21
18

; As previously stated, three market
configurations are possible depending on the value of yh and
yl; these are uncovered, CI, covered with a corner solution
and covered with an interior solution, both of which are in
CIII. Given a γ in the above range, the domain (yl,∞]
in which yh lies can be partitioned into three sets; each of
which corresponds to one of the three market configurations.
These partitions are captured by the sets (3), (4) and (6).
By lemma 2, we know that profits are increasing in yh for
each partition. We will first show that the value of the profit
function in the partition defined in (3), is larger than any
profit attained in the partition defined in (4) and then show
that any profit attained in the partition defined in (6) is less
than that attained in (4).

To show the first result we compare the infimum value of the
profit function in the uncovered configuration to the high-
est profit attainable when platform h chooses yh such that
a covered market with a corner solution results (i.e, yh is
in the set specified by (4)). Let ycc = −yl

9γ−5
2(9γ−11)

, it fol-

lows that limyh→ycc πu
h(yh, yl) = πcc

h (ycc, yl). By lemma 2,
πu

h(yh, yl) > πu
h(ycc, yl) whenever yh lies in the set speci-

fied by the constraint (3). It also follows that πu
h(yh, yl) >

πcc
h (ỹ, yl) whenever ỹ is in the set specified by (4) since by

lemma 2, πcc
h (ycc, yl) ≥ πcc

h (ỹ, yl).

To show the second result we compare the lowest value of
the profit function in the covered configuration with a cor-
ner solution, to the supremum profit value attained when
platform h chooses yh such that a covered market with an
interior solution results. The interval over which the covered
configuration with an interior solution, CIII, is defined is
open. Let yci = −yl

21γ−17
2(3γ−5)

, since πci
h (y, yl) is right continu-

ous, the supremum of πci
h (y, yl) over the range in which this

configuration holds is given by πci
h (yci, yl). Moreover, it is

the case that πcc
h (yci, yl) = πci

h (yci, yl). Therefore, it follows
from lemma 2, that πcc

h (yh, yl) > πci
h (ỹ, yl) whenever yh is in

the set specified by (4) and ỹ is in the set specified by (6).

Case II: 7
6
≤ γ < 22

18
; When 7

6
≤ γ < 22

18
three market con-

figurations are possible depending on the value of yh and
yl; these are uncovered, CI, covered with a corner solution,
CIII, and a pre-empted market, CIV . Given a γ in the
above range, the domain (yl,∞] in which yh lies can be par-
titioned into three sets each of which corresponds to one of
the three market configurations. These partitions are cap-
tured by the sets (3), (5) and (7). We proceed in a similar
manner as we did for case I. By lemma 2 we know that prof-
its are increasing in yh for each partition. We will first show
that the value of the profit function in the partition defined
by the inequality (3), is larger than any profit attained in
the partition defined by (5) and then show that any profit
attained in the partition defined by (7) is less than that
attained in (5).

The first result is proved in the same way as it is done
in case I. To show the second result we compare the in-
fimum value of the profit function in the covered configu-
ration with a corner solution to the profit value attained
when platform h chooses yh such that a pre-empted market
results. Note the interval over which the covered configu-
ration with a corner solution, CIII, is defined is open on

its lower limit. Let yp = −yl
3γ−1

2(3γ−4)
, since πcc

h (y, yl) is left

continuous the infimum of πcc
h (y, yl) over the range in which

this configuration is defined is πcc
h (yp, yl). By plugging in

yh = yp into πcc
h (yh, yl) and πp

h(yh, yl) we determine that
the limyh→yp πcc

h (yp, yl) = πp
h(yp, yl). Note that for any

πp
h(yh) ∈ P (yh) if yh ≥ −yl

3γ−1
2(3γ−4)

then πp
h(yh) is single

valued, see the price characterization in Theorem 1. More-
over, πp

h(yp, yl) ≥ π̃p
h(yh, yl) where π̃p

h(yh, yl) ∈ P (yh) and

yh ≤ −yl
3γ−1

2(3γ−4)
. Therefore, it follows from lemma 2, that

πcc
h (yh, yl) > πp

h(ỹ, yl) when yh is in the set specified by (5)
and ỹ is in the set specified by ( 7).

Case III: 22
18
≤ γ < 24

18
; When γ falls in the above range two

market configurations are possible depending on the value of
yh and yl; these are covered with a corner solution, CIII and
a pre-empted market, CIV . The domain (yl,∞] in which
yh lies can be partitioned into two sets each of which cor-
responds to one of the two market configurations. These
partitions are captured by sets (5) and (7). By lemma 2, we
know that profits are increasing in yh in the partition where
a configuration CIII is defined, i.e in the set (5). Showing
that the value of the profit function in the partition defined
by (5), is larger than any profit attained in the partition
defined in (7) employs the same proof that is used to show
the second result for case II above. Therefore, given that
platform l picks yl < y and platform h chooses to be a high
quality platform, platform h chooses its best response to be
y.

Lemma 4. Given yl, γ and an interval (yl, y]. Assume
that

i. 7
6
≤ γ < 4

3
then the best response, Bh(yl) ∈ [f(y, yl), y]

where

f(y, yl) =

{
(9−3γ)y+(6γ−7)yl

3γ+2
if y ∈ (yl, yl

4γ+3−9γ2

γ−3
],

(9−3γ)y−(3γ−1)yl
3γ+1

if y ∈ [yl
4γ+3−9γ2

γ−3
,−yl

3γ−1
2(3γ−4)

].

ii. γ ≥ 4
3

then the best response, Bh(yl) ∈ [f(y, yl), y] where

f(y, yl) =

{
(1+3γ)y+yl

3γ+2
if y ∈ (yl, yl

−6γ−17+27γ2

3γ+1
],

(1+3γ)y−(γ−1)9yl
3γ+1

if y ∈ [yl
−6γ−17+27γ2

3γ+1
,∞).

Proof. We give a general outline on how to prove each
of the above cases. Given y ∈ [Cyl, Kyl], where C and
K are the relevant constants given in the hypothesis. The
least profit that platform h can make is given by l(y) where
l(yh) ∈ P (yh). This follows from the fact that l(yh) is an in-

creasing function of yh. Let P̃ (yh) = {πp
h(yh)|maxyh πp

h(yh) ≥
l(y)}. We find the minimum value of ỹ in the domain (yl, y]

such that maxyh πp
h(yh) ≥ l(y) where πp

h(yh) ∈ P̃ (yh), i.e.

ỹ = min yh

s.t.
∑

π
p
h
(yh)∈P̃ (yh)

1π
p
h
(yh)≥l(y) > 0

Since the correspondence Π is convex valued (this follows
from the convexity of W ) we find that ỹ = yh where g(yh) =
l(y). Therefore the best response Bh(yl) = f(y, yl) lies in the
set given by [ỹ, y], where,f(y, yl) = arg max πp

h(yh) and πp
h(yh) ∈

P̃ (yh).



A.1.2 Best reply in the domain [ε, yh)
We will follow a similar approach to that used in section
A.1.1. Given yh, we will compute firm l’s best reply. We
will show that the profit for the low quality firm is decreasing
in yl across all configurations which are possible whenever
1 < γ ≤ 7/6 or γ > 4/3. This will help us infer that the
low quality platform chooses ε as its best response in those
ranges. For the range, 21/18 ≤ γ < 24/18, we show that the
lower quality platform chooses the maximum between ε and
a fraction of the quality chosen by the high quality platform.

Since the choice of yl by the low quality firm determines the
market configuration we define the critical limits for which
the various configurations exist given yh.

1. Market is uncovered, with positive masses of consumers
on both platforms, in the in the price subgame whenever,

yl < −yh
2(9γ − 11)

9γ − 5
. (9)

2. Market is covered and a corner solution applies in the
price subgame whenever,

yl ∈
[
−yh

2(9γ − 11)

9γ − 5
,−yh

2(3γ − 5)

21γ − 17
,

]
, (10)

if 1 < γ ≤ 7
6
,

yl ∈
[
−yh

2(9γ − 11)

9γ − 5
,−yh

2(3γ − 4)

3γ − 1

)
, (11)

if 7
6

< γ ≤ 22
18

.

3. Market is covered and an interior solution applies in the
price subgame whenever,

yl ∈
(
−yh

2(3γ − 5)

21γ − 17
, yh

)
. (12)

4. Market is preempted whenever,

yl ∈
[
−yh

2(3γ − 4)

3γ − 1
, yh

)
, if 21

18
≤ γ < 24

18
, (13)

γ ≥ 24

18
(14)

Lemma 5. Given yh, γ and yl ∈ [ε, yh], the profit func-
tion πl(yl, yh) is decreasing in yl for all market configura-
tions for which it is defined.

Proof. We show that for each configuration the profit
function πl(yl, yh) is decreasing in yl.

Uncovered Configuration CII: The denote the profit func-
tion in this configuration by πu

l , One can show that if the

quality parameter is in the range 1 < γ < 22
18

∂πu
l

∂yl
< 0.

Hence the profit function in this configuration is decreasing
in yl.

Covered Configuration with corner solution CIII: The profit
function in this configuration is denoted by πcc

l , One can
show that the above derivative is negative when yl lies in
the set specified in (10) is satisfied and γ > 1. Hence the
profit function in this configuration is decreasing in yl.

Covered Configuration with interior solution CIII: The profit

function in this configuration is given by, πci
l = (103+36γ−84γ)

486(yh−yl)
.

The derivative of the above function is given by,
∂πci

l
∂yl

=

− 103
486

− 2
27

γ2 + 14
81

γ. The above derivative is negative there-
fore the profit function is decreasing in yl when yl lies in the
set specified in (12).

Pre-empted Configuration CIV : The profit function in this
configuration is given by, πp

l = 2
9
yh − 2

9
yl. The derivative of

the above function is given by,
∂π

p
l

∂yl
= −2

9
. The above deriva-

tive is negative therefore the profit function is decreasing in
yl when this configuration is defined.

We will now show that given yh and γ, and the strategy
space El = [ε, yh) platform l will prefer to pick ε whenever
1 < γ < 7

6
.

Lemma 6. Given yh, 1 < γ ≤ 7
6
, and a strategy space El

then Bl(yh) = ε.

Proof. As previously stated in section A.1.1 three mar-
ket configurations are possible when 1 < γ < 21

18
; these are

uncovered (CI), covered with a corner solution and covered
with an interior solution (both of which are in configuration
CIII). Given a γ in the above range, the domain [ε, yh) in
which yl lies can be partitioned into three sets, each of which
corresponds to one of the three market configurations. These
partitions are captured in (9), (10) and (12). By lemma 5,
we know that profits are decreasing in yl for each partition.
We will first show that the value of the profit function in the
partition defined in (9), is larger than any profit attained in
the partition defined in (10) whenever both partitions are
defined given ε and yh. Similarly, we show that any profit
attained when yl lies in the partition defined by the con-
straint in (12) is not greater than that attained when yl lies
in the partition specified by (10).

To show the first result we compare the infimum value of the
profit function in the uncovered configuration to the highest
possible profit attained when platform l chooses yl such that
a covered market with a corner solution results (i.e, yl is in

the set specified in (10)). Let ycc
l = −yh

2(9γ−11)
9γ−5

, it follows

that limyl→ycc
l

πu
l (yl, yh) = πcc

l (ycc
l , yh) (Since πu

l is right
continuous, the limit exists). Since πu

l (yl, yh) > πu
l (ycc

l , yh)
when yl satisfies the inequality in (9), it also follows from
lemma 5 that πu

l (yl, yh) > πcc
l (ỹ, yh) when ỹ lies in the set

specified in (10).

To show the second result, we compare the lowest value of
the profit function in the covered configuration with a cor-
ner solution to the supremum profit value attained when
platform l chooses yl such that a covered market with an in-
terior solution results. The interval over which the covered
configuration with an interior solution, CIII, is defined is

open. Let yci
l = −yl

2(3γ−5)
21γ−17

, we define the supremum of

πci
l (yl, yh) over the range in which this configuration is de-

fined as πci
l (yci

l , yh). We note that yci
l is the infimum of

the interval over which this configuration is defined, there-
fore limyl→yci

l
πci

l (yl, yh) = πci
l (yci

l , yh) since πci
l (yh, yl) is



left continuous. By plugging in yl = yci
l into πcc

l (yl, yh) we
note that πcc

l (yci
l , yh) = πci

l (yci
l , yh). Therefore, it follows

from lemma 5, that πcc
l (yh, yl) > πci

l (ỹ, yh) when yl satisfies
the constraint in (10) and ỹ satisfies equation (12). There-
fore, given that platform h picks yh, platform l chooses to
be a low quality platform and picks ε as its response.

Lemma 7. Given yh, 7
6

< γ < 22
18

and the strategy space

El then Bl(yh) = max{ε,−yh
2(3γ−4)
3γ−1

}.

Proof. As shown in section A.1.1 when 7
6
≤ γ < 22

18
three

market configurations are possible depending on the value
of yh and yl; these are uncovered, CI, covered with a corner
solution, CIII, and a pre-empted market, CIV . Given a γ
in the above range, the domain [ε, yh) in which yl lies can
be partitioned into three sets each of which corresponds to
one of the three market configurations. These partitions are
captured in (9), (11) and (13). We proceed in a similar
manner as we did for the previous Lemma. By lemma 5 we
know that profits are decreasing in yl for each partition. We
will first show that the value of the profit function in the
partition defined by (9), is larger than any profit attained in
the partition defined in (11). We then show that any profit
attained in the partitions defined in (11) or (9) is less than
that attained by the maximum profit in the partition defined
in (13).

The first result is proved in the same way as it is done in
Lemma 6. To show the second result we compare the in-
fimum value of the profit function in the covered configu-
ration with a corner solution to the profit value attained
when platform l chooses a yl such that a pre-empted market
results. Note the interval over which the covered configu-
ration with a corner solution, CIII, is defined is open on

its upper limit. Let yp
l = −yh

2(3γ−4)
3γ−1

, we define the infi-

mum of πcc
l (y, yl) over the range in which this configuration

is defined as πcc
l (yp

l , yh). Since πcc
l (y, yh) is right continuous

limyl→y
p
l

πcc
l (yl, yh) = πcc

l (yp
l , yh). Note yp

l is the supremum

of the range. By plugging in yl = yp
l into the profit func-

tions under a covered market (with a corner solution) and
a pre-empted market, we find that πcc

l (yp
l , yh) < πp

l (yp
l , yh).

This implies that the profit function is discontinuous across
these two market configurations at this point. We now show
that limyl→0 πu

l (yh, yl) < πp
l (yp

l , yh). We note that πu
l (yh, ε)

is a continuous function in ε and the limit as ε → 0 ex-
ists. We define limε→0 πu

l (yh, ε) = πu
l (0, yh). It follows that

πu
l (0, yh)− πp

l (yp
l , yh) is given by,

yh(9γ2 − 105γ + 106)

54(3γ − 1)
,

which is negative when 7
6

< γ < 22
18

. Therefore it follows
from Lemma 5, that πcc

l (yh, yl) < πp
l (yp

l , yh) when yl is the
partition specified in (11). Moreover, πp

l (yp
l , yh) > πu

l (yh, ỹ)
for any ỹ that falls in the partition specified in (9). There-

fore, the best response given yh is the max{ε,−yh
2(3γ−4)
3γ−1

}.

Lemma 8. Given yh, 22
18
≤ γ < 24

18
and the strategy space

El, then Bl(yh) = max
{

ε,−yh
2(3γ−4)
3γ−1

}
.

Proof. When γ falls in the above range two market con-
figurations are possible depending on the value of yh and
yl; these are a covered market with a corner solution, CIII
and a pre-empted market, CIV . Given a γ in the above
range, the domain [ε, yh) in which yl lies can be partitioned
into two sets each of which corresponds to one of the two
market configurations. These partitions are captured in (11)
and (13). We proceed in a similar manner as we did for the
previous Lemma 7. We will show that any profit attained in
the partition defined in Eq. (11) is less than that attained
by the maximum profit in the partition defined in Eq. (13).
This proof is analogous to the proof for the second result in
lemma 7. Therefore the same results apply, in particular,

when ε < −yh
2(3γ−4)
3γ−1

platform l picks yl = −yh
2(3γ−4)
3γ−1

and

when ε ≥ −yh
2(3γ−4)
3γ−1

platform l picks yl = ε.

For γ > 24
18

only the pre-empted market configuration exists
and by Lemma 5 the profit is decreasing in yl. Therefore
given that platform h picks yh > 0, platform l best response
in the domain [ε, yh) is ε.

A similar analysis to that carried out in the previous two
subsections also applies when determining the set in which
platform α′s best replies lie given platform β′s choice.

A.2 Subgame Perfect Equilibrium
We show for each of these regions the sets in which the best
reply responses lie and where they intersect thus determining
the subgame perfect equilibria.

1. 1 < γ < 7
6
. Platform’s β best reply given yα is defined

as,

Bβ(yα) =





ε, if ε < yα < y and πl
β(ε, yα) ≥ πh

β(y, yα),
y, if ε < yα < y and πl

β(ε, yα) ≤ πh
β(y, yα),

ε, if yα = y,
y, if yα = ε.

Platform’s α′s best reply given yβ is similarly defined.
Note that πh

β and πl
β refer to the relevant profit func-

tions when platform β acts as a high and low quality
platform respectively.

yαε
ε

y

y

yβ

Figure 2: The red line (dotted line) is the set in
which best responses for platform β(α) lie. These
sets intersect only at (ε, y) and (y, ε).

It follows that any subgame perfect equilibrium when
1 < γ < 7

6
entails one firm choosing y and the other



choosing ε. The resulting market configuration depends
on the investment ratio I = y

ε
and the value of γ.

Figure 2, shows the sets that contain the best responses
and the points where they intersect.

2. 7
6
≤ γ < 24

18
and y

ε
≥ − (3γ−1)

2(3γ−4)
. Platform’s β best reply

given yα is defined as,

Bβ(yα) =





ε, if ε ≤ yα < −ε 3γ−1
2(3γ−4)

and πl
β(ε, yα) ≥ πh

β(y, yα),

yα
2(3γ−4)
3γ−1

, if −ε 3γ−1
2(3γ−4)

≤ yα ≤ y

and πl
β(ε, yα) ≥ πh

β(y, yα),

y, if ε ≤ yα < y 2(3γ−4)
3γ−1

and πl
β(ε, yα) ≤ πh

β(y, yα),

f(y, yα), if y 2(3γ−4)
3γ−1

≤ yα < y

and πl
β(ε, yα) ≤ πh

β(y, yα),

Where f(y, yα) is as defined in Lemma 4.

ε
ε

y

yα

−ε 3γ−1
2(3γ−4)

−ε 3γ−1
2(3γ−4)

−2(3γ−4)
3γ−1

y

−2(3γ−4)
3γ−1

y

y

yβ

Figure 3: The red (blue) points show the sets in
which best responses for platform β(α) lie. These

sets intersect only at (−y 2(3γ−4)
3γ−1

, y) and (y,−y 2(3γ−4)
3γ−1

).

Figure 3 represents the sets where the best responses
lie in the case y

ε
= I ≥ − 3γ−1

2(3γ−4)
. These sets intersect

only at the points (−y 2(3γ−4)
3γ−1

, y) and (y,−y 2(3γ−4)
3γ−1

) as
shown in the diagram. These points form a SPE; this
follows from Lemma 7 and 3 together with the fact that
y
ε
≥ − (3γ−1)

2(3γ−4)
. The high quality platform invests in the

highest possible quality whilst the low quality platform
is a fraction of the investment by the high quality plat-
form. Therefore, the investment quality pair at the

SPE is given by {y,−y 2(3γ−4)
3γ−1

}.
3. 7

6
≤ γ < 24

18
and y

ε
≤ − (3γ−1)

2(3γ−4)
. Platform’s β best reply

given yα is defined as,

Bβ(yα) =

{
ε, if ε ≤ yα < y and πl

β(ε, yα) ≥ πh
β(y, yα),

ỹ, if ε ≤ yα < y and πl
β(ε, yα) ≤ πh

β(y, yα),

Where ỹ ∈ [f(y, yα), y] and f(y, yα) is as defined in
Lemma 4.

Figure 4 represents the sets where the best responses
lie in the case y

ε
= I < − 3γ−1

2(3γ−4)
. These sets intersect

only at (ỹ, ε) and (ε, ỹ) where ỹ ∈ [f(y, ε), y] as shown
in the diagram. These points form a SPE; this follow
from Lemma 7 and 4 together with the fact that y

ε
<

− (3γ−1)
2(3γ−4)

. The high quality platform invests in a ỹ ∈
[f(y, ε), y] whilst the low quality platform chooses the
lowest quality available.

f(y, ε)yα y

y

f(y, ε)

ε
ε

ε4γ+3−9γ2

γ−3

ε4γ+3−9γ2

γ−3

yβ

Figure 4: The red (blue) points show the sets in
which best responses for platform β(α) lie. These
sets intersect only at (ỹ, ε) and (ε, ỹ) where ỹ ∈
[f(y, ε), y].

4. γ ≥ 4
3
. Platform’s β best reply given yα is defined as,

Bβ(yα) =

{
ε, if ε ≤ yα < y and πl

β(ε, yα) ≥ πh
β(y, yα),

ỹ, if ε ≤ yα < y and πl
β(ε, yα) ≤ πh

β(y, yα),

Where ỹ ∈ [f(y, yα), y] and f(y, yα) is as defined in
Lemma 4.

f(y, ε)yα y

y

f(y, ε)

ε
ε

ε−6γ−17+27γ2

3γ+1

ε−6γ−17+27γ2

3γ+1

yβ

Figure 5: The red (blue) points show the sets in
which best responses for platform β(α) lie. These
sets intersect only at (ỹ, ε) and (ε, ỹ) where ỹ ∈
[f(y, ε), y].

Figure 5 represents the sets where the best responses
lie. These sets intersect only at (ỹ, ε) and (ε, ỹ) where
ỹ ∈ [f(y, ε), y] as shown in the diagram. These points
form a SPE; this follow from Lemma 7 and 4. The high
quality platform invests in a ỹ ∈ [f(y, ε), y] whilst the
low quality platform chooses the lowest quality avail-
able. Platform’s α′s best reply given yβ is similarly
defined. It follows that any subgame perfect equilib-
rium when γ ≥ 24

18
entails one firm choosing ỹ and the

other choosing ε.


