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Abstract The compact Discontinuous Galerkin 2 (CDG2) method was successfully
tested for elliptic problems, scalar convection-diffusion equations and compressible
Navier-Stokes equations. In this paper we use the newly developed DG method to
solve a mathematical model for early stages of atherosclerotic plaque formation.
Atherosclerotic plaque is mainly formed by accumulation of lipid-laden cells in
the arterial walls which leads to a heart attack in case the artery is occluded or a
thrombus is built through a rupture of the plaque. After describing a mathematical
model and the discretization scheme, we present some benchmark tests comparing
the CDG2 method to other commonly used DG methods. Furthermore, we take
parallelization and higher order discretization schemes into account.

1 Introduction

Atherosclerotic plaque formation is today seen as a chronic inflammation of the ar-
terial wall which grows over decades and may finally lead to a heart attack in case
the artery is occluded or a thrombus is built through a rupture of the plaque. To un-
derstand the mechanisms of the chronic inflammation it was recently shown in [11]
that apoE knockdown mice with a cuff around their carotid develop atherosclerotic
plaque formation up- and downstream of the cuff after they were fed with a Western
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diet. A low wall shear stress of the blood onto the arterial wall or high oscillating
blood flow was shown to be an important indicator for the development of plaque
because it damages the endothelial layer.

At this point our mathematical model (cf. [7]) comes into play which we want
to present in section 2: A dysfunction of the endothelial allows low-density lipopro-
teins (LDL) to enter the artery wall. Once inside the arterial wall, the LDL becomes
oxidized which leads to a recruitment of immune cells, i.e. monocytes. Monocytes
differentiate into active macrophages when inside the arterial wall starting continu-
ously absorbing the oxidized LDL. Finally, the macrophages differentiate into foam
cells, die and build a necrotic core. Smooth muscle cells (SMCs) from the outer re-
gions of the arterial wall can migrate into the lesion and either become an apoptotic
cell or migrate around the lesion to form a fibromuscular cap overlaying the plaque.

Section 3 describes the spatial and temporal discretization of the CDG2 method
which was successfully tested for elliptic problems, scalar convection-diffusion
equations and compressible Navier-Stokes equations in [3, 8, 9].

We summarize our paper with some 2D and 3D benchmark tests1 in section 4
and a conclusion in section 5.

2 Mathematical Model for Atherosclerotic Inflammation

A variety of mathematical models dealing with atherosclerotic plaque formation
exist, see [4, 7]. Here, we focus on six species: immune cells n1 (we do not dis-
tinguish between monocytes and macrophages, here), SMCs n2, debris n3 (i.e. all
dead or apoptotic cells), chemoattractant c1 (immune cells and SMCs attract to),
non oxidized c2 and oxidized LDL c3. Let Ω ⊂ Rd , d = 2,3 be the domain of the
arterial wall, Γ1 the boundary between the arterial wall and the lumen and Γ2 the
outer boundary of the arterial wall.

Let us suppose that for all x ∈Ω and t > 0 the following system holds:

∂tn1 = ∇ ·
(

µ1∇n1−χ(n1,c1,χ
0
11,χ

th
11)∇c1−χ(n1,c3,χ

0
13,χ

th
13)∇c3

)
−d1n1, (1)

∂tn2 = ∇ ·
(

µ2∇n2−χ(n2,c1,χ
0
21,χ

th
21)∇c1 +χ(n2,n1,ξ

0
21,ξ

th
21)∇n1

)
−d2n2, (2)

∂tn3 = ∇ · (µ3∇n3)+d1n1 +d2n2−F(n3,c3)n1, (3)
∂tc1 = ∇ · (ν1∇c1)−α1n1c1−α2n2c2 + f1(n3)n3, (4)
∂tc2 = ∇ · (ν2∇c2)− kc2, (5)
∂tc3 = ∇ · (ν3∇c3)+ kc2. (6)

In our model we assume the motility coefficients µ1, µ2, µ3, ν1, ν2 and ν3 to be
constant. The parameters d1 and d2 are also constant and describe the death rates
of immune cells and SMCs. The parameter k describes how fast the native LDL

1 Detailed benchmark data: wwwmath.uni-muenster.de/u/stefan.girke/bmark.
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becomes oxidized. The functions χ11, χ12, χ21 and ξ21 are chemotactic sensitivity
functions. We have chosen χ(x,y,a,b) = a x

y+b to mimic a high sensitivity of cells

to the relative gradient ∇c
c of a chemoattractant c on the one hand and a small penal-

ization term to regularize the chemotactic movement for small concentrations c on
the other hand. A lot of other chemotactic sensitivity functions are possible as well.

For a healthy immune system debris is degraded which is indicated by a general
function F > 0. We suppose F < 0 to be constant indicating a diseased state. The
function f1 is a production term which is debris dependent. We allow LDL and
immune cells to enter the arterial wall through the inner boundary and SMCs to
enter through the outer arterial wall. The immune cell and SMC inflow is triggered
when a threshold of chemoattractant is exceeded, i.e.

∂nn1 = −β1(c1)H(c1− c∗1) ∀x ∈ Γ1, t > 0 (7)
∂nn2 = −β2(c1)H(c1− c∗∗1 ) ∀x ∈ Γ2, t > 0 (8)
∂nc2 = −σ ∀x ∈ Γ1,in, t > 0, (9)

with Heaviside function H and a boundary Γ1,in ⊂ Γ1 for the inflow of LDL. For
all other boundary conditions we choose a no-flow condition. The initial data is
supposed to be given by ni(x,0) = n0

i (x) and ci(x,0) = c0
i (x), i = 1,2,3, x ∈Ω .

Defining a vector U := (n1,n2,n3,c1,c2,c3) and functions F : R6→ R6×d , A :
R6→ R6×6 and S : R6→ R6 by

F (U) := (χ(n1,c1,χ
0
11,χ

th
11)∇c1−χ(n1,c3,χ

0
13,χ

th
13)∇c3,

χ(n2,c1,χ
0
21,χ

th
21)∇c1 +χ(n2,n1,ξ

0
21,ξ

th
21)∇n1,0 . . .0),

A (U) := diag(µ1,µ2,µ3,ν1,ν2,ν3),

S(U) := −(d1n1,d2n2,−d1n1−d2n2 + γn1,α1n1c1 +α2n2c2− f1n3,−kc2,kc2)

equation (1) can be written as

∂tU =−∇ · (F (U)−A (U)∇U)+S(U). (10)

3 Discretization

The considered discretization is based on the Discontinuous Galerkin (DG) ap-
proach and implemented in DUNE-FEM [6] a module of the DUNE framework [2].
The current state of development allows for simulation of convection dominated
(cf. [5]) as well as viscous flow (cf. [3]). We consider the CDG2 method from [3]
for various polynomial orders in space and 2nd (or 3rd) order in time for the numer-
ical investigations carried out in this paper.



4 Stefan Girke, Robert Klöfkorn and Mario Ohlberger

3.1 Spatial Discretization

The spatial discretization is derived in the following way. Given a tessellation Th of
the domain Ω with ∪K∈ThK = Ω the discrete solution Uh is sought in the piecewise
polynomial space

Vh = {v ∈ L2(Ω ,Rnspec) : v|K ∈ [Pk(K)]nspec , K ∈Th} for some k ∈N,

where nspec is the number of species and Pk(K) is a space containing polynomials
up to degree k.

We denote with Γi the set of all intersections between two elements of the grid
Th and accordingly with Γ the set of all intersections, also with the boundary of
the domain Ω . The following discrete form is not the most general but still covers
a wide range of well established DG methods. For all basis functions ϕ ∈ Vh we
define

〈ϕ,Lh(Uh)〉 := 〈ϕ,Kh(Uh)〉+ 〈ϕ,Ih(Uh)〉 (11)

with the element integrals

〈ϕ,Kh(Uh)〉 := ∑
K∈Th

∫
K

(
(F (Uh)−A (Uh)∇Uh) : ∇ϕ +S(Uh) ·ϕ

)
, (12)

and the surface integrals (by introducing appropriate numerical fluxes F̂e, Âe for
the convection and diffusion terms, respectively)

〈ϕ,Ih(Uh)〉 := ∑
e∈Γi

∫
e

(
{{A (Uh)

T
∇ϕ}}e : [[Uh]]e +{{A (Uh)∇Uh}}e : [[ϕ]]e

)
(13)

− ∑
e∈Γ

∫
e

(
F̂e(Uh)− Âe(Uh)

)
: [[ϕ]]e,

where {{V}}e =
1
2 (V

++V−) denotes the average and [[V ]]e = (n+⊗V++n−⊗V−)
the jump of the discontinuous function V ∈Vh over element boundaries. For matrices
σ ,τ ∈ Rm×n we use standard notation σ : τ = ∑

m
j=1 ∑

n
l=1 σ jlτ jl . Additionally, for

vectors v ∈ Rm,w ∈ Rn, we define v⊗w ∈ Rm×n according to (v⊗w) jl = v jwl for
1≤ j ≤ m, 1≤ l ≤ n.

The convective numerical flux F̂e can be any appropriate numerical flux known
for standard finite volume methods. For the results presented in this paper we choose
F̂e to be the widely used local Lax-Friedrichs numerical flux function.

A wide range of diffusion fluxes Âe can be found in the literature, for a summary
see [1]. We choose the CDG2 flux

Âe(V ) := 2χe
(
A (V )re([[V ]]e)

)
|K−e for V ∈Vh, (14)

which was shown to be highly efficient for advection-diffusion equations (cf. [3]).
Based on stability results, we choose K−e to be the element adjacent to the edge e
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with the smaller volume. re([[V ]]e) ∈ [Vh]
d is the lifting of the jump of V defined by∫

Ω

re([[V ]]e) : τ =−
∫

e
[[V ]]e : {{τ}}e for all τ ∈ [Vh]

d . (15)

For the numerical experiments in this paper we use χe =
1
2NTh , where NTh is the

maximal number of intersections one element in the grid can have (cf. [3]). We use
triangular elements where χe = 1.5 for all e ∈ Γ , and tetrahedral elements where
χe = 2 for all e ∈ Γ .

3.2 Temporal discretization

The discrete solution Uh(t) ∈ Vh has the form Uh(t,x) = ∑i U i(t)ϕ i(x). We get a
system of ODEs for the coefficients of U(t) which reads

U ′(t) = f (U(t), t) in (0,T ] (16)

with f (U(t), t) = M−1Lh(Uh(t), t), M being the mass matrix which is in our case
block diagonal or even diagonal, depending on the choice of basis functions. U(0)
is given by the projection of U0 onto Vh.

For the numerical results we have chosen diagonally implicit Runge-Kutta (DIRK)
solvers of order 2, 3, or 4 depending on the polynomial order of the basis func-
tions. The DIRK solvers are based on a Jacobian-free Newton-Krylov method (see
[10]). The Krylov method is chosen to be GMRES. The implicit solver relies on a
matrix-free implementation of the discrete operator Lh. In a follow-up paper we
will compare this approach to a fully assembled approach.

4 Numerical Results

In this section we present some benchmark tests for 2D and 3D focusing on paral-
lelization and higher order DG schemes. Due to the lack of an exact solution U we
have computed the L2-error between the discrete solution Uh and a very fine, higher
order solution Uh′ . The quadrature order to compute ‖Uh−Uh′‖L2(Ω) was chosen to
be 2k+ 4, where k denotes the order of the scheme. All computations are done on
an unstructured, tetrahedral mesh.

4.1 A 2D numerical experiment with six species

Uh′ was calculated using the 4th order CDG2 scheme on a grid with 81,920 elements
(refinement level 5), i.e. 7,372,800 degrees of freedom. For each h-refinement of the
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Table 1 Accuracy of the CDG2 scheme with 32 threads

linear quadratic cubic
level grid size time L2-error EOC time L2-error EOC time L2-error EOC

0 80 5.72E-1 2.42E-3 — 2.00E0 2.18E-3 — 6.52E0 1.96E-3 —
1 320 5.56E0 2.10E-3 0.20311 2.33E1 1.82E-3 0.26650 8.63E1 1.50E-3 0.38074
2 1280 3.98E2 1.82E-3 0.21263 2.09E2 1.34E-3 0.43315 8.22E2 9.26E-4 0.69823
3 5120 3.33E3 1.39E-3 0.38944 2.21E3 7.92E-4 0.76429 9.12E3 4.32E-4 1.0993
4 20480 3.01E4 8.28E-4 0.74208 2.10E4 2.94E-4 1.4284 8.02E4 8.77E-5 2.3024
5 81920 2.67E5 3.21E-4 1.3659 1.93E5 7.26E-5 2.0193 6.96E5 2.33E-5 1.9122

Fig. 1 Left: The coarsest grid for the eoc calculations containing 80 elements visualising a re-
entrant corner (blue), middle: Initial distribution for the immune cells. right: Solution for 6 species
from left to right, up to down: Immune cells, SMCs, debris, chemoattractant, native LDL, oxidized
LDL. (data visualisation: Paraview.)

grid we bisect the time step size. Results for linear, quadratic and cubic DG schemes
can be seen in table 4.1. In figure 2 (left picture) we compare on a log-log scale the
total CPU time of all threads with the L2-error. Although the convergence rate is
not as high as from the theory for parabolic problems, we see better rates for higher
order schemes. We assume that re-entrant corners are responsible for the reduced
convergence rates, see re-entrant corners in left picture of figure 1.

The right picture of figure 2 shows that the CDG2 is as good as the BR2 scheme
and outperforms other DG schemes.

4.2 A 3D numerical experiment with three species

For the 3D benchmark we simplify our model and do our simulation only for im-
mune cells, debris and chemoattractant. This reduces the considered model to
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Fig. 2 Plot CPU time vs. L2-error: left: 1st, 2nd and 3rd order CDG2 scheme, right: 1st order
CDG, CDG2, BO, BR2, IP scheme (Visualisation of graphs: gnuplot.)

Table 2 CPU time for a parallel runs using the cubic CDG2 method for computation of 10 time
steps.

processors 8 16 32 64 128 256
CPU time in sec 1177 528 277 142 75 39
speedup — 2.23 4.29 8.29 15.7 30.18

Fig. 3 3D cuff model. Left: Each colour denotes a processor in a parallel run with 32 processors,
right: Isolines of the distribution of the chemoattractant after the inflammation has started

∂tn1 = ∇ ·
(

µ1∇n1−χ(n1,c1,χ
0
11,χ

th
11)∇c1

)
, (17)

∂tn3 = ∇ · (µ3∇n3)+d1n1 +d2n2−F(n3,c3)n1, (18)
∂tc1 = ∇ · (ν1∇c1)−α1n1c1−α2n2c2 + f1(n3)n3. (19)

We cannot trigger the inflammation through an inflow of LDL anymore. Thus, we
suppose that the inflammation is triggered by a local, high concentration of debris
and keep all other boundary and initial data from the last section.

In the 3D benchmark we examine parallelization using MPI and present in table
4.2 strong scaling results for a third order CDG2 scheme on a grid with 113,549
elements and 13,625,880 degrees of freedom. Figure 3 shows the distribution of the
processors and a discrete solution of the chemoattractant calculated using first order
CDG2.
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5 Conclusion

We have shown that Discontinuous Galerkin schemes are well suited for solv-
ing huge coupled reactive diffusion transport systems. Modern techniques, such as
adaptivity and parallelization, help to handle large systems in an appropriate CPU
time. Furthermore, we have shown that it is possible to model the early stages of
atherosclerotic plaque formation. A lot of more work needs to be done: In a future
paper we will model the wall shear stress and some more species to understand later
stages of atherosclerosis.
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5. Dedner, A., Klöfkorn, R.: A Generic Stabilization Approach for Higher Order Discontinu-
ous Galerkin Methods for Convection Dominated Problems. J. Sci. Comput. 47(3), 365–388
(2011). DOI http://dx.doi.org/10.1007/s10915-010-9448-0
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