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Abstract

The purpose of this paper is to study codes over finite principal ideal rings. To
do this, we begin with codes over finite chain rings as a natural generalization of
codes over Galois rings GR(pe, l) (including Zpe). We give sufficient conditions on
the existence of MDS codes over finite chain rings and on the existence of self-dual
codes over finite chain rings. We also construct MDS self-dual codes over Galois rings
GF (2e, l) of length n = 2l for any a ≥ 1 and l ≥ 2. Torsion codes over residue fields of
finite chain rings are introduced, and some of their properties are derived. Finally, we
describe MDS codes and self-dual codes over finite principal ideal rings by examining
codes over their component chain rings, via a generalized Chinese remainder theorem.

Key Words: Chain ring, Galois ring, MDS code, principal ideal ring.
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1 Introduction

Codes over finite rings, especially over Z4, have been of great interest due to Nechaev [21]

and Hammons, et. al. [13]. Some of the main results of [13] are that Kerdock and Preparata

codes are linear over Z4 via the Gray map from Zn
4 to Z2n

2 , and that as Z4-codes they are

duals [13]. However, the study of codes over finite rings other than finite fields goes back to

early 1970’s. For example, there had been some papers on codes over Zm (e.g., Blake [1], [2],

Spiegel [25], [26]), and codes over Galois rings GR(pe, l) (e.g., Shankar [24]).

Recently people have considered codes over finite chain rings (e.g., [16] (references therein),

[14]) and codes over finite Frobenius rings (e.g., [28], [11]) with respect to homogeneous

weights [6]. For codes over finite rings or Galois rings, we refer to [19] and [27]. Codes over

rings have been shown to have interesting connections to lattices, modular forms [20], and

Hjelmslev geometries [14] as well as to many other branches of mathematics (see [23] for a

complete description). We refer to [17] for any undefined terms from coding theory.

In this work we consider codes over finite principal ideal rings by examining codes over

their component chain rings. We begin with some definitions.

Let R be a finite commutative ring with identity, n ≥ 1 an integer. A subset C of Rn is

called a linear code of length n over R if C is an R-submodule of Rn.

For a linear code C of length n over R, we define the rank of C, denoted by rank(C),

to be the minimum number of generators of C. We define the free rank of C, denoted by

free rank(C), to be the maximum of the ranks of free R-submodules of C. We shall say

that a linear code is free if the free rank is equal to the rank, that is, a code is a free R-

submodule. A free linear code is isomorphic as a module to Rk for some k. The weight of

a vector is the number of non-zero coordinates of a vector and for a code C we denote by

dH(C) (or simply d) the nonzero minimum Hamming distance of the code.

It is well known (see [17] for example) that for codes C of length n over any alphabet of

size m

dH(C) ≤ n− logm(|C|) + 1. (1)

Codes meeting this bound are called MDS (Maximum Distance Separable) codes.

The definition that we give for MDS codes is consistent with much of the literature,

however it is distinct from the definition given in [16]. Codes which are defined to be MDS

in [16] would be MDR with our definition, which we define below. We define it this way

since MDS is originally defined in a combinatorial manner and there are numerous equivalent

combinatorial structures to MDS codes over arbitrary alphabets. MDR codes do not, in

general, meet this bound. Hence we wish to be a distinction between the combinatorial

bound and the algebraic bound.

Further if C is linear, then

dH(C) ≤ n− rank(C) + 1. (2)
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Codes meeting this bound are called MDR (Maximum Distance with respect to Rank) codes.

Note that in Section 2 we introduce a new notion: indices of stability of the maximal

ideals of a (finite) ring and characterize principal ideal rings in terms of this notion. We

essentially use this notion throughout the paper.

We begin with codes over finite chain rings as a natural generalization of codes over

Galois rings GR(pe, l) (including Zpe). Section 2 characterizes finite principal ideal rings in

terms of indices of stability. Section 3 gives sufficient conditions on the existence of MDS

codes over a finite chain ring (generally over a finite local Frobenius ring) and finds the

number of free subcodes of any rank of a free code over a finite chain ring. In Section 4, we

give sufficient conditions on the existence of self-dual codes over finite chain rings. We also

construct MDS self-dual codes over Galois rings GR(2e, l) with parameters [2l, 2l−1, 2l−1 +1]

for any e ≥ 1 and l ≥ 2. In Section 5, we define Torsion codes over residue fields from

codes over finite chain rings. Finally, in Section 6 we describe MDS codes and self-dual

codes over principal ideal rings by examining codes over their component chain rings using

generalized Chinese remainder theorem, the structure of modules over product rings, and

indices of stability of the maximal ideals of finite rings.

2 Finite principal ideal rings

In this section, we characterize modules over a product of rings (Proposition 2.4 and Corol-

lary 2.5) and finite principal ideal rings as a natural extension of finite chain rings (Proposi-

tion 2.7). The characterization of finite principal ideal rings is in terms of indices of stability

of maximal ideals, which is a new notion that we introduce.

We assume that all rings in this paper are commutative and with identity. For all

unexplained terminology and more detailed explanations, we refer to [5], [15] and [18] (related

to algebra) and to [19] and [27] (related to finite rings).

Two ideals a, b of a ring R are called relatively prime if a + b = R.

The next three lemmas are the well-known versions of the Chinese Remainder Theorem.

Lemma 2.1 ([18], Theorem 1.3 and 1.4). Let a1, a2, . . . , an be ideals of R. The following

are equivalent:

(i) For i 6= j, ai and aj are relatively prime.

(ii) The canonical homomorphism R → ∏n
i=1(R/ai) is surjective.

If these conditions hold, then ∩n
i=1ai =

∏n
i=1 ai and the canonical homomorphism Φ : R/a →∏n

i=1(R/ai), where a = ∩n
i=1ai, is bijective.

A finite family (ai)
n
i=1 of ideals of R, such that the canonical homomorphism of R to∏n

i=1(R/ai) is an isomorphism is called a direct decomposition of R.
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Lemma 2.2 ([3], p. 110, Proposition 10). Let a1, a2, . . . , an be ideals of R. The following

are equivalent:

(i) A family (ai)
n
i=1 is a direct decomposition of R;

(ii) For i 6= j, ai and aj are relatively prime and ∩n
i=1ai = {0};

(iii) For i 6= j, ai and aj are relatively prime and
∏n

i=1 ai = {0};
(iv) There exists a family (ei)

n
i=1 of idempotents of R such that eiej = 0 for i 6= j,

1 =
∑

ei and ai = R(1− ei) for i = 1, . . . , n.

Lemma 2.3 ([5], p. 54, Proposition 6). Let a1, a2, . . . , an be ideals of R, relatively prime

in pairs and let a = ∩n
i=1ai. For every R-module M , the canonical homomorphism M →∏n

i=1(M/aiM) is surjective and its kernel is aM .

Let (ai)
n
i=1 be a direct decomposition of R and let M be an R-module. Let Mi =

{x ∈ M : aix = 0}. This is a submodule of M . Since ai ⊂ Ann(Mi), we have a unique

R/ai-module structure on Mi such that the R-module structure of Mi is induced via the

homomorphism R → R/ai. Moreover, we have Mi = eiM (i = 1, . . . , n) and the R-module

M is the internal direct sum of its submodules Mi ([4], page A.VII.6, Proposition 1). Here

the ei are the idempotents from Lemma 2.2. We write M = ⊕n
i=1Mi and for every x ∈ M

we write x = x1 ⊕ x2 ⊕ · · · ⊕ xn to denote the unique way to write x as a sum of elements

xi ∈ Mi, i = 1, . . . , n. Denote by Ψ : M → ∏n
i=1 M/aiM the canonical isomorphism.

Proposition 2.4. Let R be a commutative ring, (ai)
n
i=1 a direct decomposition of R and M

an R-module. With the notation as above we have:

(i) For each i = 1, . . . , n, the submodule Mi = eiM is a complement in M of the

submodule aiM = (1 − ei)M and so the R/ai-modules Mi and M/aiM are isomorphic via

the map ψi : Mi → M/aiM , x 7→ x + aiM .

(ii) The action of R on M , (r, x) 7→ rx, can be identified with the componentwise actions

((r1 + a1, . . . , rn + an), x1 ⊕ · · · ⊕ xn) 7→ r1x1 ⊕ · · · ⊕ rnxn,

((r1 + a1, . . . , rn + an), (x1 + a1M, . . . , xn + anM)) 7→ (r1x1 + a1M, . . . , rnxn + anM)

of
∏n

i=1 R/ai on M = ⊕n
i=1Mi and

∏n
i=1 M/aiM respectively.

(iii) Every submodule N of M is an internal direct sum of submodules Ni = eiN ⊂ Mi,

which are isomorphic via ψi with the submodules N ′
i = (aiM + eiN)/aiM of M/aiM (i =

1, . . . , n). Each N ′
i is isomorphic to N/aiN and so the decomposition N → ⊕n

i=1N
′
i ⊂

⊕n
i=1M/aiM canonically corresponds to the decomposition N → ⊕n

i=1N/aiN .

Conversely, if for every i = 1, . . . , n, N ′
i is a submodule of M/aiM , then there is a unique

submodule N = ⊕n
i=1Ni of M , such that N is isomorphic with ⊕n

i=1N
′
i via Ψ = ⊕n

i=1ψi.

Proof. (i) Since ei and 1 − ei are idempotents whose sum is 1, the submodules eiM

and (1− ei)M of M are complements of each other. Since the map x 7→ x + aiM maps M
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onto M/aiM and its kernel is aiM , Mi and M/aiM are isomorphic via the restriction of

that map ψi : Mi → M/aiM , x 7→ x + aiM .

(ii) This follows from Lemma 2.1 and Lemma 2.3.

(iii) The composition of the canonical injection of N = (1−ei)N⊕eiN into (1−ei)M⊕eiN

with the map ψi has the same kernel eiN as the canonical map of N onto N/aiN . Hence

the canonical correspondence of the decompositions.

Conversely, we have N = Ψ−1(⊕n
i=1N

′
i) = (⊕n

i=1ψ
−1
i )(⊕n

i=1N
′
i) = ⊕n

i=1ψ
−1(N ′

i) = ⊕n
i=1Ni.

When in part (iii) of the previous proposition we fix a module M and consider its

submodules N and their decompositions⊕n
i=1N

′
i ⊂ ⊕n

i=1M/aiM , we say that M is an ambient

R-module and that ⊕n
i=1M/aiM is its decomposition into the ambient R/ai-modules. If the

ambient module is M = Rn, then M/aiM = Rn/aiR
n ∼= Rn ⊗ (R/ai) ∼= (R/ai)

n and so

⊕n
i=1(R/ai)

n is its decomposition into ambient R/ai-modules. More concretely, if R = Zm,

where m = pt1
1 . . . ptk

k , with pi different primes and ai = pti
i Zm, then the ambient module

M = Rn = Zn
m is decomposed into ambient Zpi

ti -modules Zn
pi

ti .

We denote the submodule N = Ψ−1(⊕n
i=1N

′
i) of M from the part (iii) of the previous

proposition by CRTM(N ′
1, . . . , N

′
n) or simply by CRT (N ′

1, . . . , N
′
n) (see [10]).

For an R-module M we call the rank of M the minimum number of generators of M .

We denote it by rank(M). The following corollary is used in Section 6 in order to study the

Chinese product of codes over chain rings (see Lemma 6.1).

Corollary 2.5. With the notation as before, let N ′
i be a submodule of M/aiM (i = 1, . . . , n)

and let N = CRT (N ′
1, . . . , N

′
n). Then:

(i) |N | = ∏n
i=1 |N ′

i |.
(ii) rank(N) = max{rank(N ′

i) : 1 ≤ i ≤ n}.
(iii) N is a free R-module if and only if each N ′

i is a free R/ai-module of the same rank.

Proof. (i) This follows from the fact that N = ⊕n
i=1Ni and Ni

∼= N ′
i for each i.

(ii) By Proposition 2.4, we can identify the R-module N with the (
∏n

i=1 R/ai)-module

⊕n
i=1Ni with the action defined componentwise. Let ri = rank(Ni) and let r = max1≤i≤nri.

Let <xi
1, x

i
2, . . . , x

i
ri
, 0, . . . , 0 > be a system of generators of Ni, consisting of r elements,

where < xi
1, x

i
2, . . . , x

i
ri

> is a minimal system of generators of Ni and the remaining r − ri

elements are arbitrary, for example zeros. Then <x1
j ⊕ x2

j ⊕ · · · ⊕ xn
j : j = 1, 2, . . . , r>

is a system of generators of the (
∏n

i=1 R/ai)-module ⊕n
i=1Ni. We cannot have less than r

generators since rank(Ni) = r for some i, hence on the ith coordinate we need at least r

different elements from Ni.

(iii) We form a minimal system of generators like in (ii). On each coordinate s ∈
{1, 2, . . . , n} we have a minimal system of generators < xs

1, . . . , x
s
r > of the free R/as-module
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Ns. Hence if
∑r

j=1(r
1
j , . . . , r

n
j ) x1

j ⊕ · · · ⊕ xn
j = 0⊕ · · · ⊕ 0, then from

∑r
j=1 rs

jx
s
j = 0, we get

rs
j = 0 for j = 1, . . . , r. This holds for any s, so all (r1

j , . . . , r
n
j ) are (0, . . . , 0) (j = 1, 2, . . . , r)

and so N =
∏n

i=1 Ni is free over R ∼= ∏n
i=1 R/ai.

Remark. In the part (iii) of the previous corollary, all the R/ai-modules N ′
i have to be

free of the same rank, otherwise the statement is not true. Suppose, for example, that k = 2

and let N ′
1 = M/a1M be a free R/a1-module of rank 2 and N ′

2 = M/a2M a free R/a2-module

of rank 1. Then ψ−1(N ′
1) = M1 is a free R/a1-module of rank 2 and ψ−1(N ′

2) = M2 is a free

R/a2-module of rank 1. By Proposition 2.4, the R-module M = M1⊕M2 can be considered

as a module over R/a1×R/a2 with the action defined componentwise. Any minimal system

of generators of this module should have two elements. If they are x1⊕ y1 and x2⊕ y2, then

there are nonzero r2 and s2 from R2 such that (0, r2) x1⊕ y1 + (0, s2) x2⊕ y2 = 0⊕ 0. Hence

M1 ⊕M2 is not free over R/a1 ×R/a2, i.e., M is not free over R.

The next lemma is a version of the well-known Nakayama lemma.

Lemma 2.6 ([18], Theorem 2.2). Let M be a finitely generated module over R, a an ideal

of R. Then aM = M if and only if there is an element a ∈ a such that (1 + a)M = 0.

A ring R is called a principal ideal ring if every ideal of R is generated by one element.

If R is a local principal ideal ring, with maximal ideal m = Rγ generated by an element

γ ∈ R, then the ideals mk = Rγk, k ≥ 0, are the only ideals of R. On the other side, if the

ideals of a ring R are linearly ordered by inclusion, then the ring is a local principal ideal

ring. Because of these observations, local principal ideal rings are called chain rings.

From now on we will be mainly interested in finite rings. If R is a finite ring, it has

finitely many ideals, in particular finitely many maximal ideals, i.e., it is semilocal. Moreover,

all prime ideals of R are maximal and so R is zero-dimensional. (Indeed, since finite integral

domains are fields, then if p is a prime ideal of R, the quotient R/p is a field and so p is a

maximal ideal.)

The ring Zm, m ≥ 1 an integer, is a finite principal ideal ring, which is not necessarily

a chain ring. The ring Zpe , p prime, e ≥ 1 an integer, is a chain ring. More generally, the

ring GR(pe, l) = Zpe [X]/(f), where p is a prime, e, l ≥ 1 integers, and f is a monic basic

irreducible polynomial of degree l, is a chain ring with maximal ideal generated by p, and

its residue field GF (pl). The ring GR(pe, l) is called a Galois ring. Especially, we note that

GR(pe, 1) ∼= Zpe and GR(p, l) ∼= GF (pl).

If a is an ideal of a finite ring, then the chain a ⊃ a2 ⊃ a3 ⊃ . . . stabilizes. The smallest

t ≥ 1 such that at = at+1 = . . . is called the index of stability of a. If a is nilpotent, then

the smallest t ≥ 1 such that at = 0 is called the index of nilpotency of a and it is then the

same as the index of stability of a.
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Note that if R is local, then we necessarily have mt = mt+1 = · · · = 0. Indeed, if m = 0,

this is clear. Suppose that mt = mt+1 = · · · 6= 0. Then by Lemma 2.6 there is an element

e ∈ m, e 6= 0, such that (1− e)mt = 0. Hence 1− e is not invertible. Then R(1− e) would

be an ideal contained in m. But then e + (1− e) = 1 ∈ m, a contradiction.

Thus in the case of finite local rings, the index of stability of m is in fact the index of

nilpotency of m.

On the other side, if R has at least two maximal ideals, then for any maximal ideal

m, mt = mt+1 = · · · 6= 0. Otherwise, if n 6= m is another maximal ideal, we would have

n ⊃ (0) = mt, hence n ⊃ m, a contradiction.

We now characterize a finite principal ideal ring. Parts (i) and (ii) of the following

proposition is well-known and can also be proved using the structure theorem for Artinian

rings. We include our proof for completeness since it further shows the role of indices of

stability in the decomposition.

Proposition 2.7. Let R be a finite commutative ring. Then the following are equivalent:

(i) R is a principal ideal ring.

(ii) R is isomorphic to a finite product of chain rings.

Moreover, the decomposition in (ii) is unique up to the order of factors. It has the form

R ∼= ∏k
i=1 R/mti

i , where m1,m2, . . . , mk are maximal ideals of R and t1, t2, . . . , tk their indices

of stability respectively.

Proof. (ii)⇒ (i): Let R ∼= ∏k
i=1 Ri, where each Ri is a chain ring, in particular a

principal ideal ring. The ideals of
∏k

i=1 Ri have the form a1 × · · · × ak, where ai is an ideal

of Ri for each i. Hence all the ideals of
∏k

i=1 Ri (hence R) are principal.

(i)⇒ (ii): Let R be a principal ideal ring and m1, m2, . . . , mk its maximal ideals. If k = 1

we are done. Suppose k > 1. The maximal ideals of R are relatively prime in pairs. Since

all finite rings are zero-dimensional, the ideals m1,m2, . . . , mk are at the same time minimal

prime ideals of R. Hence ∩k
i=1mi (i.e. m1m2 . . . mk) is a nil-radical of R. Hence there is an

integer t such that mt
1m

t
2 . . . mt

k = 0. Hence mt1
1 mt2

2 . . . mtk
k = 0 (for if t ≥ ti then mt

i = mti
i ;

if t ≤ ti then mti
i ⊂ mt

i). Since mt1
1 ,mt2

2 , . . . mtk
k are also relatively prime in pairs, we have

mt1
1 mt2

2 . . . mtk
k = ∩k

i=1m
ti
i = 0. Now by Lemma 2.1 we have R ∼= ∏k

i=1 R/mti
i . Each of the

rings R/mti
i is a chain ring with maximal ideal mi/m

ti
i .

We now prove the uniqueness of the decomposition in (ii). In general, suppose that we

have an isomorphism f :
∏k

i=1 Ri →
∏l

j=1 Sj of two products of local rings (Ri,mi) and

(Sj, nj). Then k = l (by counting the maximal ideals in each of the products). Moreover the

maximal ideal M1 = m1×R2×· · ·×Rk of
∏k

i=1 Ri corresponds under f to a maximal ideal,

say N1 = n1×S2×· · ·×Sk, of
∏k

i=1 Si. Now the localizations (R1×· · ·×Rk)M1
∼= (R1)m1

∼= R1

and (S1× · · · ×Sk)N1
∼= (S1)n1

∼= S1 are isomorphic, so R1
∼= S1. Similarly for other factors.

This proves the uniqueness of the decomposition in (ii).
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If R is a finite principal ideal ring, we say that the decomposition of R into a product of

finite chain rings, as in (ii), is a canonical decomposition of R.

Remark. We want to generalize the procedure by which we reduce the investigation of the

codes over Zm, where m = pe1
1 . . . pek

k , with pi prime numbers and ei positive integers, to

the investigation of codes over Zpi
ei . The previous proposition replaces the ring Zm by any

principal ideal ring and the rings Zpi
ei by the chain rings. The stability indices of the maximal

ideals of a principal ideal ring R, which appear in the decomposition R ∼= ∏k
i=1 R/mti

i , are

analogues of the exponents ei in the decomposition Zm
∼= ∏k

i=1 Zpi
ei . For example, the ring

Z144 = Z2432 is isomorphic to Z24 × Z32 . The stability indices of the maximal ideals 2Z2432

and 3Z2432 of the ring Z2432 are 4 and 2 respectively. So the decomposition Z24×Z32 of Z2432

is precisely the decomposition that would be obtained from the previous proposition.

3 Bounds for MDS codes over finite chain rings

The study of codes over finite principal rings is reduced to that of codes over chain rings

from the previous discussion. So this section deals with (MDS) codes over finite chain rings,

more generally over finite local Frobenius rings.

We generalize results in [8] on MDS codes over Zpe , and give a sufficient condition for the

existence of such codes over finite chain rings (Corollary 3.6), which is used for the existence

of MDS codes over finite principal ideal rings in Section 6.

The definitions of quasi-Frobenius and Frobenius rings can be seen for example in [28].

In this paper we deal with commutative rings and in that context quasi-Frobenius and

Frobenius are equivalent notions. The following definition is convenient for our purposes: a

finite commutative ring R is Frobenius if the R-module R is injective ([28, Theorem 1.2]).

Lemma 3.1 ([5], p. 84, Cor.1 & 2). Let (R, m) be a finite local ring, M a free R-module. A

family (xλ) of elements of M is a basis of a direct summand of M if and only if the family

(xλ) is free in M/mM .

Lemma 3.2. Let R be a finite local Frobenius ring. Consider the R-module Rr, r ≥ 1 an in-

teger. Suppose that v1, · · · ,vt−1 ∈ Rr are linearly independent. If vt 6∈ 〈v1, · · · ,vt−1, mRr〉,
then v1, · · · ,vt−1,vt are linearly independent.

Proof. Since v1, · · · ,vt−1 are linearly independent, 〈v1, · · · ,vt−1〉 is isomorphic to

the free module Rt−1, which is injective since R is injective. Since injective modules are

direct summands of all modules that contain them, 〈v1, · · · ,vt−1〉 is a direct summand of

Rr and v1, · · · ,vt−1 is its basis. Hence, by Lemma 3.1, v1, · · · ,vt−1 are free in Rr/mRr. If

vt /∈ 〈v1, · · · ,vt−1〉 + mRr, then vt /∈ 〈v1, · · · ,vt−1〉, hence v1, · · · ,vt are free in Rr/mRr.
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Consequently, by Lemma 3.1, v1, · · · ,vt form a basis of a direct summand of Rr. Hence

they are linearly independent.

In the above lemma it is essential that R is a local ring and also that the module is a

free R-module Rr, as the next example illustrates.

Example 1. Consider the local ring R = Z4, m = 2R = {0, 2}. Let M = {0, 2} × {0, 2} ×
Z4 ⊂ Z3

4. Then mM = {(0, 0, 0), (0, 0, 2)}. Let v1 = (0, 0, 1). This vector is linearly

independent. We have < v1, mM >= {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3)}. Now let v2 =

(0, 2, 1) /∈< v1,mM >. But v1 and v2 are not linearly independent since 2v1+2v2 = (0, 0, 0).

Lemma 3.3. Let R be a finite local Frobenius ring. If v1, · · · ,vt ∈ Rr are linearly indepen-

dent, then

| 〈v1, · · · ,vt,mRr〉 | = qt(|R|/q)r,

where |R/m| = q.

Proof. Since v1, · · · ,vt are linearly independent and R is Frobenius, 〈v1, · · · ,vt〉 is

a direct factor of Rr (as in Lemma 3.2). Hence, by Lemma 3.1, the family v1, · · · ,vt is

free in Rr/mRr. Let v1, · · · ,vt,vt+1, · · · ,vr be a basis of Rr/mRr. (It has r elements

since the canonical basis of Rr has r elements, hence, by Lemma 3.1, the images of the

elements of the canonical basis form a free family in Rr/mRr.) Then, by Lemma 3.1,

v1, · · · ,vt,vt+1, · · · ,vr is a basis of Rr and 〈v1, · · · ,vt〉+〈vt+1, · · · ,vr〉 = Rr is a direct sum.

Now 〈v1, · · · ,vt,mRr〉 = 〈v1, · · · ,vt〉 + m(〈v1, · · · ,vt〉 + 〈vt+1, · · · ,vr〉) = 〈v1, · · · ,vt〉 +

m 〈vt+1, · · · ,vr〉. This set has |R|t|m|r−t = qt(|R|/q)r elements.

Following the Gilbert-Varshamov construction [17, p. 33] used in the proof in [8], we

obtain the following theorem.

Theorem 3.4. Suppose
(

n−1
d−2

)
< qn−k−1

qd−2−1
. Let (R, m) be any finite local Frobenius ring with

|R/m| = q. Then there exists a free code over R of length n and rank k with minimum

distance d.

Proof. We shall construct an (n − k) by n parity check matrix H such that no d − 1

columns are linearly dependent. Let r = n − k. The first column can be any v1 ∈ Rr, but

not in mRr. Suppose that we have chosen t− 1 columns v1, · · · ,vt−1 ∈ Rr so that no d− 1

columns are linearly dependent. Suppose there is a column vt 6∈ ∪ 〈
vi1 , · · · ,vid−2

,mRr
〉
,

where the union is taken over all possible choices of d− 2 columns from the t− 1 columns.

Then no d − 1 from the t columns v1, · · · ,vt are linearly dependent. Such a vector would

exist if | ∪ 〈
vi1 , · · · ,vid−2

,mRr
〉 | < |R|r. Now for all t ≤ n,
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| ∪ 〈
vi1 , · · · ,vid−2

,mRr
〉 | ≤

(
t− 1

d− 2

)
| 〈v1, · · · ,vd−2, mRr〉 | −

((
t− 1

d− 2

)
− 1

)
|mRr|

≤
(

n− 1

d− 2

) {
qd−2(|R|/q)r − (|R|/q)r

}
+ (|R|/q)r

= (|R|/q)r

((
n− 1

d− 2

)
(qd−2 − 1) + 1

)

< (|R|/q)r(qn−k) by hypothesis

= |R|r.

Thus the theorem follows.

Theorem 3.5. If q >
(

n−1
n−k−1

)
with n− k− 1 > 0, then there exists an MDS [n, k, n− k + 1]

code over any finite local Frobenius ring (R, m) with |R/m| = q.

Proof. Note that the inequality of Theorem 3.4 is independent of R. If d = n− k + 1

then the inequality of Theorem 3.4 becomes
(

n−1
n−k−1

)
< qn−k−1

qn−k−1−1
. Since q < qn−k−1

qn−k−1−1
≤ q + 1

for any n and k such that n > k + 1, the theorem follows.

Since a finite chain ring is a finite local Frobenius ring, we have the following.

Corollary 3.6. If q >
(

n−1
n−k−1

)
with n−k− 1 > 0, then there exists an MDS [n, k, n−k +1]

code over any finite chain ring (R, m) with |R/m| = q.

We can use the ideas exhibited in this section to count the number of free subcodes of a

given rank. Note that if the restriction of the codes being free is removed, then the counting

is not possible by simply knowing the rank. For example, given a nonzero ring R, the ring

is a code of rank 1 and every nonzero ideal of R is a subcode of rank 1. Hence the number

of subcodes of rank 1 is equal to the number of nonzero ideals of R. However, a minimal

nonzero ideal a has only itself as a subcode of rank 1.

Recall that the number of subspaces of an s-dimensional space of dimension k over a

field of order p is denoted

[
s

k

]
= (ps−1)(ps−p)...(ps−pk−1)

(pk−1)(pk−p)...(pk−pk−1)
. Using the simple ideas discussed

in the section, we obtain an analogous result to this over a chain ring as follows. We note

that more general counting arguments using projective Hjelmslev geometries can be found

in [14].

Theorem 3.7. Let C be a free code of rank s over a chain ring R with |R| = q = pe. Then

the number of free subcodes of rank k is

p(sk−k2)(e−1)

[
s

k

]
. (3)
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Proof. We shall construct a minimal generating set of a free subcode of rank k. Note

that

mRr = {w ∈ Rr | | 〈w〉 | < |R|}.
Then the number of ways of picking the first vector from C is

(pe)s − (pe−1)s = (pe−1)s(ps − 1),

since we cannot have a vector in mRr. To pick the second vector there are

pes − (p(e−1)s+1)

as was shown in Lemma 3.3. We continue in this manner choosing k vectors. We must

divide this number by the number of ways of producing k linearly independent vectors that

generate the space. It follows that the number of free subspaces of rank k of an s dimensional

space is
((pe−1)s)k(ps − 1)(ps − p) . . . (ps − pk−1)

((pe−1)k)k(pk − 1)(pk − p) . . . (pk − pk−1)
.

4 Self-dual codes over finite chain rings

In this section we show that there exist self-dual codes of any length over a finite chain

ring R with even nilpotency index e of m. This is generalized to self-dual codes over finite

principal ideal rings in Section 6. We also construct MDS self-dual codes over Galois rings.

Let R be a finite chain ring with maximal ideal m = Rγ with e its nilpotency index.

The generator matrix for a code C over R can be placed in the following form:




Ik0 A0,1 A0,2 A0,3 · · · · · · A0,e

0 γIk1 γA1,2 γA1,3 · · · · · · γA1,e

0 0 γ2Ik2 γ2A2,3 · · · · · · γ2A2,e

...
... 0

. . . . . .
...

...
...

...
. . . . . . . . .

...

0 0 0 · · · 0 γe−1Ike−1 γe−1Ae−1,e




, (4)

Given a code C with this generator matrix we have (see [16]) that

|C| = |R/m|
Pe−1

i=0 (e−i)ki . (5)

The form of the generator matrix for a code over a ring that is not a chain ring is

problematic, see [22]. As an example of the difficulty, consider the ring that has α and β
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that generate relatively prime non-trivial ideals. The code generated by (α, β) is generated

by a single element and has cardinality |R| but does not have a generator matrix of the form

(1, δ) as we would desire.

We define the following inner product on Rn: for v = (v1, · · · , vn) and w = (w1, · · · , wn),

[v,w] =
∑

viwi. (6)

We define the orthogonal of the code C⊥ by

C⊥ = {w | [w,v] = 0 for all v ∈ C}. (7)

By the results in [28] we know that if R is a Frobenius ring, then C⊥ is linear and

|C||C⊥| = |R|n. A code C is said to be self-dual if C = C⊥.

We notice that the linear codes of length 1 are precisely the ideals of R.

Remark. For an ideal I of any finite commutative ring R the following are equivalent.

(a) I2 = 0 and |I| =
√
|R|.

(b) I is a self-dual code (of length 1).

If the Jacobson radical rad(R) of any finite commutative ring R has an even nilpotency

index e, then it produces the self-dual code I = rad(R)
e
2 of length 1 provided I has

√
|R|

elements. In particular, if R is a chain ring, we have the following.

Corollary 4.1. Let R be a chain ring with maximal ideal m = Rγ with e its nilpotency

index. If e is even, then Rγ
e
2 is a self-dual code of length one.

Proof. Let C = Rγ
e
2 . We know (γ

e
2 )2 = 0 so C ⊆ C⊥. However, C⊥ must be of

the form Rγs for some s since it is an ideal in R. Then since γ
e
2
−1 6∈ C⊥ we have that

C = C⊥ = Rγ
e
2 .

We can easily see the maximal ideal m is a self-dual code exactly when e = 2 or equiv-

alently |m| =
√
|R|. If |m| =

√
|R| then |m||m⊥| = |R|. This gives that |m⊥| =

√
|R|, and

since the ideals are linearly ordered we have that m = m⊥.

Lemma 4.2. Let R be a chain ring with maximal ideal m = Rγ with odd nilpotency index

e. If R/m is a field of characteristic 1 (mod 4) or even, then there exists a self-dual code of

length 2.

Proof. Since m is maximal then R/m is a field. It is well known that there is a
√−1

if and only if the characteristic is 1 (mod 4) or even. Let α be the element in R/m with

α2 = −1 then in R we have α2 + 1 is a multiple of γ. Consider the following generator

matrix: (
γ

e−1
2 αγ

e−1
2

0 γ
e−1
2

+1

)
. (8)
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The inner-product of the first row with itself is (1 + α2)γe−1 = aγe = 0 for some a ∈ R. It

is easy to see that the inner-product of the first and the second and the second with itself is

also 0. By Equation 5 we have that the code generated by it has order |R/m|e = |R|. Hence

this matrix generates a self-dual code.

The above lemma can be stated over a finite commutative ring as follows.

Proposition 4.3. Let R be a finite commutative ring and I an ideal of odd nilpotency index

e ≥ 3 satisfying |I e−1
2 | · |I e+1

2 | = |R|. Let α ∈ R such that α2 + 1 ∈ I. Then
(

I
e−1
2 αI

e−1
2

0 I
e+1
2

)
(9)

is a self-dual code of length 2 over R.

Lemma 4.4. Let R be a chain ring with maximal ideal m = Rγ with e its odd nilpotency

index. If R/m is a field of characteristic 3 (mod 4), then there exists a self-dual code of

length 4.

Proof. We know that the field R/m has α, β with α2 + β2 = −1. Then in R we have

that α2 + β2 + 1 is a multiple of γ.



γ
e−1
2 0 αγ

e−1
2 βγ

e−1
2

0 γ
e−1
2 αγ

e−1
2 βγ

e−1
2

0 0 γ
e−1
2

+1 0

0 0 0 γ
e−1
2

+1


 (10)

Following the proof of the Lemma 4.2 we see that this matrix generates a self-dual code

of length 4.

This lemma can be stated over a finite commutative ring as in Proposition 4.3 if the

ideal I of odd nilpotency index e ≥ 3 satisfies |I e−1
2 | · |I e+1

2 | = |R| and α2 + β2 + 1 ∈ I (we

replace γ in Equation (10) by I).

Theorem 4.5. Let R be a chain ring with maximal ideal m = Rγ with its nilpotency index

e. If e is even, then there exist self-dual codes of all lengths over R. If e is odd and R/m

has characteristic 3 (mod 4), then there exist self-dual codes of all lengths a multiple of 4.

If e is odd and R/m has characteristic 1 (mod 4) or even, then there exist self-dual codes of

even lengths.

Proof. The result follows from Lemma 4.1, Lemma 4.2, Lemma 4.4 and noting that

if C and D are self-dual codes of length n and n′ then C ×D is a self-dual code of length

nn′.

In what follows, we construct MDS self-dual codes over Galois rings.

Reed-Solomon codes over Galois rings are MDS codes [16], [24]. We apply the ideas

of [12] to RS codes over Galois rings to construct MDS self-dual codes over Galois rings with

even size as follows. Note that the length n of the below code is largest known.
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Theorem 4.6. Let R = GR(2e, l), n = 2l − 1(> 2), and e ≥ 1. Then there exists an MDS

self-dual code over R with parameters [2l, 2l−1, 2l−1 + 1], which is an extended RS code.

Proof. Let R = GR(2e, l), n = 2l − 1, and ξ ∈ R a primitive nth root of unity such

that ξ̄ is a primitive nth root of unity in K = GF (2l). Then the Reed-Solomon code C1 over

R with distance d = (n+1)/2 is generated by g1(X) = (X− ξ)(X− ξ2) · · · (X− ξd−1). This

is a free MDS code over R with odd length n, dimension (n + 1)/2, and minimum distance

d = (n+1)/2 [16]. Let h(X) ∈ R[X] be the check polynomial of C1, i.e., Xn−1 = g1(X)h(X),

hence h(X) = (X−ξd)(X−ξd+1) · · · (X−ξn) as Xn−1 factors linearly in R. The reciprocal

polynomial h∗(X) is h∗(X) = Xdeg(h)h(1/X) = (1− ξdX)(1− ξd+1X) · · · (1− ξnX).

The dual C2 := C⊥
1 is generated by g2(X) = 1

h(0)
h∗(X) = (X−1)(X−ξ)(X−ξ2) · · · (X−

ξd−1), and is a free MDS code with dimension (n − 1)/2 and minimum distance (n + 3)/2

since C1 is a free MDS code [16, Corollary 3.6, Corollary 5.5]. Since g1(X) divides g2(X),

C2 is self-orthogonal. Furthermore since the all-one vector 1 is not in C2 but in C1, we have

C1 = C2 + 1. Now we extend C1 by adding 1 at the end of 1, and zero 0 at the end of

any codewords generating C2 (and obviously by combining them). Then C1 is also an MDS

code [16]. By construction, C1 is also self-dual. This completes the proof.

Remark. Following the proof of the above theorem, one can see that the conclusion of the

theorem will hold for any chain ring R if (i) R has the residue field GF (2l), (ii) n = 2l−1(>

2), and (iii) R contains a primitive nth root of unity ξ such that ξ̄ is a primitive nth root of

unity in K = GF (2l).

As seen in [12], if the characteristic of the residue field K with |K| = q is odd, then it is

hard to construct MDS self-dual codes of length q + 1 over GF (qe, l) for general q, e, and l.

5 Torsion codes

In this section R is a chain ring with maximal ideal m = Rγ whose nilpotency index is e.

The following definitions were originally given to study the structure of codes over Z4 [7]

(see also [9] and [16]).

Let C be a linear code over R. Consider the codes (C : γi) = {v | γiv ∈ C}, i =

0, 1, . . . , e − 1, over R. Let “−” denote the canonical map Rn → (R/m)n, (n ≥ 1). The

codes Tori(C) = (C : γi) over the field R/m (i = 1, 2, . . . , e−1), are called the torsion codes

associated to the code C. The code Res(C) = Tor0(C) = (C : γ0) = C over R/m is called

the residue code associated to the code C.

Given the generator matrix from Equation (4) for the code C, the torsion code Tori(C)
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has a generator matrix of the form:




Ik0 A0,1 A0,2 A0,3 · · · · · · A0,e

0 Ik1 A1,2 A1,3 · · · · · · A1,e

0 0 Ik2 A2,3 · · · · · · A2,e

...
...

...
. . . . . .

...

0 0 0 · · · Iki
· · · Ai,e




. (11)

Lemma 5.1. If C is a code over R, then min{dH(Tori(C))} ≥ dH(C).

Proof. Take a vector v in the code Tori(C). Then γiv ∈ C and dH(v) = dH(γiv).

Hence the minimum weight of C must be less than or equal to the minimum weight of any

of the Torsion codes.

Lemma 5.2. If C is a code over R, then |C| = ∏e−1
i=0 |Tori(C)|.

Proof. Let q = |R/m|. We have seen that

|C| = q
Pe−1

j=0(e−j)kj .

It follows from the generator matrix that

|Tori(C)| =
i∏

j=0

qkj .

The result follows.

Theorem 5.3. Let R be a chain ring with maximal ideal m = Rγ with nilpotency index e.

If there exists an MDS code of length n and rank k over R, then Tori(C) = Torj(C) for all

0 ≤ i, j ≤ e− 1, and it is an MDS code of length n and dimension k over the field R/m.

Proof. Let C be an MDS code of length n and rank k over R. The code satisfies the

bound given in Equation (1) and Equation (2). This implies that the code must be a free

code. We see then by examining the generator matrix of Tori(C) that Tori(C) = Tor0(C)

for all i, 1 ≤ i ≤ e − 1. The code Tor0(C) has dimension k by Lemma 5.2. By Lemma 5.1

and the bound given in Equation (1) we have that dH(Tor0) = n− k + 1. Hence Tori(C) is

an MDS code of length n and dimension k.

Theorem 5.4 ([16], Theorem 5.3). Let R be a chain ring with maximal ideal m = Rγ with

nilpotency index e. If there exists an MDR code over R, then Tore−1(C) is an MDS code

over the field R/m.
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Proof. Let C be an MDR code over R of rank k with generator matrix given in

Equation (4). Then k =
∑e−1

i=0 ki. The code Tore−1(C) has dimension k by examining its

generator matrix in Equation (11). The code C has minimum weight n−k+1. By Lemma 5.1

the minimum weight of Tore−1 is at least n− k +1 but by Equation (2) it cannot be higher.

Hence the code is an MDS code.

These results give that if there are MDS and MDR codes over a finite chain ring then

there must be MDS codes of the same length and rank over the base field.

Corollary 5.5. Let R be a chain ring with maximal ideal m = Rγ, with R/m isomorphic

to F2. Then there are no non-trivial MDS or MDR codes over R.

Proof. If there were an MDR code with k 6= 1, n nor n − 1, then there would be a

binary MDS code with that dimension which is well known not to exist.

6 Codes over finite principal ideal rings

Let R be a finite ring and (ai)
n
i=1 a direct decomposition of R . Denote Ri = R/ai. Let

Ψ : Rn → ∏k
i=1 Rn

i be the canonical R-module isomorphism.

For i = 1, . . . , k let Ci be a code over Ri of length n and let

C = CRT (C1, C2, . . . , Ck) = Ψ−1(C1 × · · · × Ck) = {Ψ−1(v1,v2, . . . ,vk) | vi ∈ Ci}.

We refer to C as the Chinese product of codes C1, C2, . . . , Ck (see [10]).

The next lemma follows from Corollary 2.5.

Lemma 6.1. With the above notation, let C1, C2, · · · , Ck be codes of length n, with Ci a

code over Ri and let C = CRT (C1, C2, . . . , Ck). Then:

(i) |C| = ∏k
i=1 |Ci|;

(ii) rank(C) = max{rank(Ci)) | 1 ≤ i ≤ k};
(iii) C is a free code if and only if each Ci is a free code of the same rank.

Lemma 6.2. With the above notation, let C1, C2, · · · , Ck be codes with Ci a code over Ri.

Then

dH(CRT (C1, C2, · · · , Ck)) = min{d(Ci))}. (12)

Proof. It follows immediately noticing that map CRT applied to a vector with the

remaining vectors being all zero vectors gives a vector with the same minimum weight and

the CRT (v1,v2, . . . ,vk) projects of vi over Ri so there cannot be a vector of smaller weight

in CRT (C1, C2, · · · , Ck).

Theorem 6.3. With the above notation, let C1, C2, . . . , Ck be codes over Ri. If Ci is an

MDR code for each i, then C = CRT (C1, C2, . . . , Ck) is an MDR code. If Ci is an MDS

code of the same rank for each i, then C = CRT (C1, C2, . . . , Ck) is an MDS code.
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Proof. Let ki be the rank of Ci. By Lemma 6.2 and Lemma 6.1 we have

dH(CRT (C1, C2, · · · , Ck)) = min{d(Ci))} = min{n− rank(Ci) + 1}
= n−Max{rank(Ci)}+ 1 = n− rank(C) + 1.

By Lemma 6.1 we have that if each is MDS, then each is free (and they have the same

ranks), so CRT (C1, C2, · · · , Ck) is also free and hence MDS.

Theorem 6.4. With the above notation, let Ci be codes over Ri and C = CRT (C1, C2, . . . , Ck).

Then C1, C2, . . . , Ck are self-dual codes if and only if C is a self-dual code.

Proof. By Lemma 6.1 we have that |C|2 = |R|n if |Ci|2 = |Ri|n. It is clear that C is

self-orthogonal if and only if Ci is self-orthogonal for all i.

Theorem 6.5. Let R be a finite principal ideal ring all of whose residue fields satisfy

|R/mi| >
(

n−1
n−k−1

)
for some integers n, k with n − k − 1 > 0. Then there exists an MDS

[n, k, n− k + 1] code over R.

Proof. Follows from Theorem 3.5 and Theorem 6.3.

Theorem 6.6. Let R be a principal ideal ring all of whose maximal ideals have their indices

of stability equal to 1. Then any self-dual code C over R is free of rank r and length 2r for

some r.

Proof. Let C be a code over R of length n. Since the indices of stability of all maximal

ideals mi (1 ≤ i ≤ k) of R are equal to 1, then, by Lemma 2.3, C is isomorphic, as a module

over R, to the product
∏k

i=1 C/miC. Each of C/miC can be considered as a vector space

over κi = R/mi, i.e., each of the codes Ci = C/miC over R can be considered as a code over

the field κi. Hence each of the codes Ci is free. By Theorem 6.4, all codes Ci are self-dual.

Since self-dual codes over fields have even length, n is even, say n = 2r.

For any i = 1, . . . , k, consider the exact sequence of linear maps

0 → Ci
j→ κn

i

f→ Ci → 0,

where j is the canonical injection and f is defined by f(v) =
∑

c∈C v · c for v ∈ κ2r
i . This

exact sequence splits, i.e., κ2r
i = M ⊕ N for some M ∼= Ci and N ∼= Ci. Hence |Ci| = |κ|r

and so rank(Ci) = r. Since all codes Ci are free of the same rank r, C is free of rank r.

The next example illustrates that the previous theorem is not true if R is not a principal

ideal ring.

Example 2. Let R = F2[X, Y ]/(X2, Y 3) = F2[x, y], where x2 = y3 = 0. This ring is a

Frobenius ring which has 64 elements. The elements are of the form a + bx + cy + dy2 +
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exy + fxy2, where a, b, c, d, e, f ∈ F2. The maximal ideal m = (x, y) cannot be generated by

one element and so R is not a principal ideal ring. Consider the code C = R(x, 0)+R(0, x),

generated by the elements (x, 0) and (0, x) of R2. We have C = {0, x, xy, xy2, x + xy, x +

xy2, xy + xy2, x + xy + xy2} × {0, x, xy, xy2, x + xy, x + xy2, xy + xy2, x + xy + xy2}. The

code C⊥ consists of all (f, g) ∈ R2 such that (f, g)(x, 0) = 0 and (f, g)(0, x) = 0. We have

C⊥ = C, i.e., C is self-dual. But C is not free and the conclusion of the previous theorem

does not hold.

Corollary 6.7 ([22], Theorem 6.4). Let m be an integer which is a product of distinct

primes. Then any self-dual code C over Zm is free of rank r and of length 2r for some r.

Proof. If m = p1p2 . . . pk, where the pi are distinct primes, then the ring Zm = Z/mZ
is a principal ideal ring whose maximal ideals piZ/mZ have their indices of stability equal

to 1. The statement now follows from the previous theorem.

The next example illustrates that the previous corollary is not true if m is not a product

of distinct primes.

Example 3. Let R = Z4 and C = R(2, 0) + R(0, 2) = {(0, 0), (2, 0), (0, 2), (2, 2)} ⊂ Z2
4. We

have C⊥ = C, but C is not free and the conclusion of the previous corollary does not hold.

Theorem 6.8. Let R be a principal ideal ring with maximal ideals mi whose indices of

stability are ei respectively (1 ≤ i ≤ s). If ei is even for all i then self-dual codes over R

exist for all lengths. If some ei is odd and for each i with ei odd we have |R/mi| ≡ 1 (mod 4)

then self-dual codes over R exist for all even lengths. If some ei is odd and there is an i with

|R/mi| ≡ 3 (mod 4) then self-dual codes over R exists for all lengths divisible by 4.

Proof. The result follows from Theorem 6.4 and Theorem 4.5.
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