
Spanners and Sparsifiers in Dynamic Streams

Michael Kapralov∗
MIT

David P. Woodruff
IBM Almaden

ABSTRACT
Linear sketching is a popular technique for computing in dynamic
streams, where one needs to handle both insertions and deletions
of elements. The underlying idea of taking randomized linear mea-
surements of input data has been extremely successful in provid-
ing space-efficient algorithms for classical problems such as fre-
quency moment estimation and computing heavy hitters, and was
very recently shown to be a powerful technique for solving graph
problems in dynamic streams [AGM’12]. Ideally, one would like
to obtain algorithms that use one or a small constant number of
passes over the data and a small amount of space (i.e. sketching
dimension) to preserve some useful properties of the input graph
presented as a sequence of edge insertions and edge deletions.

In this paper, we concentrate on the problem of constructing lin-
ear sketches of graphs that (approximately) preserve the spectral
information of the graph in a few passes over the stream. We do
so by giving the first sketch-based algorithm for constructing mul-
tiplicative graph spanners in only two passes over the stream. Our
spanners use Õ(n1+1/k) bits of space and have stretch 2k. While
this stretch is larger than the conjectured optimal 2k − 1 for this
amount of space, we show for an appropriate k that it implies the
first 2-pass spectral sparsifier with n1+o(1) bits of space. Previous
constructions of spectral sparsifiers in this model with a constant
number of passes would require n1+c bits of space for a constant
c > 0. We also give an algorithm for constructing spanners that
provides an additive approximation to the shortest path metric us-
ing a single pass over the data stream, also achieving an essentially
best possible space/approximation tradeoff.

1. INTRODUCTION
Massive graphs are now a common way of representing real

world data. Search engines and social networks require supporting
various queries on large-scale graphs efficiently, and in particular,

∗This research was supported by NSF award CCF-1065125,
MADALGO center and Simons Foundation. We also acknowledge
financial support from grant #FA9550-12-1-0411 from the U.S. Air
Force Office of Scientific Research (AFOSR) and the Defense Ad-
vanced Research Projects Agency (DARPA).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

without having to store the entire graph in memory. An impor-
tant type of query is a distance query between nodes in the graph.
Various notions of distance can be used depending on the appli-
cation, e.g., shortest path distances, minimum cuts, and effective
resistances.

For each of these notions of distance it is known how to com-
press a graph to a small representation that allows for computing
distance queries approximately given only the compressed repre-
sentation. For shortest path distances this is achieved by the span-
ner construction algorithms of Thorup and Zwick[TZ01] (see also
[TZ06, MN06, Bas08, BKMP10, BS03, BS06]), for cuts this is
provided by the sparsifiers of Benczúr and Karger[BK96] (see also
[FHHP11]) and for effective resistances this is given by the spectral
sparsifiers of Spielman and Srivastava [SS08] (see also [BSS09]).

While these compression schemes have been quite successful,
when processing massive graphs the data is often distributed and
presented online as a long stream of insertions and deletions to its
edges on multiple servers. The servers would like to determine
aggregate properties of the underlying graph with low communi-
cation. Existing compression methods no longer apply, and this
has motivated techniques for developing short synopses which are
efficiently updatable in these settings. Linear sketching provides
such a tool for compressing an object, represented as a vector x,
where one chooses a random, succinctly representable matrix S
and projects x to a vector S · x. If S has fewer rows than columns,
this can provide a significant compression. Moreover, given a pos-
itive or negative update to the i-th coordinate of x, denoted (i,∆)
and indicating that xi ← xi + ∆, one can add ∆ ·Si to the current
sketch S · x to efficiently update the sketch of the underlying vec-
tor. Here Si denotes the i-th column of S. In the distributed setting,
the servers can agree upon a sketching matrix S, which is often ef-
ficient to communicate if the entries of S are pseudorandom, and
then locally compute Sxi, where x = x1+x2+· · ·xs and xi is the
vector held by the i-th server, for i = 1, 2, . . . , s. Communicating
Sxi rather than xi itself can lead to significant savings.

Linear sketching has only recently emerged as a powerful tech-
nique for compressing graphs, pioneered in the work of Ahn, Guha,
and McGregor [AGM12a]. In this setting, one views an underlying
multigraph on n vertices as an

(
n
2

)
-dimensional vector x, indicat-

ing the multiplicity of each edge. A stream S = a1, . . . , at is given
where each ak ∈ [n]×[n]×{−1, 1}, and where xi,j = |{k : ak =
(i, j,+)}| − |{k : ak = (i, j,−)}| for i < j. We assume that the
edge multiplicity is non-negative and that the multigraph has no
self-loops. This model is known as the dynamic streaming model.
In a sequence of work [AGM12a, AGM12b, AGM13], Ahn, Guha,
and McGregor show that it is possible to evaluate properties such as
bipartiteness, connectivity, k-connectivity, dense subgraphs, maxi-
mum weighted matchings, minimum spanning trees, spanners and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24066668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sparsifiers with near linear space in n (as opposed to n2, which one
can do simply by storing each of the edge multiplicities). See also
the survey by Guha and McGregor [GM12].

Despite this progress, several important open questions remain.
For instance, for multiplicative graph spanners, one seeks to find a
sparse subgraph H of a graph G such that for all pairs of vertices
u, v one has dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v), where dG(u, v)
denotes the shortest path distance in G, and t ≥ 1 is known as
the distortion factor. One of the main applications of multiplica-
tive graph spanners is to building spectral sparsifiers. If LG is the
Laplacian of a graph G (see Section 2 for background), a weighted
graph H on the same vertex set is said to be a spectral sparsifier
of G if xTLHx = (1± ε)xTLGx simultaneously for all unit vec-
tors x. Spectral sparsifiers approximately preserve the value of all
cuts in a graph, by restricting x to binary vectors, but in fact pre-
serve the entire quadratic form associated with the Laplacian of G,
and are the focus of a very active line of research [ST04, SS08,
BSS09, ST11, AGM12b, AGM13]. They have been instrumental
in obtaining the first near-linear time algorithm for solving SDD
linear systems [ST11], and have led to many other beautiful ideas
[KMP10, KMP11].

Recently, it was shown how to find a spectral sparsifier in a sin-
gle pass in the dynamic streaming model using Õ(n5/3) bits of
space. By combining work of [AGM12b] with the connection be-
tween multiplicative spanners and spectral sparsifiers in [KP12], it
is possible to construct a spectral sparsifier in the dynamic stream-
ing model with Õ(n1+1/k) bits of space usingO(log k) passes, for
any k ≥ 2. Note that if one wants a constant number of passes, this
approach would require at least n1+c bits of space for some pos-
itive constant c > 0. A natural question is if a sparsifier can be
constructed in less space in a constant number of passes.

While multiplicative spanners are well-studied in the dynamic
streaming model, another natural question is whether it is possible
to design additive spanners in this model. For an additive spanner,
one seeks to find a sparse subgraphH of a graphG such that for all
pairs of vertices u, v one has dG(u, v) ≤ dH(u, v) ≤ dG(u, v)+t,
where t is the distortion factor. Note that additive spanners pro-
vide a much stronger guarantee on the distortion than multiplica-
tive spanners. Compression schemes for these spanners have been
extensively studied in the algorithms community, where surpris-
ingly, one can achieve Õ(n4/3) space and O(1) distortion (see,
e.g. [ACIM99, BKMP10, Che13] and references therein). A natu-
ral question is if such results are possible in the dynamic streaming
model.

Our results.
In this paper we study the same dynamic streaming model de-

fined above, as in [AGM12a, AGM12b, AGM13]. Note that the
edge multiplicity in this model should not to be confused with
the weight of an edge, in the case that we consider algorithms for
weighted graphs. In the case of weighted graphs, the underlying
stream can either add a weighted edge or completely remove the
weighted edge that has already been added (i.e., set its weight to
0), that is, we do not allow turnstile updates which increment and
decrement the weights 1.

First, for multiplicative spanners we show that for any k ≥ 1 a
2k-spanner can be constructed in Õ(n1+1/k) space in the dynamic

1This is consistent with the algorithms in [AGM12b], e.g., in Sec-
tion 3.5 of that paper in their proof of Theorem 3.8 for sparsifiers
the authors assume the weights are given beforehand (otherwise
they cannot perform the partitioning into weights given after their
Lemma 3.7), while in Section 5 of that paper their algorithm for
spanners is only for unweighted graphs.

streaming model if only two passes over the stream are allowed:

THEOREM 1. There exists an algorithm for constructing a 2k-
spanner of a weighted graph G using Õ(n1+1/k) bits of space and
two passes in the dynamic streaming model.

This gives a different tradeoff than the multiplicative spanner con-
structions of [AGM12b], who show how to achieve Õ(n1+1/k)
bits of space using eitherO(k) passes andO(k) distortion, orO(log k)
passes and poly(k) distortion. Our result shows that O(1) passes
and 2k distortion are also possible. Unlike the algorithms in [AGM12b],
our algorithm does not seem to be a less adaptive implementation
of a non-streaming algorithm of Baswana and Sen [BS07]. Rather,
it requires a different way of growing clusters, based on connect-
ing clusters via randomly sampled vertices chosen ahead of time,
which causes the diameter of our clusters to grow exponentially.
The algorithm and its analysis are given in Section 3. While the
distortion is rather large, we show that it is sufficient in order to
use the reduction from spectral sparsification to spanner construc-
tion presented in [KP12]. By doing so we obtain the first algorithm
for constructing ε-spectral sparsifiers in two passes over the input
stream and O(n1+o(1)/ε4) space, for any ε > 0:

COROLLARY 2. For any ε > 0 there exists an algorithm for
constructing an ε-spectral sparsifier of a graph G presented in the
dynamic streaming model using 1

ε4
n2O(

√
logn) log(wmax/wmin)

space and two passes over the stream (here wmin, wmax are the
minimum and maximum edge weights in the input graph).

We also consider the related problem of constructing additive span-
ners. For this problem, we present a single pass algorithm:

THEOREM 3. For each d ≥ 1 there exists an Õ(nd)-space al-
gorithm for constructing an n/d-additive spanner of an unweighted
undirected graphG in a single pass in the dynamic streaming model.

This space versus approximation tradeoff is optimal even for the
insertion-only model, in which each edge is inserted only once and
there are no deletions:

THEOREM 4. In the insertion-only model, any 1-pass stream-
ing algorithm returning a spanner with additive distortion at most
n/d with probability at least 6/7 requires Ω(nd) bits of space.

All our algorithms are randomized and succeed with high probabil-
ity.

Organization.
We start with preliminaries and notation in section 2. Our two-

pass spanner construction is presented in section 3. Section 4 gives
the algorithm for additive spanner construction in a single pass, and
section 5 shows that our approximation versus space tradeoff for
this problem is near-optimal even for the insertion-only model. Fi-
nally, the spectral sparsification algorithm that we obtain from our
multiplicative spanner construction is discussed in Appendix 6.

2. PRELIMINARIES

DEFINITION 5 (t-SPANNER). A t-spanner of a weighted undi-
rected graph G is a subgraph H of G such that the distances in H
are stretch t estimates of the distances in G, i.e. for all u, v ∈ V
one has dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v).

For a weighted undirected graph G = (V,E,w) the Lapla-
cian matrix of G is the matrix defined as LG(i, j) = −w(i,j) and
LG(i, i) =

∑
j 6=i wij .

DEFINITION 6 (SPECTRAL ORDERING OF GRAPHS). We de-
fine a partial ordering≺ on graphs by letting G ≺ H if and only if
xTLGx ≤ xTLHx ∀x ∈ R|V |.

A weighted undirected graphG can be associated with an electrical
network with link e having conductance we (i.e. corresponding to
a resistor of resistance 1/we). Then the effective resistance Re
across an edge e is the potential difference induced across it when
a unit of current is injected at one end of e and extracted at the other
end of e. The best known parameters for spectral sparsification are
achieved by the algorithm of Spielman and Srivastava:

THEOREM 7 (SPECTRAL SPARSIFICATION, [SS08]). Let H
be obtained by sampling edges ofG independently with probability
pe = Θ(weRe logn/ε2) for some ε > 1/

√
n and giving each

sampled edge weight 1/pe. Then whp (1− ε)G ≺ H ≺ (1 + ε)G.

For a graph G = (V,E) and a set S ⊆ V we let N(S) = {v ∈
V : (u, v) ∈ E for some u ∈ S} denote the vertex neighborhood
of S. We will use the following results from sparse recovery and
sketching distinct elements:

THEOREM 8 ([CM06]). We can construct a randomized 0/1
matrix T of dimensionO(ck log3 n)×n such that for any k-sparse
signal A of dimension N , given the transformation TA we can
reconstruct A exactly with probability at least 1 − n−c in time
O(c2k log3 n). The matrix T is constructed using O(1)-wise in-
dependent hash functions, and individual entries can be queried
efficiently.

We note that we could also use other sketches, such as CountS-
ketch instead of Theorem 8, improving upon the logarithmic fac-
tors in the space, though the reconstruction time will be larger.

THEOREM 9 ([KNW10]). There is a linear sketch-based al-
gorithm using O(ε−2 log2 n log 1/δ) bits of space that can esti-
mate the number of distinct elements of an n-dimensional vector
with integer entries bounded by a polynomial in n to within a fac-
tor of (1± ε) with probability 1− δ.

Theorem 9 follows by repeating the algorithm of [KNW10]O(log 1/δ)
times and taking the median (note also, one can implement that al-
gorithm as a linear sketch over the integers rather than over a finite
field if desired, incurring the above space bound).

It is convenient to introduce notation for the linear sketches guar-
anteed by Theorem 8. In what follows, we assume that we have a
(randomized) linear function SKETCHB : Rn → Rr with r =
O(B log3 n) and a function DECODE : Rr → Rn such that for
every x ∈ Rn with ||x||∞ ≤ poly(n) and ||x||0 ≤ B one has
DECODE(SKETCHB(x)) = xwith probability at least 1−1/poly(n).
In general, most primitives that we use have a 1/poly(n) failure
probability that can be made arbitrarily small at the expense of in-
creased constants in space bounds, so we will always condition on
the failure event not happening. In what follows we assume that
we always know if a SKETCHB(x) can be decoded. This is easily
achieved by maintaining a distinct elements sketch for each instan-
tiation of SKETCHB(x), and declaring the sketch to be not decod-
able when the number of distinct elements is estimated to be above
2B, for example. This involves an O(log3 n) overhead for each
instantiation of SKETCHB(x) by Theorem 9, and hence does not
influence the asymptotic space requirement of SKETCHB(x).

AGM sketches.
In [AGM12a] Ahn et al gave an algorithm for constructing con-

nectivity certificates from linear sketches of graphs. We will need

THEOREM 10 (AGM SKETCH, [AGM12A]). There is a single-
pass, linear sketch-based algorithm supporting edge additions and
deletions that usesO(n log3 n) space and returns a spanning forest
of the graph with high probability.

It will be very useful for our application that the sketches are linear.
In particular, we will maintain AGM sketches as in Theorem 10 for
a graph G and use them for finding a spanning forest of a graph
G′ obtained by subtracting a set of edges from G. Besides lin-
earity, AGM sketches have the following property, which we use
in our additive spanner construction. The AGM sketch is in fact
a collection of vertex neighborhood sketches, and if a graph H is
obtained fromG by collapsing some sets of nodes into supernodes,
an AGM sketch for H can be obtained from an AGM sketch for G
(by adding sketches of vertex neighborhoods appropriately).

3. TWO PASSES: BASIC ALGORITHM
In this section we first describe a simple algorithm for construct-

ing spanners in unweighted graphs, and then implement it in the
dynamic streaming model using two passes over the stream. Our
algorithm extends trivially to weighted graphs by partitioning edges
into a geometric sequence of weight classes (this can be done since
we are assuming that edges are either added or completely deleted,
i.e. the weight of the edge is known during each update).

3.1 Basic algorithm.
Let Ci, i = 0, . . . , k−1 be a subset of V where nodes are present

independently with probability n−i/k. In what follows C > 0 is a
sufficiently large constant. Our algorithm runs in two phases. In the
first phase for each i = 0, . . . , k−2 we cluster vertices in Ci around
vertices in Ci+1. The clusters will be defined by a forest F ⊆ E
on V , with the edges of each tree in F always connecting a node in
u ∈ Ci to at most one node in v ∈ Ci+1

2, i = 0, . . . , k − 2. Then
v is a parent of u in F . For a node u ∈ V we denote the subtree of
u in F by Tu. For a node u ∈ V we let p(u) denote the parent of
u in F (p(u) =⊥ if u is the root of its subtree). For each u ∈ Ci
we either make u a child of a node v ∈ Ci+1 if N(Tu) ∩ Ci+1 6= ∅
and make u the root of its own component otherwise. As we will
show below, if u ends up a root of its own component, then the
vertex expansion of its subtree Tu cannot be large (in particular, it
cannot be that |N(Tu)| � n(i+1)/k). We note that the forest F
is only a logical construction. Its edges may not necessarily be a
subset of the graphG. However, each edge e in the forest F will be
associated with an edge η(e) ofG (which we refer to as the witness
edge for e; see below for formal definition). For each sutree Tu of
F , the set of corresponding witness edges will provide connectivity
to nodes in Tu using edges of the graph G.

The second phase selects a set of edges to be added to the span-
ner: we include a set of edges F ′ determined by F , and a sufficient
number of edges to preserve the vertex neighborhood N(Tu) for
each u ∈ V (namely one edge from each v ∈ N(Tu) \ Tu to
some w ∈ Tu). We now describe both phases formally, specify
parameters and prove correctness and space bounds.

First phase – constructing the clusters.
We start with F = (V, ∅), i.e. Tu = {u} for all u ∈ V . Then

for each i = 0, . . . , k − 1 and for each u ∈ Ci (1) if i = k − 1
or Ci+1 ∩ N(Tu) = ∅, mark u as a terminal node; (2) otherwise
make an arbitrary w ∈ Ci+1 ∩ N(Tu) the parent of u, i.e. add
2In fact, a node u could belong to multiple sets Ci, so F is not
necessarily a forest on V , but a forest on V × {0, . . . , k − 1},
where each node u ∈ V is present via its k copies. We do not make
this explicit in the interest of keeping notation simple.

the edge (u,w) to F . Let v ∈ Tu denote an arbitrary vertex such
that (v, w) ∈ E. Define η((u,w)) = (v, w) (we say that the edge
η((u,w)) is the edge that witnesses the connection of Tu to w).

Second phase – adding edges to the spanner.
In the second phase we construct the setE′ of edges of the span-

ner. We start by setting E′ := ∅. Then for each u ∈ V (1) if u is
non-terminal, add the edge η((u, p(u))) to E′; (2) if u is terminal,
for each v ∈ N(Tu)\Tu add exactly one edge (v, w) toE′, where
w is an arbitrary node in Tu. First, we have

CLAIM 11. For every i = 0, . . . , k− 1 and every non-terminal
node in Ci one has |N(Tu)| ≤ (C logn)n(i+1)/k with high prob-
ability as long as C > 0 is a sufficiently large constant.

PROOF. Suppose that for a node u ∈ Ci one has |N(Tu)| ≤
(C logn)n(i+1)/k. Then E[|N(Tu)∩Ci+1|] ≥ (C logn)n(i+1)/k ·
n−(i+1)/k ≥ C logn. Furthermore, the construction of Tu only
depends on the random choices made for Cj , j = 0, . . . , i, and
Ci+1 is independent of Cj , j = 0, . . . , i, so by Chernoff bounds
N(Tu)∩ Ci+1 6= ∅ with probability 1−n−10, say, whenever C >
0 is a sufficiently large constant, so such a node u would not be
terminal. Thus, for every terminal node in Ci one has |N(Tu)| ≤
(C logn)n(i+1)/k with high probability, as required.

The number of edges added to the spanner is small:

LEMMA 12. One has |E′| = O(kn1+1/k logn).

PROOF. The setE′ is a union of the witness edges η(F) and the
edges added in step 2 of the second phase, where for each terminal
node we add exactly one edge to each v ∈ N(Tu) \ Tu.

It remains to bound the number of edges added to the spanner
in the second step of the algorithm. By Claim 11 for every non-
terminal node in Ci one has |N(Tu)| ≤ (C logn)n(i+1)/k, and
hence the total number of edges is bounded by |η(F)|+

∑k−1
i=0 |Ci|·

O(n(i+1)/k logn) ≤ k(n−1)+
∑k−1
i=0 O(n1−i/k·n(i+1)/k logn) =

O(kn1+1/k logn).

Approximation quality is guaranteed by

LEMMA 13. H = (V,E′) is a 2k-spanner of G = (V,E).

PROOF. In what follows we abuse notation somewhat by writ-
ing, for a node u ∈

⋃
i≥0 Ci, η(Tu) to denote the subgraph formed

by edges in
⋃
e∈Tu

η(e). We prove by induction on j ≥ 1 that for
every u ∈ Cj the diameter of η(Tu) is bounded by 2j+1 − 2.

Base:j = 1 The tree η(Tu) is a star when u ∈ C1, so the diameter
is 2 = 21+1 − 2.

Inductive step:j → j + 1 Consider u ∈ Cj+1. We need to show
that any two vertices a, b ∈ Tu are connected by a path of length
at most 2j+2 − 2. Let w be the least common ancestor of a and
b in F . If w 6= u, then we are done since the diameter of η(Tw)
is bounded by 2j+1 − 2 ≤ 2j+2 − 2 by the inductive hypothesis
(since w is necessarily at level no higher than i).

Now suppose that u is the least common ancestor of a and b. Let
(u, qa) (resp. (u, qb)) denote the edges connecting u to the subtrees
that a and b belong to. By the inductive hypothesis the distance
from qa to a and the distance from qb to b is bounded by 2j+1 − 2.
Thus, the distance from a to b is bounded by 2(2j+1 − 2) + 2 ≤
2j+2 − 2 as required.

We now show that each edge ofG is stretched by at most a factor
of 2k. Consider an edge (u, v) ∈ E. Let u′ denote the terminal

parent of u and v′ denote the terminal parent of v. If u′ = v′, then
u and v are connected by a path of length at most 2k − 2 since the
highest level that u′ = v′ could be at is k−1, so we are done. Now
suppose that u′ 6= v′. Let (w, v) denote the edge from w ∈ Tu to
v that was added to E′ by our algorithm (such an edge exists since
the edge (u, v) is in E). Then the path v → w → u has length at
most (2k − 2) + 1 ≤ 2k, yielding the result.

REMARK 14. We note that our algorithm extends to weighted
graphs by the simple reduction: round weights to the nearest power
of 1 + ε for some ε > 0, and run the unweighted spanner con-
struction on each weight class. This requires at most a factor of
O(1

ε
log(wmax/wmin)) more space.

In the next section we give a two-pass dynamic streaming imple-
mentation of our algorithm.

3.2 Streaming implementation using two passes
Our streaming implementation uses two passes, one for each

phase of the algorithm above.

First pass – constructing the clusters.
Recall that in the first phase we construct the forest F bottom

up. For each i = 0, . . . , k − 2 and u ∈ Ci one makes an arbitrary
node v ∈ N(Tu) ∩ Ci+1 the parent of u if this intersection is non-
empty. Otherwise u is declared to be a terminal node, i.e. the
root of its own component in F . Since later we will also need to
recover an edge e = (v, w) for a node w ∈ Tu, a natural approach
to implementing this in small space as follows. We sample random
subsetsEj , j = 0, . . . , log2 n

2 by including each pair (a, b) ∈
(
V
2

)
into Ej independently with probability 2−j and sketch the vector
Ej∩E∩(Ci+1×Tu). We assume that the input graph does not have
multiple edges to simplify notation, even though the same analysis
holds if edges can have multiplicities (one needs to replace sets by
multisets in this case, but this does not affect the performance of
our sketches since they can handle vectors with polynomially large
entries).

We accomplish the first task by keeping linear sketches for Ej ∩
E ∩ (Cr × Tu) for r = 1, . . . , k − 1, j = 0, . . . , log2 n

2, i.e. by
maintaining SKETCHB(Ej ∩ E ∩ (Cr × Tu)) for B = O(logn).
That way we can keep decoding sketches starting from the largest
j = log2 n

2 until one of the sketches gives us a nonempty set of
edges. We will abuse notation somewhat by using SKETCHB(A)
to denote the sketch of the indicator vector of A ⊂

(
V
2

)
, i.e. the

vector in R(V2) with ones in positions that belong to A and zeros
everywhere else.

We now give formal definitions. Let Ej , j = 0, . . . , log2 n
2

denote random subsets of
(
V
2

)
where each pair of nodes is present

with probability 2−j . Now each node u ∈ Ci computes

Srj (u)← SKETCHr,jO(logn)(({u} × Cr) ∩ E ∩ Ej)

for all j = 0, . . . , log2 n
2 and r ∈ [0 : k − 1]. The superscript

r, j corresponds to the fact that the random bits used by SKETCH
are a function of r, j, and independent for different (r, j). To con-
struct the forest, for each i = 0, . . . , k − 2 each u ∈ Ci computes
Qi+1
j (u) :=

∑
v∈Tu

Si+1
j (v) for each j = 0, . . . , log2 n

2. By lin-
earity, this is a sketch for (Tu×Ci+1)∩E∩Ej , so we can detemine
if there exists an edge from Tu to Ci+1 by decoding this sketch for
at least one value of j between 0 and log2 n

2. We note that it is
sufficient to use O(logn)-wise independent random variables to
generate the sets Ej . We summarize this in Algorithm 1.

We have

LEMMA 15. Algorithm 1 constructs the forest F together with
witness edges whp. The space requirement is Õ(kn).

PROOF. The space complexity is immediate. We now argue cor-
rectness. Recall that to construct the forest, for each i = 0, . . . , k−
2 each u ∈ Ci computes Qi+1

j (u) :=
∑
v∈Tu

Si+1
j (v), for j from

log2 n
2 down to 1 until one of the sketches gives a nonempty set of

edges or j reaches 0. By linearity, this is a sketch for (Tu×Ci+1)∩
E∩Ej , so we can detemine if there exists an edge from Tu to Ci+1

by decoding this sketch for at least one value of j between log2 n
2

and 0 unless decoding of a sketch fails (which happens with prob-
ability at most 1/poly(n)). The edge recovered from the sketch
serves as the witness for (u, p(u)). Thus, Algorithm 1 correctly
emulates the first phase of our basic algorithm whp.

Note that our algorithm runs the DECODE procedure on various
sketches. The decoding procedure is guaranteed to succeed with
1−1/poly(n) probability as long as the sparsity of the sketched sig-
nal is smaller than the budget and its entries are properly bounded.
In what follows we condition on the event that all such invocations
of the decoding procedure succeed. We will need the following
claim in section 6.

CLAIM 16. Consider the execution of Algorithm 1 on a graph
G = (V,E). Let R denote the random seed used by the algorithm,
and let Λ1(R) ⊂

(
V
2

)
denote the set of locations of the adjacency

matrix of G whose content the execution path of the algorithm de-
pends on. Then Algorithm 1 can be augmented to output the set of
all edges of G that belong to Λ1(R) with high probability.

PROOF. The algorithm accesses sketches starting from small
samples of the adjacency matrix and stops as soon as one of the
sketches is nonzero. Thus, it is able to decode all sketches that its
execution depends on, and output the corresponding edges.

Second pass – recovering spanner edges.
We recover the edges of the spanner in the second pass. Re-

call that in order to do that, we need to recover: (1) for each non-
terminal node u ∈ V an edge (w, p(u)) ∈ E, for an arbitrary node
w ∈ Tu (such witness edges have been constructed in our imple-
mentation of the first phase already); (2) for each terminal node
u ∈ V and each node v ∈ V \ Tu at least one edge from v to Tu.

We only need to show how to achieve (2). For each terminal
node u ∈ Ci one has |N(Tu)| ≤ Cn(i+1)/k logn, so it is sufficient
to keep a linear hash table with Õ(n(i+1)/k) cells such that each
cell can hold for each v ∈ N(Tu) a O(poly(logn))-size sketch
of N(v) ∩ Tu (we define the properties of the desired hash table
and give an implementation below). Note that sketches are only
maintained at terminal nodes, and whenever an update to an edge
incident on w ∈ Tu for a terminal node u is received, this update is
added directly to the sketch maintained by u. We now give formal
definitions (the algorithm as given as Algorithm 2).

First, for each j = 0, . . . , log2 n let Yj contain each node in
V independently with probability 2−j . For each i ∈ [0 : k −
1], each j, terminal node u ∈ Ci and v ∈ V \ Tu we store
SKETCHO(logn)(N(v) ∩ Tu ∩ Yj) in a linear hash table Hu

j of
size Õ(n(i+1)/k) using v as the key. We will be able to retrieve
the contents of Hu

j since for a terminal node u ∈ Ci we have
|N(Tu)| = O(n(i+1)/k logn) with high probability. Then edges
of the spanner are reconstructed as in the offline algorithm. We
summarize this in Algorithm 2. We note that the use of the sets
Yj could be eliminated by using L0-SAMPLER in a similar way
as [AGM12a] does, but we find it notationally simpler to present
the algorithm in this way.

Algorithm 1 First pass (constructing clusters)
1: procedure CONSTRUCTCLUSTERS(k)
2: F ← (V, ∅)
3: LetEj contain each (a, b) ∈

(
V
2

)
independently with prob-

ability 2−j , for j = 0, . . . , log2 n
2

4: Let Cr contain each v ∈ V independently with probability
n−r/k, for r = 0, . . . , k − 1

5: for u ∈ V do . During the first pass
6: Maintain Srj (u)← SKETCHr,jO(logn)(({u}×Cr)∩E∩
Ej), j = 0, . . . , log2 n

2, r ∈ [0 : k − 1]
7: end for
8: for i = 0 to k − 2 do . After the first pass
9: for u ∈ Ci do

10: Qi+1
j (u) ←

∑
v∈Tu

Si+1
j (v) for j =

0, . . . , log2 n
2 . Sketch for (Tu × Ci+1) ∩ E ∩ Ej

11: for j = log2 n
2 down to 0 do

12: xu ← DECODE(Qi+1
j (u))

13: if DECODE succeeded and xu 6= 0 then
14: (a, b)← an arbitrary element in the support

of xu, a ∈ Tu, b ∈ Ci+1

15: Make b parent of u in F ,
16: and let η((u, b)) := (a, b)
17: end if
18: end for
19: end for
20: end for
21: return F
22: end procedure

We now also provide an outline of an implementation of such a
linear hash table Hu

j in space Õ(n(i+1)/k). Recall that the hash
table Hu

j needs to support recovery of Õ(n(i+1)/k) values indexed
by elements of V , where each value is a string of poly(logn) bits
(this is the amount of space that SKETCHO(logn) needs). The hash
table can be implemented by treating the sketches associated with
nodes v ∈ V as poly(logn)-length bit numbers and sketching this
vector x ∈ RV using SKETCHÕ(n(i+1)/k)(x). It remains to note
that we can recover the contents of this hash table whenever the
number of inserted elements is Õ(n(i+1)/k), and this is the case
by Claim 11 because we only need to decode the table for terminal
nodes.

LEMMA 17. Algorithm 2 correctly executes the second phase
of spanner construction whp using Õ(kn1+1/k) space.

PROOF. Recall that the algorithm needs to recover for each ter-
minal node u and each v ∈ V \ Tu that is connected to Tu at least
one edge (w, v), w ∈ Tu. Algorithm 2 for each j = 0, . . . , log2 n
stores sketches of neighborhoods of each v ∈ V \ Tu sampled at
rate 2−j in the hash table Hu

j . Since u is a terminal node, at most
O(n(i+1)/k logn) nodes v ∈ V \ Tu are connected to Tu at the
end of the stream. Thus, each tableHu

j containsO(n(i+1)/k logn)
keys at the end of the stream and hence can be decoded. Now con-
sider v ∈ keys(Hu

j). Since N(v) ∩ Tu ∩ Yj is sketched to allow
reconstruction ofO(logn) sparse vectors, there exists at least one j
such that reconstruction is possible whp, and it provides the neces-
sary edge (w, v). The space complexity follows since a hash table
of size Õ(n(i+1)/k) is stored for each node in Ci, for a total space
of
∑k−1
i=0 Õ(n(i+1)/k) · n1−i/k = Õ(kn1+1/k).

We will need the following claim in section 6.

CLAIM 18. Consider the execution of Algorithm 2 on a graph
G = (V,E). Let R denote the random seed used by the algorithm,
and let Λ2(R) ⊂

(
V
2

)
denote the set of locations of the adjacency

matrix of G whose content the execution path of the algorithm de-
pends on. Then Algorithm 1 can be augmented to output the set of
all edges of G that belong to Λ2(R) with high probability.

PROOF. Algorithm 2 stores for each terminal node u ∈ V hash
tables Hu

j , j = 0, . . . , log2 n. For a terminal node u each hash
table is guaranteed to be decodable whp. For each key v ∈ V of
hash table Hu

j the entry stored is a sketch of N(v) ∩ Tu ∩ Yj ,
where Yj is a random sample of V at rate 2−j . Our algorithm
for each v ∈ keys(Hu

j) starts with the largest j and decreases j
until it gets a nonempty sketch (say, when j = j∗). This sketch
can be decoded whp. Crucially, for each v the algorithm ignores
the sketches N(v) ∩ Tu ∩ Yj for j < j∗, and hence its execution
path only depends on the sketches that it can completely decode
(we condition on the failures not happening for sketches that are
guaranteed to be decoded with 1− 1/poly(n) probability, and thus
treat invocations of the decoding procedure as a black box).

Proof of Theorem 1: Follows by putting together Lemma 13,
Lemma 15 and Lemma 17.

4. O(N/D)-ADDITIVE SPANNERS IN Õ(ND)

SPACE IN A SINGLE PASS
In this section we give an algorithm for constructing additive

spanners in the dynamic stream model. The algorithm is similar in
spirit to the multiplicative spanner construction in section 3, with
the important distinction that it samples just one set of centers in-
stead of a hierarchy, like in section 3, and, most importantly, uses
the approach of [AGM12a] to connect the sampled centers by a
spanning tree.

In particular, we start by choosing a set of O(n/d) centers C ⊆
V uniformly at random, so that each node of degree aboveO(d logn)
will have a neighbor in C with high probability, and let such nodes
u ∈ V \ C select a neighbor in C as their parent. This way we
construct a forest F such that all subtrees of F are stars with nodes
in C at their center. Constructing such a forest is easy – it is suffi-
cient to sketch for every u ∈ V \ C the set of neighbors of u in (a
subsampled version of) C, taking polylogarithmic space per node.

Further, for each node u ∈ V we maintain a sketch of the set
of edges incident on u so that we can reconstruct all edges inci-
dent on u if there are at most d of them. Finally, we also store a
polylogarithmic number of independent AGM sketches. The edges
of the spanner are constructed as follows. First, we let Elow de-
note the set of edges incident on low degree nodes of G (i.e. nodes
whose degree was O(d logn)). Then we associate each node with
degree above Cd logn with a neighbor in C (such a neighbor ex-
ists whp by our choice of parameters). This yieldsO(n/d) clusters
Tu, u ∈ C. We now let G′ be the graph obtained from G by sub-
tracting all edges in Elow. We then collapse all clusters Tu, u ∈ C,
into supernodes in the new graph G′; let F ′ denote a spanning for-
est in the contracted G′. Note that the spanning forest in G′ can be
computed using Theorem 10 since, starting with AGM sketches for
G, we can first subtract all edges in Elow, and then invoke Theo-
rem 10 on G′. Finally, we output Elow ∪ F ∪ F ′. We formalize
this in Algorithm 3. Note that as before, we introduce auxiliary
sets Zr ⊆ V, r = 0, . . . , log2 n, and then maintain a sketch of
N(u) ∩ C ∩ Zr for each r = 0, . . . , log2 n in order to be able to
recover a neighbor in C for each u with degree Ω(d). We formalize
this in Algorithm 3. The guarantees provided by the algorithm are
summarized in

THEOREM 19. Algorithm 3 outputs an O(n/d)-additive span-
ner using space Õ(nd).

PROOF. The space bound follows immediately from the defini-
tion of Algorithm 3. Let P = (u = p0 → p1 → . . . → pt = v)
be a shortest path between u and v in G. Let H denote the spanner
output by Algorithm 3. We show that there exists a path of length
at most t+O(n/d) in H .

We first show that P visits every cluster Tw, w ∈ C at most
once, i.e. there are no two indices 0 ≤ t1, t2 ≤ t, t1 < t2 − 1
such that pt1 , pt2 ∈ Tw and pt1+1 6∈ Tw. Indeed, in that case
we can construct the path P ′ by removing the edges (pi, pi+1) for
i ∈ [t1 : t2 − 1](of which there are at least two) and replace it with
two edges (pt1 , w), (w, pt2), preserving (and possibly reducing)
path length.

Algorithm 2 Second pass (constructing spanner edges)

1: procedure CONSTRUCTSPANNER({Cr}k−1
r=0 , F, k)

2: E′ ← ∅
3: Yj ← sample of V at rate 2−j , j = 0, . . . , log2 n
4: for u ∈ Ci, u a terminal node, i ∈ [0 : k − 1] do
5: for j = 0 to log2 n do
6: Hu

j ← hash table with Õ(n(i+1)/k) cells of size
O(poly(logn)) . Create empty hash table

7: end for
8: end for
9: . During the second pass

10: for each update δ · (a, b) do . δ ∈ {−1, 1} is the sign of
the update, a, b ∈ V

11: u← terminal parent of a, v ← terminal parent of b
12: for j = 0 to log2 n do
13: If a ∈ Tu ∩ Yj , b ∈ V \ Tu,
14: add SKETCHO(logn)(δ · a) to b-th entry of Hu

j

15: If b ∈ Tv ∩ Yj , a ∈ V \ Tv ,
16: add SKETCHO(logn)(δ · b) to a-th entry of Hv

j

17: end for
18: end for
19: . After the second pass
20: for u ∈ Ci, u a non-terminal node, i ∈ [0 : k − 1] do
21: Add η((u, p(u))) to E′ . The edge η((u, p(u))) was

constructed in first pass
22: end for
23: for u ∈ Ci, u a terminal node, i ∈ [0 : k − 1] do
24: for v ∈ V \ Tu do
25: for j = log2 n down to 0 do
26: If v 6∈ keys(Hu

j) continue
27: S ← Hu

j (v) . retrieve sketch with key v
28: w ← DECODE(S)
29: If w 6= 0 then E′ ← E′ ∪ {(w, v)}, break
30: . w is an arbitrary decoded neighbor of v
31: end for
32: end for
33: end for
34: return E′
35: end procedure

We now assume that P visits every cluster at most once and show
how to construct a path P ′ between u and v that has length at most
t+O(n/d). We consider edges e = (a, b) ∈ P of types:
Type 1. e is incident on a low degree node, or belongs to F . Then
the edge is available in E∗;
Type 2. a, b ∈ Tu \ {u} for some u ∈ C. Then we can replace
the edge by a pair of edges (a, u), (u, b), since they are available in

F ⊆ E∗. Since by the argument above P contains O(n/d) such
edges, (a, b), in total, this only increases the path length by an ad-
ditive O(n/d) term;
Type 3. a ∈ Tu, b ∈ Tv for some u, v ∈ C, u 6= v. We call such
pairs (u, v) cross-edges arising from P (note that (u, v) may not
belong to P , only the edge (a, b) is guaranteed to). We now con-
sider the graphG′ = (V,E′) defined above, i.e. the graph obtained
by removing edges in Elow. Let G′′ be obtained by collapsing all
clusters Tx, x ∈ C into supernodes. Consider paths Puv from u to
v in the spanning forest F ′′ of G′′ for all cross-edges arising from
P . We can assume that these paths do not overlap, since otherwise
they can be shortcut to provide the same connectivity. It remains to
note that the union of these paths contains O(n/d) edges, and can
be extended to paths in E∗ by using edges of F .

We have shown how to construct a path P ′ in E∗ that has length
t+O(n/d), which completes the proof.

5. LOWER BOUNDS FOR ADDITIVE SPAN-
NERS

In this section we prove Theorem 4, which we restate here for
convenience of the reader.

Theorem 4 In the insertion-only model, any 1-pass streaming
algorithm returning a spanner with additive distortion at most n/d
with probability at least 6/7 requires Ω(nd) bits of space.

PROOF. We use a 2-player distributional communication game
to prove this. We reduce from the distributional version of the
indexing problem IND, in which Alice is given a bit string X of
length r, while Bob is given an index I ∈ {1, 2, . . . , r}, and Bob’s
goal is to output XI . We endow X with the uniform distribution
on {0, 1}r , and I with the uniform distribution on {1, 2, . . . , r}.
Further, X and I are independent. It is known that in any, possi-
bly randomized, protocol in which Alice sends a single message
M(X) to Bob, and Bob succeeds in outputting XI with probabil-
ity at least 2/3, where the probability is taken both over Alice’s
coin tosses and the random choice of X and I , that in expectation
Alice’s message M(X) must be Ω(r) bits long [KNR99].

Set r = Cnd, for an appropriate constant C > 0 to be de-
termined. Let us interpret Alice’s input X as s = 18n/d dis-
joint and independent random graphsG1, . . . , Gs each drawn from
G(d, 1/2), that is, each G` has exactly d vertices and each edge is
present independently in each G` with probability 1/2. Note that
each G` requires

(
d
2

)
= Θ(d2) bits to specify, each bit indicating

the presence or absence of each potential edge. For C > 0 a suit-
able constant, it is indeed possible to interpret Alice’s string in this
way.

Suppose we have a 1-pass streaming algorithm returing a span-
ner with additive distortion n/d. Alice runs this algorithm on the
disjoint union of G1, . . . , Gs, and sends the state of the algorithm
to Bob.

Suppose Bob is interested in the bitXI , which can be interpreted
as a specific pair of verices {U, V } in a specific graphGJ , for some
J ∈ [1 : s]. Note that with our choice of input distribution for IND,
J is uniformly random, and U, V are uniformly random distinct
vertices in GJ .

For each ` ∈ [1 : s], Bob chooses a uniformly random pair
{U`, V`} of distinct vertices in G`, with the exception that in GJ ,
Bob sets {UJ , VJ} = {U, V }. Bob then inserts the edges {V1, U2},
{V2, U3}, . . . , {Vs−1, Us} into the input stream, and continues the
computation of the streaming algorithm on this input stream, start-
ing with the state of the streaming algorithm that Alice sent him.
Suppose that with probability at least 6/7, the output of the stream-

ing algorithm is an additive spanner H with additive distortion at
most n/d between all pairs of vertices.

The shortest path from U1 to Vs follows the edges that Bob in-
serted into the stream, together with as many of the pairs {U`, V`}
as possible which correspond to actual edges in G`. For those G`
for which {U`, V`} is not an edge, then the path length is at least 2
inside of G`.

By Chernoff bounds (over the choice of edges in the different
G`), with probability at least 1 − exp(−Θ(n/d)), at least s/3 of
the different {U`, V`} pairs occur in the stream, as we range over
` ∈ {1, 2, . . . , s}. Hence, to achieve additive distortion at most
n/d, since s/3 = 6n/d, at least a 5/6 fraction of the different
{U`, V`} which occur in the stream must also occur in H . Since J
is uniformly random, {UJ , VJ} = {U, V } is uniformly random in
GJ , and all other {U`, V`} are uniformly random edges in G` for
` 6= J , it follows that the algorithm has no information about J ,
and therefore if {U, V } is an edge in GJ then with probability at
least 1−1/6−1/7−exp(−Θ(n/d)) > 2/3 it occurs inH , while
if {U, V } is not an edge inGJ , then it occurs inH with probability
at most 1/7, i.e., if the streaming algorithm fails.

Algorithm 3 Construction of an O(n/d)-additive spanner
procedure ADDITIVESPANNER(d)

F ← (V, ∅)
C ← sample of V at rate O(1

d
)

Zr ← sample of V at rate 2−r , r = 0, . . . , log2 n
. Auxiliary variables for recovering a node in N(u) ∩ C

For each u ∈ V maintain:
S(u)← SKETCHÕ(d)(N(u)) . Sketching neighborhood of

all nodes u ∈ V
Ar(u) ← SKETCHO(logn)(N(u) ∩ C ∩ Zr) for r =

0, . . . , log2 n

Sketch d̂u to degree of u (using Theorem 9)
AGM sketches as per Theorem 10
Elow ← ∅
for u ∈ V do

if d̂u ≤ O(d logn) then
W ← DECODE(S(u))
Elow ← Elow ∪ {(u, v)}v∈W

else
for r = 0 to log2 n do. Associate u with a node in C

w ← DECODE(Ar(u))
If w 6=⊥ then make (an arbitrary element of) w

parent of u in F , break
end for

end if
end for
E′ ← E \ Elow . Subtract edges incident on low-degree

nodes from E
F ′ ← SPANNINGFOREST(E′, {Tu}u∈C) . Spanning forest

on clusters Tu, u ∈ C using AGM sketches
E∗ ← Elow ∪ F ∪ F ′
return E∗

end procedure

It follows that if Bob outputs 1 iff {U, V } occurs in H , he will
have solved IND with probability at least 2/3. By the abovemen-
tioned communication lower bound for IND, it follows that the
space complexity of the streaming algorithm is Ω(r) = Ω(nd). In
the above lower bound the graph is on sd = 18n vertices; rescaling
n by a factor of 18 establishes the theorem.

6. SPECTRAL SPARSIFIERS
In this section we show that Algorithm 3 of [KP12] can be easily

implemented in the dynamic stream model using our multiplica-
tive spanner construction in place of the Thorup-Zwick distance
oracles used in [KP12]. The oracle required by [KP12] needs to
output, given a pair of nodes u, v ∈ V , an estimate d̂(u, v) that sat-
isfies d(u, v) ≤ d̂(u, v) ≤ κd(u, v). Note that our multiplicative
spanner construction provides such an estimate with κ ≤ 2k when
Õ(n1+1/k) space is used, by our analysis in section 3.

There is an omission in the proof of a sampling lemma in [KP12]
(Lemma 21), so we reprove this lemma here for our application.
Also, we outline small space implementation details for other sub-
routines in [KP12] since [KP12] does not stress the small space
requirement. We state the algorithms of [KP12] here for complete-
ness. First, we round all edge weights to the nearest power of (1+ε)
(our algorithm will produce a (1 + O(ε))-sparsifier, which is fine
by rescaling variables). Thus, it is sufficient to construct sparsi-
fiers of unweighted graphs (at the expense of a loss of a factor of
1
ε

log(wmax/wmin) in runtime and space complexity).

6.1 Estimating connectivities
We first give a version of the ESTIMATE algorithm from [KP12]

that we can use to estimate robust connectivities in the dynamic
streaming model. Note that we cannot execute this algorithm di-
rectly in the dynamic streaming model since we do not have access
to the edge set E of the graph explicitly. This, however, is not nec-
essary, since we can perform estimates for any pair (u, v) ∈

(
V
2

)
on demand, i.e. we obtain an oracle for computing estimates of ro-
bust connectivities q̂κ,δ . This version of the ESTIMATE algorithm
of [KP12] is given as Algorithm 4 below.

Algorithm 4 Estimation of robust connectivities
1: procedure ESTIMATE(G, κ, δ)
2: . Preprocessing
3: for j = 1 to J do . J = O(logn/δ2)
4: Set Ejt ← ∅ for t ∈ [1 : T]. . T = log n4

5: For each e ∈ E add e to Ej1 .
6: for t = 1 to T − 1 do
7: Add each e ∈ Ejt toEjt+1 independently with prob-

ability 1/2.
8: end for
9: end for

10: for t = 1 to T do
11: Construct a distance oracle Ojt for Ejt , j ∈ [1 : J].
12: end for
13: . Query time, on input (u, v)
14: for t = 1 to T do
15: for j = 1 to J do . J = O(logn/δ2)
16: If Ojt (u, v) > κ2 then ηj(t)← 1
17: else ηj(t)← 0
18: end for
19: end for
20: q̂κ,δ(e) ← 2−t, where t is the smallest such that |{j :

ηj(t) = 1}| ≥ (1− δ)J
21: return q̂κ,δ
22: end procedure

These estimates can be used for sampling as shown in Algo-
rithm 5. Algorithm 5 uses a sequence of subsets of edges of G.
Let Ej , j = 0, . . . , H = log2 n

2 contain edges of G sampled
independently at rate 2−j . Let q(e) = q̂κ,ε(e), e ∈ E be the vec-
tor of sampling parameters obtained from ESTIMATE(G, κ, ε). We

now show how to use the spanner construction primitive to sam-
ple edges e ∈ E with probability proportional to q(e). Since we
use the spanner construction algorithm to sample, the sampling is
imperfect. However, we show that the quality of our sampling pro-
cedure is sufficient to produce a spectral sparsifier.

6.2 Sampling using augmented spanners
Consider an execution of our 2-pass spanner construction al-

gorithm (Algorithms 1 and 2) and let Λ(R) ⊆
(
V
2

)
define the

set of locations in the adjacency matrix of the graph accessed by
the algorithm, where R is the random seed. Recall that Λ(R) =
Λ1(R) ∪ Λ2(R) as defined in Claims 16 and 18.

CLAIM 20. Algorithms 1 and 2 can be augmented to output all
edges in the set of locations Λ(R) that their execution path depends
on with probability 1 − 1/poly(n) over the choice of the random
seed.

PROOF. Follows by Claim 16 and Claim 18.

We denote this augmented construction by AUGMENTEDSPAN-
NER(E, κ), where E is the input set of edges, and κ is the stretch
parameter. (note that this algorithm outputs all edges of G that be-
long to Λ(R)). As in [KP12], our sampling procedure is given by

Algorithm 5 Sampling using an augmented spanner construction
1: procedure SAMPLE-AUGMENTED-SPANNER(G, q, κ)
2: for j = 1, . . . , H do . H ← log2 n

2

3: Ej ← random sample of edges of G at rate 2−j

4: end for
5: for j = 1, . . . , H do
6: Sj ← AUGMENTED-SPANNER(V,Ej , κ) . κ is the

stretch parameter
7: For each e ∈ Sj , assign weight 0 to e if q(e) 6= 2−j ,

otherwise assign weight 2j .
8: end for
9: Return the weighted collection S1 ∪ . . . ∪ SH .

10: end procedure

The sampling process is then given by Algorithm 6. Note that
Algorithm 6 differs from the corresponding algorithm in [KP12] in
that parameter Z is chosen as Z ← Θ(κ2 logn/((1 − ε)ε3)) as
opposed to Z ← Θ(log3 n/((1 − ε)ε3)). This is because κ was
instantiated to logn for this algorithm in [KP12].

Algorithm 6 Sparsification via spanners
1: procedure AUGMENTED-SPANNER-SPARSIFY(G, q, ε, κ)
2: q ← ESTIMATE(G, κ, ε).
3: Z ← Θ(κ2 logn/((1− ε)ε3))
4: for t = 1, . . . , Z do
5: Xt ← SAMPLE-AUGMENTED-SPANNER(G, q, κ)
6: end for
7: return 1

Z
(X1 + . . .+XH)

8: . Addition above refers to taking a union of X1, . . . , XH
and scaling weights by 1/Z

9: end procedure

We now prove that AUGMENTED-SPANNER-SPARSIFY(G, q, ε, Z)
produces a spectral sparsifier whp. We will use the following

THEOREM 21. LetG = (V,E) be an unweighted graph, ε > 0
a precision parameter. Let sampling parameters τe satisfy τe ≥
Re/M for a parameter M . Let C > 0 be a sufficiently large

constant, and for j = 1, . . . , (C/ε2)M logn, e ∈ E let Y je be
independent random variables that equal 1/τe with probability τe
and 0 otherwise. Let G′ contain each edge e ∈ E with weight∑(C/ε2)M logn
j=1 Y je . Then (1− ε)G ≺ G′ ≺ (1 + ε)G whp.

A proof of this theorem follows easily using concentration in-
equalities for positive semidefinite matrix-valued random variables
proved in [Tro12]. We now show that our sampling procedure
works nearly as well as independent sampling analyzed in Theo-
rem 21.

LEMMA 22. Algorithm 6 produces a (1±O(ε))-spectral spar-
sifier of the input graph G whp.

PROOF. Set Z = O(κ2 logn/((1 − ε)ε3)), as in line 3 of Al-
gorithm 6. By Lemma 19 of [KP12] we have that

q̂κ,ε(e) = Ω(εRe/κ
2) (1)

for all e ∈ E. The complication is that in an invocation of SAMPLE-
AUGMENTED-SPANNER(G, q, κ) the function AUGMENTED-
SPANNER(Ej , κ) may not necessarily output all edges e ∈ Ej such
that q̂κ,e = 2−j . It is, however, guaranteed to output at least an
1 − ε fraction of such edges in expectation by the definition of
q̂κ,e (which we denote by q(e) in what follows). More precisely,
for each e = (u, v) such that q(e) = 2−j the set Ej contains no
path between u and v of length less than κ with probability at least
1 − 2ε. Indeed, since the estimation procedure invokes the span-
ner construction algorithm with stretch κ, the pair (u, v) would not
have been assigned q(e) = 2−j otherwise. Thus, the set Ej \ {e}
contains no path between u and v of length less than κ with prob-
ability at least 1 − 2ε, and hence our κ-stretch spanner outputs e
with probability at least 1 − 2ε over the choice of Ej \ {e}. We
now introduce relevant notation and show that this implies that our
algorithm outputs a spectral sparsifier.

For each s = 1, . . . , Z and each j = 1, . . . , H = log2 n
2 let

Es,j denote the sets sampled in the s-th invocation of AUGMENTED-
SPANNER in line 5 of Algorithm 6. For e ∈ E let j(e) be such
that q(e) = 2−j(e). Recall that each invocation of AUGMENTED-
SPANNER outputs all edges e in Es,j ∩Λ(Rs,j), where Rs,j is the
random seed used. Let Xs

e = 1 if e ∈ Es,j(e) and 0 otherwise.
First, we have

CLAIM 23. Fix j. Conditional on Λ(R) the random variables
{Xj

e}e∈E\Λ(R) are statistically n−C -close to independent Bernoulli
0/1 with expectation 2−j , where the choice of C > 0 only affects
the space requirement of our algorithm by a constant factor.

PROOF. Recall that Λ1(R) and Λ2(R) are the locations in the
adjacency matrix that affect the execution path of our algorithm,
conditional on our sketches succeeding. The probability of at least
one sketch failing can be chosen to be n−C by choosing parameters
appropriately (and the choice ofC only affects space complexity by
constant factors).

For each s, j and {u, v} ∈
(
V
2

)
let cs,juv = 1 if {u, v} ∈

(
V
2

)
\

Λ(Rs,j) and 0 otherwise. We say that a pair {u, v} is covered in
invocation (s, j) if cs,juv = 1. Note that if an edge e = (u, v) is
covered, then the constructed spanner must contain a path of length
bounded by κ between u and v. Thus, we have Pr[cs,juv = 1] ≤ 2ε
for any e = (u, v) with q(e) = 2−j whp.

Since samples are independent for different s = 1, . . . , Z and
Z ≥ (C/ε) logn for a sufficiently large constant C > 0, one has
for any e = (u, v) that

Z∑
s=1

cs,j(e)e ≤ 4εZ (2)

with probability at least 1− n−20.
The Laplacian of the sampled graphG′ output by AUGMENTED-

SPANNER-SPARSIFY is given by

LG′ =
1

Z

Z∑
s=1

∑
e∈E

(1− cs,j(e)e)
1

q(e)
Xs
e · e · eT , (3)

where for an edge e = (u, v) we denote the vector in RV with −1
at u and +1 at v by e. Let

LG̃ =
1

Z

Z∑
s=1

∑
e∈E

1

q(e)
Xs
e · e · eT . (4)

By Theorem 21 we have with high probability

(1−O(ε))LG ≺ LG̃ ≺ (1 +O(ε))LG. (5)

Let LH = 1
Z

∑Z
s=1

∑
e∈E c

s,j(e)
e

1
q(e)

Xs
e · e · eT . By Claim 23

conditional on Λ(Rs,j) and failure events for our sketching prim-
itives not happening, the random variables {Xj

e} for e ∈ E \
Λ(Rs,j) are statistically n−C

′
-close to independent Bernoulli 0/1

with expectation 2−j (where the choice of constant C′ only af-
fects our space requirements by constant factors). Let X̃s

e , s =
1, . . . , Z, e ∈ E be such Bernoulli 0/1 random variables cou-
pled with Xs

e on a 1 − n−C
′

fraction of probability space. Let-
ting LH̃ = 1

Z

∑Z
s=1

∑
e∈E c

s,j(e)
e

1
q(e)

X̃s
e · e · eT , we have that

Pr[LH 6= LH̃] ≤ n−C
′
. Let R′ denote the random bits (random

seed R of our algorithm and random choices made in sampling
edges that belong to Λ(R)) that determine the values of cs,je . By
(2) with probability at least 1−n−20 one has

∑Z
s=1 c

s,j(e)
e ≤ 4εZ

for each e ∈ E (call this event E). Without loss of generality (and
to simplify notation) we assume that conditional on this event one
has cs,je = 0 for all s > 4εZ and all e (note that this does not
change the distribution of LH̃ since all X̃s

e are iid for fixed e and
different s).

Thus, conditional on E ,LH̃ is stochastically dominated byLH,∗ :=
1
Z

∑4εZ
s=1

∑
e∈E

1
q(e)

W s
e · e · eT , where W s

e = 1 independently

with probability 2−j(e) and 0 otherwise. This is because for each
fixed R′ ∈ E and each e ∈ E the random variable cs,j(e)e X̃s

e is
either 0 or independent Bernoulli 0/1 with expectation 2−j(e), and
hence W s

e and cs,j(e)e X̃s
e can be coupled so that cs,j(e)e X̃s

e ≤ W s
e .

Under this coupling we have that for each R′ ∈ E the difference
LH,∗ −LH̃ = 1

Z

∑4εZ
s=1

∑
e∈E

1
q(e)

(W s
e − c

s,j(e)
e X̃s

e) · e · eT is a
positive semidefinite matrix with probability 1 (since it is a sum of
positive semidefinite rank-1 matrices).

By Theorem 21 together with (1) we have that LH̃ ≺ LH,∗ ≺
O(ε) ·LG with high probability (we are using the fact that Pr[E] ≥
1 − n−20). We also have Pr[LH 6= LH̃] < n−C

′
, so LH ≺

O(ε) · LG with high probability. Finally, since LG′ = LG̃ − LH
by (3) and (4), this implies by (5) that (1 − O(ε))LG ≺ LG′ ≺
(1 +O(ε))LG with high probability, as required.

6.3 Randomness in small space and setting pa-
rameters

Note that in order to implement our algorithm in the dynamic
stream model it is sufficient to implement the partitioning of the set
E of edges of G into classes Ej , j = 1, . . . , H needed in Algo-
rithm 5 and into sets Etj , j = 1, . . . , J, t = 1, . . . , T needed in Al-
gorithm 4 (recall that J = O(logn/ε2) and T = log n4). We show
how to generate the first sequence of sets in the dynamic streaming
model. The second is analogous. We choose uniformly random

numbers hjuv, u, v ∈ V, j = 1, . . . , H such that hjuv are indepen-
dent and uniform in [0, 1] (rather, a sufficiently fine discretization of
[0, 1] with step size 1/poly(n), say). Then a potential edge (u, v)
belongs toEj iff hjuv ≤ 2−j . This yields a filtered input stream for
each j = 1, . . . , H , which is given as input to our 2-pass distance
oracle. Since the approximation guarantees provided by our oracle
satisfy the requirements of [KP12], the same analysis holds, and
hence calls to ESTIMATE give the same guarantees. It remains to
verify that SAMPLE-AUGMENTED-SPANNER and AUGMENTED-
SPANNER-SPARSIFY can be implemented in the dynamic stream
model with small space. Note that the sequence of sets Ej used in
SAMPLE-AUGMENTED-SPANNER can be emulated as we just de-
scribed. Finally, note that we assumed perfect randomness in the
choice of the subsets Etj , as required by [KP12], which results in
Ω(n2) space requirement for the random bits. Since our algorithm
works in space S = O(n1+o(1)/ε4) (after setting parametes appro-
priately, as we do below), we can replace this perfect randomness
with Nisan’s pseudoradom generator, taking spaceO(n1+o(1)/ε4),
in the same way as in [AGM12b] (see section 3.4; the argument is
identical, so we do not repeat it here).

It remains to set parameters. Let κ = 2k denote the upper
bound on the stretch provided by our algorithm with Õ(n1+1/k)
space. Then Algorithm 6 requires Z = O(κ2(logn)/ε3) invoca-
tions of SAMPLE-AUGMENTED-SPANNER, each of which requires
H = log2 n

2 copies of our spanner construction algorithm, for
a total space of Õ(κ2n1+1/k/ε3) = Õ(22kn1+1/k/ε3). A sim-
ilar calculation shows that the space complexity of ESTIMATE is
Õ(n1+1/k(logn4)/ε2). We now choose k =

√
logn to obtain

space complexity Õ(22
√

lognn1+1/
√

logn/ε4) = n · 2O(
√

logn)/ε4

as desired (an extra factor of 1
ε

log wmax
wmin

appears for weighted
graphs).
Corollary 2 For any ε > 0 there exists an algorithm for construct-
ing an ε-spectral sparsifier of a graph G presented in the dynamic
streaming model usingO(n2O(

√
logn)(log(wmax/wmin))/ε4) space

and two passes over the stream.

7. REFERENCES
[ACIM99] Donald Aingworth, Chandra Chekuri, Piotr Indyk,

and Rajeev Motwani. Fast estimation of diameter and
shortest paths (without matrix multiplication). SIAM
J. Comput., 28(4):1167–1181, 1999.

[AGM12a] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor.
Analyzing graph structure via linear measurements.
SODA, pages 459–467, 2012.

[AGM12b] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor.
Graph sketches: sparsification, spanners, and
subgraphs. PODS, pages 5–14, 2012.

[AGM13] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor.
Spectral sparsification in dynamic graph streams.
APPROX-RANDOM, pages 1–10, 2013.

[Bas08] Surender Baswana. Streaming algorithm for graph
spanners - single pass and constant processing time
per edge. Inf. Process. Lett., 106(3):110–114, 2008.

[BK96] András A. Benczúr and David R. Karger.
Approximating s-t minimum cuts in Õ(n2) time.
STOC, pages 47–55, 1996.

[BKMP10] Surender Baswana, Telikepalli Kavitha, Kurt
Mehlhorn, and Seth Pettie. Additive spanners and
(alpha, beta)-spanners. ACM Transactions on
Algorithms, 7(1), 2010.

[BS03] Surender Baswana and Sandeep Sen. A simple linear
time algorithm for computing a (2k-1)-spanner of

o(n1+1/k) size in weighted graphs. ICALP, pages
384–296, 2003.

[BS06] Surender Baswana and Sandeep Sen. Approximate
distance oracles for unweighted graphs in expected
o(n2) time. ACM Transactions on Algorithms,
2(4):557–577, 2006.

[BS07] Surender Baswana and Sandeep Sen. A simple and
linear time randomized algorithm for computing
sparse spanners in weighted graphs. Random Struct.
Algorithms, 30(4):532–563, 2007.

[BSS09] Joshua D. Batson, Daniel A. Spielman, and Nikhil
Srivastava. Twice-ramanujan sparsifiers. STOC, pages
255–262, 2009.

[Che13] Shiri Chechik. New additive spanners. In SODA,
pages 498–512, 2013.

[CM06] G. Cormode and S. Muthukrishnan. Combinatorial
algorithms for compressed sensing. Structural
Information and Communication Complexity,
4056:280–294, 2006.

[FHHP11] Wai Shing Fung, Ramesh Hariharan, Nicholas J. A.
Harvey, and Debmalya Panigrahi. A general
framework for graph sparsification. STOC, pages
71–80, 2011.

[GM12] Sudipto Guha and Andrew McGregor. Graph
synopses, sketches, and streams: A survey. PVLDB,
5(12):2030–2031, 2012.

[KMP10] Ioannis Koutis, Gary L. Miller, and Richard Peng.
Approaching optimality for solving sdd linear
systems. In FOCS, pages 235–244, 2010.

[KMP11] Ioannis Koutis, Gary L. Miller, and Richard Peng. A
nearly-m log n time solver for sdd linear systems. In
FOCS, pages 590–598, 2011.

[KNR99] Ilan Kremer, Noam Nisan, and Dana Ron. On
randomized one-round communication complexity.
Computational Complexity, 8(1):21–49, 1999.

[KNW10] Daniel M. Kane, Jelani Nelson, and David P.
Woodruff. An optimal algorithm for the distinct
elements problem. In PODS, pages 41–52, 2010.

[KP12] Michael Kapralov and Rina Panigrahy. Spectral
sparsification via random spanners. ITCS, pages
393–398, 2012.

[MN06] Manor Mendel and Assaf Naor. Ramsey partitions
and proximity data structures. FOCS, pages 109–118,
2006.

[SS08] D.A. Spielman and N. Srivastava. Graph sparsification
by effective resistances. STOC, pages 563–568, 2008.

[ST04] D.A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for graph partitioning, graph
sparsification, and solving linear systems. STOC,
pages 81–90, 2004.

[ST11] D. Spielman and S. Teng. Spectral sparsification of
graphs. SIAM Journal on Computing,
40(4):981–1025, 2011.

[Tro12] Joel A. Tropp. User-friendly tail bounds for sums of
random matrices. Found. Comput. Math.,
12(4):389–434, August 2012.

[TZ01] M. Thorup and U. Zwick. Approximate distance
oracles. STOC, 2001.

[TZ06] Mikkel Thorup and Uri Zwick. Spanners and
emulators with sublinear distance errors. SODA,
pages 802–809, 2006.

	1 Introduction
	2 Preliminaries
	3 Two passes: basic algorithm
	3.1 Basic algorithm.
	3.2 Streaming implementation using two passes

	4 O(n/d)-additive spanners in (n d) space in a single pass
	5 Lower bounds for additive spanners
	6 Spectral sparsifiers
	6.1 Estimating connectivities
	6.2 Sampling using augmented spanners
	6.3 Randomness in small space and setting parameters

	7 References

