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Abstract
The performance of rasterization-based rendering on current GPUs strongly depends on the abilities to avoid
overdraw and to prevent rendering triangles smaller than the pixel size. Otherwise, the rates at which high-
resolution polygon models can be displayed are affected significantly. Instead of trying to build these abilities
into the rasterization-based rendering pipeline, we propose an alternative rendering pipeline implementation that
uses rasterization and ray-casting in every frame simultaneously to determine eye-ray intersections. To make
ray-casting competitive with rasterization, we introduce a memory-efficient sample-based data structure which
gives rise to an efficient ray traversal procedure. In combination with a regular model subdivision, the most
optimal rendering technique can be selected at run-time for each part. For very large triangle meshes our method
can outperform pure rasterization and requires a considerably smaller memory budget on the GPU. Since the
proposed data structure can be constructed from any renderable surface representation, it can also be used to
efficiently render isosurfaces in scalar volume fields. The compactness of the data structure allows rendering from
GPU memory when alternative techniques already require exhaustive paging.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computer Graphics—
Three-Dimensional Graphics and Realism

1. Introduction

For high-resolution polygon models, much of the available
polygon throughput on recent GPUs is often wasted: When a
geometric screen space error below pixel size has to be guar-
anteed, it cannot be avoided that single pixels are covered
by multiple triangles. Furthermore, since occlusion queries
achieve their full potential at a rather coarse granularity, a
high pixel overdraw is often introduced. Consequently, when
high resolution triangle meshes are rendered on large view-
ports, the amount of triangles to be rendered can quickly ex-
ceed the GPU’s memory and throughput capacities.

A possible option to overcome these limitations is to seek
a graphics pipeline abstraction that does not built upon the
projection of polygons into the pixel raster, but determines
in front-to-back order the fragments that are seen through
a pixel. One such abstraction is ray-tracing, which has be-
come an alternative to rasterization due to advancements
in algorithms and graphics hardware technology [GPSS07,
AL09, PBD∗10]. However, rasterization is still faster than
ray-tracing for the computation of eye-rays, due to the initial
cost per ray for traversal and ray-triangle intersection.

A different option is to employ sample-based surface rep-
resentations in combination with regular sampling structures
that can be ray-cast efficiently on the GPU [CNLE09,LK10].
This option is particular charming because it provides both
the abilities to perform early-ray termination and adaptive
LoD selection. Thus, it can effectively minimize the num-
bers of samples to be accessed for a particular view. Re-
cent findings in the context of terrain rendering have even
shown advantages of ray-casting over rasterization [DKW],
even when a geometric LoD structure can be employed to
effectively reduce the number of rendered triangles.

Our contribution: In this work we propose a hybrid GPU
pipeline for computing eye-ray intersections with arbitrary
models. It performs GPU rasterization and ray-casting si-
multaneously, deciding at run-time which technique to use
for each part of the model.

To efficiently perform ray-casting, we introduce a novel
sample-based surface representation. It can be created ef-
ficiently at multiple resolutions and provides an effective
mechanism to reduce the number of evaluated surface sam-
ples. Compared to a triangle mesh, the proposed representa-
tion has a significantly lower memory consumption. Thus, it
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Figure 1: A 1 billion triangle model is rendered on a 1920×1080 viewport using rasterization and ray-casting simultaneously.
Ray-casting works on a sample-based surface LoD representation at an effective maximum sampling resolution of 8K2 ×32K.
Red and green surface areas indicate parts of the model that are rendered via rasterization and ray-casting, respectively. On
a GTX 680 graphics card the hybrid approach always renders the model in less than 30 ms (> 33 fps) at a screen space error
below pixel size.

is less sensitive to bus bandwidth limitations. The represen-
tation is built on a regular 2D sampling structure, on which
parallel ray traversal can be performed efficiently in front-
to-back order.

We demonstrate that the proposed graphics pipeline can
be implemented efficiently on recent GPUs, and that signif-
icant performance gains can be achieved for high-resolution
polygon models. To the best of our knowledge, for the first
time we can show that a rendering pipeline based on ray-
casting can be faster than rasterization for eye-ray intersec-
tions of arbitrary polygon models. Since the sample-based
representation can be constructed from any available surface
representation, it can also be used for rendering isosurfaces
in large volume data sets. To enable interactive selection of
different isosurfaces, we have implemented the construction
of the sample-based representation in CUDA on the GPU.
We show that for data sets as large as 40963, even construc-
tion of all data displayed in a typical view requires less than
200 ms from scratch. Compared to direct volume rendering,
the memory requirement at run-time is reduced of a factor of
up to 10.

2. Related work

Recently, advances in hardware and software technology
have shown the potential of ray-tracing as an alterna-
tive to rasterization, especially for high-resolution mod-
els with many inherent occlusions. Developments in this
field include advanced space partitioning and traversal
schemes [WIK∗06, WMS06], and optimized GPU imple-
mentations [AL09, PBD∗10], to name just the most re-
cent. Rasterization and ray-tracing have been employed con-
secutively to generate primary-ray intersections and sec-
ondary effects, respectively [LBIM05, OLG∗07]. All these

approaches can be classified as “conventional ray-tracing
approaches”, since they operate on the polygon object rep-
resentation and perform classical ray-polygon intersection
tests.

Especially for the rendering of very large models, hybrid
approaches combining techniques such as geometry LoDs,
pre-computed imposters, and point rendering have been pro-
posed [ACW∗99, CN01, CAZ01, GBBK04]. “Far Voxels”
have been introduced as an efficient LOD structure for poly-
gon models by Gobbetti and Marton [GM05]. They approx-
imate polygon clusters by pre-computed voxel primitives
and switch to order-independent volume splatting at coarser
resolution levels. Thus, early-ray termination cannot be ex-
ploited and a significant rasterization overhead is introduced
by the rendering of pixel-sized splat primitives.

Recently, “Gigavoxels” were introduced [CNLE09] for
the rendering of very large polygon models. “Gigavoxels”
build upon octree textures, which were first introduced by
Benson and Davis [BD02] and DeBry et al. [DGPR02], and
later realized on the GPU by Lefebvre et al. [LHN05] and
Lefohn et al. [LSK∗06]. [LK10] Laine et al., extending on
this work, showed that octrees containing single voxels at the
leaf nodes can also be efficiently built. Both methods also re-
sample the polygonal surfaces onto a discrete grid to employ
ray-casting, but they require a considerable amount of CPU
and GPU memory. Thus, for very high-resolution polygon
meshes and large viewports, their application is limited.

Lischinski and Rappoport [LR98] have introduced the
Layered Depth Cube (LDC), which samples a models from
three mutually orthogonal directions onto regular grids.
Building on this concept, Bürger et al. [BHKW07, BKW09]
proposed GPU methods for ray-tracing secondary effects
and for surface painting. Dick et al. [DKW] have shown
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that terrain rendering on a regular sampling grid structure
can even be faster than pure rasterization for high resolution
models. Novak and Dachsbacher [ND12] extended on this
work and proposed splitting the model into parts which can
be represented as height fields, so that GPU height field ray-
casting can be employed. For high-resolution polygon mod-
els, however, finding the local piecewise height field param-
eterizations requires an extensive preprocess. Furthermore,
it is not guaranteed that any such height field at a reason-
able size exists for a desired maximum geometrical error.
The effectiveness of the approach strongly depends on the
surface geometry—for those reasons, their work is focused
on secondary effects where local geometrical errors have a
less noticeable impact.

3. Data Representation

Our method requires a two-step preprocessing of a triangle
mesh which we will describe in this section. Similar to No-
vak and Dachsbacher, we start with a spatial subdivision fol-
lowed by a resampling of each surface part into a 2D struc-
ture. However, we use a regular space partitioning which can
be constructed efficiently. In this way, we also support non-
static data such as isosurfaces in scalar fields, where rebuild-
ing an adaptive acceleration structure would be too costly
during runtime. In general, the regular subdivision leads to
surface parts which cannot be represented by a single height
field any more. We will show how our structure resolves this
problem and still allows for very efficient ray-casting. Fur-
thermore, our representation allows the creation of several
levels of detail with guaranteed geometric error to further
speed up the rendering for larger viewing distances.

3.1. Model Partition

Given a triangle mesh, its bounding box is partitioned into
a set of bricks using a regular grid. For each brick contain-
ing a part of the surface, a 2D sampling grid as described in
the next section is constructed. The resolution of these grids
depends on the size of the finest geometric details, i.e., the
size of the smallest triangle in the entire mesh. In our current
implementation, the size of a sampling cell in these grids is
equal to half of this smallest triangle size. For instance, for
the David model in Fig. 1 this corresponds to an effective
total resolution of 8K2 × 32K samples. If a brick contains
only triangles which are at least two times as large as this
cell size, though the sampling structure is created to facili-
tate the construction of a LoD hierarchy, it is deleted upon
finishing this process. We will call such bricks unresolved.
The rational behind this is that a sampling grid is rendered if
its cell size is approximately the pixel size. Thus, when trian-
gles are larger than this size, they would cover many pixels
and rasterization would be preferred.

An additional criterion takes into account the fill rate of
a sampling structure. For a constructed sample-based rep-
resentation, the fill rate measures the fraction of effectively

used entries in this representation. If this fraction is too low,
which indicates that a huge number of entries are wasted,
the respective grid is also classified as unresolved. Figure
2 shows a partitioning that has been generated using these
rules.

Figure 2: Subdivision (finest level) of a triangle model into
bricks using the refinement rules given in this paper. Green
boxes indicate bricks for which a 2D sampling structure has
been built. Red boxes indicate unresolved brick which are
rendered via rasterization.

3.2. Sample-based Data Structure

Each brick stores the triangles contained in it, clipped at the
brick boundaries. From those triangle lists, our sample-based
data structure is built in the second step of the preprocess. It
builds upon the orthogonal fragment buffer (OFB) proposed
in [BKW09]. An OFB resamples a surface along three or-
thogonal directions and generates for each direction a set of
depth layers, each stored in a 2D sampling grid (see fig. 3).

Figure 3: An OFB is created by depth-peeling a mesh from
three orthogonal directions; the distance of the surface from
the respective sampling grid are stored in several layers of
2D sampling grids.

The OFB for each brick is constructed by depth-peeling
the surface from three orthogonal directions at a fixed res-
olution. Each depth layer stores the distance of the surface
from the respective sampling grid, which we will refer to as
the sample value. The depth values are quantized to the grid
resolution to avoid holes in the sample-based surface repre-
sentation, so the final OFB basically contains a conservative
voxelization of the polygon model. In addition, surface at-
tributes such as normals and colors are rendered directly into
each layer.
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This original OFB format, however, has severe limitations
for large polygon meshes: First, for parts of the model with
high depth complexity but low fill rate in each depth stack,
it introduces a substantial memory overhead. Second, ray-
casting this structure requires to search all depth layers to
find the first sample that is hit by a view ray. For high depth
complexities and high resolution sampling grids, this intro-
duces a severe performance bottleneck.

To address these shortcomings, we only store a single 2D
sampling grid of the same resolution, the primary grid, for
each brick. The sampling direction closest to the average
normal of all triangles in a brick is selected as primary di-
rection. All sample values and attributes of all OFB layers
are stored at the respective position in the primary grid; con-
ceptually, the OFB layers are treated as a 3D grid for this
step (see fig. 4, left). When the same sample is contained in
multiple directions, its attributes are averaged before storage.
The original OFB is discarded afterwards as it is no longer
required.
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Figure 4: Construction of our sample-based representation
from an existing OFB: The sample values stored in the OFB
layers (left) are stored into a single 2D structure, the pri-
mary grid (right). In this example, the top-down view is se-
lected as primary direction. If only a single sample exists for
a grid position, its distance from the primary grid is stored
directly along with its attributes. Otherwise, a pointer into
the indirection buffer containing the sample values is stored.
Successive voxels are stored as a single compact RLE span.

For each OFB direction, multiple layers can be present.
This requires the storage of a variable number of values and
attributes for each sampling position in the primary grid. For
this reason we employ a two-level data structure consisting
of the 2D primary grid and a 1D indirection buffer. If a grid
position contains only a single sample value, it is stored di-
rectly in the primary grid along with all its attributes, much
alike a traditional height field. In any other case, all sample
values for a grid position are written to the indirection buffer
in ascending order, followed by the attributes of all samples.
A pointer to the first written value as well as the number of
values is stored at the respective position of the primary grid
instead (see fig. 4, right).

To further reduce the storage overhead, a runlength en-
coding of sample values is performed during construction:

For each span of successive values to be written into the in-
direction buffer, only the first value is stored along with the
total length of the span.

For a sufficiently high resolution of the initial 3D space
partitioning, the 2D sampling structures as described will
only contain very few samples in typical cases as will be
shown in section 6. Even if this is not the case, we will
demonstrate that the compact span representations can be
tested very efficiently to find possible intersections between
a ray and the surface.

3.3. Level of Detail

Once the initial resolution level has been processed, a 2D
sampling grid and indirection buffer has been created for ev-
ery brick containing a surface part. To create a sample-based
model representation at a coarser resolution, we first gen-
erate for every 23 adjacent bricks one new brick. For these
bricks, a 2D sampling grid at half the initial resolution and
an indirection buffer are created. However, to determine the
samples along the primary directions, instead of rendering
the surface model we examine the already existing samples
at the finer level. A sample is generated if at least one sample
in the merged cells at the finer level exists. In this case, the
attributes are averaged. This process is repeated recursively
until a user-defined level is reached.

Differing from the described process is the handling of
unresolved bricks. If a brick is classified as unresolved be-
cause a) its 23 child bricks are all unresolved and b) the min-
imum size of the triangles in the child bricks exceeds twice
the brick’s cell size, the surface samples for this brick are
generated via rendering the triangles. An unresolved brick
stores the references to the triangle lists of its children. Af-
ter the construction of the sample-based LoD surface hierar-
chy, which corresponds to a sparse octree refined along the
surface, the sampling structures of all unresolved bricks are
deleted. Thus, for surface parts which are modeled by large
triangles no sample-based representation is built, and these
regions will always be rendered via rasterization up to a cer-
tain coarse level.

4. Hybrid Rendering

In every frame, the octree that was computed in the prepro-
cess is first traversed on the CPU, and the bricks which have
to be rasterized are determined. Here, a brick is only consid-
ered if it satisfies a user-defined screen space error, usually
one pixel or below, or if the finest octree level is reached.
Unresolved bricks are always rasterized. Bricks for which
both the triangles and the sample-based data structure are
stored are rendered via rasterization, if a) the view sampling
frequency is higher than the brick resolution or b) a render
oracle determines that rasterization will be faster than ray-
casting. The oracle is evaluated on the CPU for every brick

c© The Eurographics Association 2012.



F. Reichl & M.G. Chajdas & K. Bürger & R. Westermann / Hybrid Sample-based Surface Rendering

that is selected for rendering and determines the most effi-
cient rendering technique for that brick. We use the oracle
proposed in [DKW] for hybrid terrain rendering. To eval-
uate the cost of rasterization it considers both the number
of triangles in a brick as well as the area they subtend in the
view plane. The ray-cast oracle is based on a measure of how
steep the ray from the eye position descends on the sampling
grid that is to be cast. It thus estimates the length of the ray’s
projection into this grid.

The bricks selected for rasterization are rendered in front
to back order, with z-buffering and occlusion queries en-
abled. All bricks which are not rendered via rasterization
are ray-cast. The ray-caster uses a single draw call to tra-
verse the octree completely on the GPU. It uses a data struc-
ture similar [CNLE09]—in a dedicated buffer, for each brick
residing in GPU memory there exists an entry containing
pointers to the brick’s sampling plane as well as a base off-
set in the indirection buffer. Also stored is a single pointer to
all 8 of the brick’s children as well as a flag indicating the
render oracle decision for this brick. This buffer is updated
by the CPU each frame and traversed by a stackless octree
raycaster. Early ray termination is implemented by testing
the depth values generated by the rasterizer before enter-
ing a brick. For every brick that is flagged as ”ray-cast”, the
sample-based data structure is rendered as described next.

For larger datasets, coarser LoDs are rendered for bricks
not yet residing in CPU memory. These bricks are then
loaded asynchronously to hide disc latencies, and uploaded
to the GPU as soon as they become available. As long as
memory is available, all data is cached in GPU and CPU
memory in a least-recently-used manner.

4.1. Sample-based Ray-Casting

Ray-casting a brick is performed using an extension of stan-
dard height field ray-casting: For each brick a ray is passing
through, the ray is projected into the 2D sampling plane and
DDA-like ray marching is performed in front-to-back order
to find the grid cells hit by the ray. For every cell a flag-bit
indicates whether a single sample or a pointer into the indi-
rection buffer is stored. In the first case, a single height value
needs to be tested for intersection; in the later case, the ray is
tested for intersections with the sample spans stored at each
cell, i.e., whether it intersects one of the 3D cells associated
with the stored samples. Intersections with spans consisting
of multiple samples are handled in a single test. Once an in-
tersection is found, the surface attributes can be read from
the data buffer using the index of the sample that was in-
tersected. If no intersection is found, ray marching contin-
ues with the next cell until the end of the sampling grid is
reached.

To further accelerate the ray traversal process, we em-
ploy 2D maximum/minimum mipmaps [OKL06, TIS08]. A
mipmap representation can effectively reduce the number of

ray-casting steps until the first intersection, and in our partic-
ular scenario it can be used to discard those cells where an
intersection cannot occur. For each brick, such a min/max
hierarchy is computed in the preprocess. These hierarchies
are then used in the traversal process to skip regions that are
completely below or above the ray.

5. Isosurface Ray-Casting

The proposed sample-based representation can also be con-
structed very efficiently from a scalar volume field. To en-
able interactive rendering of isosurfaces in Cartesian grid
data sets, we have implemented the construction process on
the GPU using the CUDA API to allow for interactive iso-
value changes. We perform two sweeps over the volume
from three orthogonal sampling directions with sampling
planes of resolution equal to the volume resolution; each
sampling cell is associated with a single CUDA thread. In he
first sweep, the number of isosurface intersections per cell
is counted and stored in the sampling plane. In the second
sweep, for each intersection the gradient normals are calcu-
lated and written into a linear buffer along with the intersec-
tion position. To assign each thread a starting write offset in
this buffer, a parallel prefix sum operation of the intersection
counts is performed.

To merge the sampling directions into the primary direc-
tion, two passes following the same principle are applied—
we first count the number of intersections using the virtual
3D grid given by the three existing sampling planes. A prefix
sum is applied again to calculate the final indirection buffer
offsets, and in a second pass, the merged surface attributes
are written to the indirection buffer. If only a single inter-
section was found, these values are directly written to the
sampling plane.

The CUDA construction process is embedded into a GPU-
based out-of-core volume rendering framework, including
a pre-computed LoD hierarchy and a corresponding oc-
tree containing per-brick min/max values to avoid process-
ing bricks which do not contain a surface part. The frame-
work is built conceptually similar to the ones described in
[CNSE10, IGGM, GMIG08].

At runtime, the min/max octree is traversed in a single
pass on the GPU to determine the bricks in the LoD hier-
archy which have to be rendered for the current view. For
each selected brick for which a sample-based representation
is not yet resident on the GPU, the volume data is asyn-
chronously loaded from the CPU—or disc if necessary—
and the sample-based representation is constructed using the
CUDA kernel. Bus transfer is minimized by using separate
LRU caches for volume- and sample-based data, whereas
only a small part of the available memory is assigned to the
volume data caches. If a brick should be rendered at a higher
sampling rate than the brick resolution, we fall back to clas-
sical isosurface ray-casting using tri-linear interpolation.
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6. Results

In this section, we analyse the performance and memory
consumption of the hybrid rendering pipeline in compar-
ison to pure rasterization and ray-casting of our sample-
based representation on the GPU. All timings were measured
on a standard desktop PC, equipped with an Intel Core 2
Quad Q9450 2.66 GHz processor, 8 GB of RAM, and an
NVIDIA GeForce GTX 680 graphics card with 2048 MB of
local video memory. Rendering was always to a 1920×1080
viewport unless mentioned otherwise. Models with an in-
verse aspect ratio were rendered in landscape mode. The
screen space error-tolerance was set to one pixel. In all
polygonal test scenes, per-vertex attributes like colors and
normals were resampled to the sample-based data structures.

As can be seen from all presented results, transitions from
rasterized to ray-cast bricks are seamless in all cases and
no noticeable quality differences or cracks exist between the
two rendering methods. Since ray-casting does not provide
a cost-efficient method for anti-aliasing, techniques such as
MSAA need to also be disabled for the rasterizer. To com-
pensate this, we apply SMAA [JESG12] as a post-process
in our current implementation, which lead to overall good
result.

6.1. Polygon Meshes

Table 1 provides information concerning the used polygonal
models. For the views in Fig. 5 and Fig. 1, Table 2 compares
the performance of pure rasterization, pure sample-based
ray-casting, and the hybrid approach. Numbers denoted with
a * are estimates, because not all visible data could be stored
in GPU memory at the required resolution. In this case, the
rendering times would be vastly dominated by CPU/GPU
data transfer.

Figure 5: Dragon, Lucy, and David (view 1) are rendered
via rasterization (red) and ray-casting (green).

Especially for the David model, the hybrid pipeline shows
a significant speed-up over pure rasterization. This is in par-
ticular due to the use of the sample-based LoD hierarchy
to reduce the required memory per frame. Regardless of
the view, the David model can always be rendered in less
than 30 ms. On the other hand, even for the smaller models
which fit entirely into GPU memory, and where large parts

Model Tris Res Mem
Dragon 9 M 2K3 0.15 / 0.12

Lucy 28 M 8K3 0.74 / 0.57
David 950 M 8K2 ×32K 24.44 / 18.80

Table 1: Model statistics: number of triangles, effective sam-
pling resolution, total file size (triangle data, sample-based
representation, LoD), and size of triangle data only (in GB).

Views trast tray thybrid Memrast Memray

Dragon 9.8 11.7 7.6 145 11
Lucy 25 29.8 21.8 477 58

David 1 900* 9.7 9.7 13083 15
David 2 190* 23.2 21.4 3810 65
David 3 79.4 34.1 27.5 1840 91

Table 2: Rendering times in ms and GPU memory require-
ments in MB for a single frame as depicted in Figs. 5 and 1
(views from Fig. 1 are labeled David 1, 2 and 3 from left
to right). Numbers denoted with a * are estimates without
CPU/GPU memory transfer.

are rasterized, a noticeable performance gain is achieved.
This demonstrates the efficiency of sample-based GPU ray-
casting and emphasizes the importance of avoiding pixel
overdraw via early ray-termination. This is confirmed by
Fig. 6, where a sequence of views around the Lucy model
was performed. The hybrid approach is always at least on
par with pure rasterization and ray-casting, and usually out-
performs both. The memory requirement is reduced signif-
icantly. For comparison, the sparse voxel octree representa-
tion [LK10] of the Dragon model requires 156 MB of GPU
memory, whereas our representation uses about 30 MB.
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Figure 6: Recorded flight around Lucy. Render times and
memory consumption are analysed.

Fig. 7 illustrates why ray-casting can be performed on
the sample-based data structure very efficiently. It shows the
number of surface samples stored at the cell of the 2D sam-
pling grid where the surface intersection is actually found.
Interestingly, in most cases only one single sample is stored,
meaning that locally the surface is a height field over the 2D
sampling domain. This confirms our expectation, that at a
reasonable subdivision depth the surface parts in each brick
tend to become height fields, even though the domain was
chosen to be aligned with one of the brick faces.
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Figure 8: For the Ejecta (40963) and Richtmyer (20482 × 1920) data sets, isosurface rendering onto a 1920× 1080 viewport
takes always less than 25 ms.

6.2. Isosurface Ray-Casting

The following volume data sets were used: Ejecta is a sim-
ulation of the impact of a supernova ejecta on a companion
star. It has a resolution of 40963, stores 2 bytes per voxel,
and consumes 128 GB for the finest level of detail. Richt-
myer is a simulation of a Richtmyer-Meshkov instability. It
has a resolution of 20482 × 1920, stores 1 byte per voxel,
and consumes 7.5 GB. Timing and memory statistics for Di-
rect Volume Rendering (DVR) and Sample-Based Render-
ing (SBR) related to the views in Fig. 8 are given in Ta-
ble 3. The viewport size was set to 1920 × 1080. For a fair
DVR comparison, we simply disabled the SBR extension of
our volume rendering system, visualizing each brick using
classical isosurface ray-casting. Otherwise, the exact same
system was used, including a LoD hierarchy on the volume
data.

In all cases, we chose a brick size of 323. While smaller
bricks can decrease the memory requirements for a partic-
ular isosurface, a spatially coherent organization of bricks
on the GPU becomes more difficult and GPU cache mecha-
nisms work less effective. In our experiments, and confirmed
by state-of-the-art volume rendering systems [CNSE10,
IGGM], the selected brick size has shown the best tradeoff.

It can be seen that the sample-based isosurface representa-
tion has a significantly lower memory footprint on the GPU

Figure 7: Color coding of number of samples that are stored
at the grid cell where the surface intersection is found. Green
indicates one sample, blue indicates more than one sample
in one span, red indicates more than one span.

than DVR. In DVR, especially for large viewports even the
data required for rendering a single frame might exceed the
available GPU memory. Due to the compactness of our rep-
resentation, the entire data needed to render the isosurface
in the Richtmyer data set fits onto the GPU. One can also
see that the sample-based representation can be built at rates
vastly exceeding CPU/GPU bus bandwidth. Thus, even if the
isosurface is changed, noticeable losses in performance are
not introduced.

7. Conclusion and Future Work

We have presented a hybrid GPU pipeline for the render-
ing of polygon models with high geometric complexity. The
pipeline does not replace but evolves the current graphics
pipeline abstraction in that it uses rasterization and ray-
casting simultaneously to generate eye-ray intersections. We
have demonstrated that for very large triangle meshes at
extreme resolution the hybrid pipeline can overcome per-
formance limitations of pure rasterization. This has been
achieved by introducing a sample-based surface represen-
tation which can be compactly encoded and traversed effi-
ciently by many rays in parallel on the GPU. Due to the

DVR SBR

Data set Mem tr Mem tr Build (ms)

Ejecta 2.98 412 0.30 23 196

Richtmyer 1.02 29 0.22 21 134

Finest LoD 3.24 819 0.73 67 324

Table 3: Memory and timing statistics for direct (DVR) and
sample-based (SBR) volume rendering. Mem: memory con-
sumption (in GB) for a single frame. tr: rendering times (in
ms, including data upload to GPU if required). Build: time
required to convert all visible surface parts (with LoD error
below one pixel) for the depicted images. Last row: statis-
tics for the selected isosurface at the finest LoD of the entire
Richtmyer data set.

c© The Eurographics Association 2012.
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ability to efficiently compute a LoD hierarchy on this rep-
resentation, GPU resources can be employed effectively at
run-time. We see our work as a step towards next generation
rendering architectures that scale with respect to the overall
GPU throughput and can thus satisfy the future demands of
real-time graphics.

In the future, we will in particular investigate the paral-
lelization of sample-based ray-casting on multi-core archi-
tectures. Multi-core architectures provide parallelism only to
a modest degree, but they are highly optimized for minimiz-
ing latency in a single sequential task. Since sample-based
ray-casting often suffers from latency issues caused by adja-
cent rays following different patterns through the sampling
grids, it can be a good candidate for multi-core parallelism.

Acknowledgements: We would like to thank the Digital
Michelangelo Project at Stanford for providing the David
statue.
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