
Soren: Adaptive MapReduce for Programmable

GPUs

Reza Mokhtari, Amin Abbasi, Farshad Khunjush, and Reza Azimi

School of Electrical and Computer Engneering
Shiraz University, Shiraz, Iran,

and
School of Computer Science,

Institute for Research in Fundamental Sciences (IPM),
P.O.Box 19395-5746, Tehran, Iran⋆⋆.

{rmokhtari, aminabbasi, khunjush, azimi}@cse.shirazu.ac.ir

Abstract. In recent years the MapReduce programming model has been
widely used for developing parallel data-intensive applications. As a re-
sult of its popularity, there exist many implementations of the MapRe-
duce model on different parallel architectures including on massively par-
allel programmable GPUs. A basic challenge in implementing a MapRe-
duce runtime system is the wide diversity of applications developed based
on the model. That means a fixed implementation of the MapReduce run-
time system may become suboptimal for some classes of applications.
In this paper, we propose an adaptive framework for MapReduce on
GPUs which is capable of monitoring key characteristics of applications
and dynamically executing them efficiently in one of the three varia-
tions of the MapReduce engine it implements. Our preliminary results
show that our adaptive method can significantly improve performance
for many MapReduce applications (including a 11x performance speedup
in one case) compared to a state-of-the-art MapReduce implementation
on GPUs.

1 Introduction

In recent years specialized parallel architectures such as GPUs, the IBM Cell
Processor, and custom-made accelerators have emerged as an attractive and eco-
nomically viable solution for accelerating data-intensive applications. However,
despite their high peak performance, low hardware costs, and higher power effi-
ciency, these accelerators have not yet been fully utilized in mainstream computer
systems. The main challenge in using these parallel architectures is that devel-
oping efficient codes for them is a non-trivial task. In other words, in order to
fully utilize their performance potentials one has to have a detailed knowledge of
the micro-architecture implementation. Therefore, a programming environment
that is capable of abstracting architectural details and automating the process
of program optimization is highly desirable.

⋆⋆ This research was in part supported by a grant from IPM. (No. CS1388-4-10)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CiteSeerX

https://core.ac.uk/display/24066619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

The MapReduce programming model introduced by Google [3] has been
widely used for data-processing applications both in academia and industry [1].
This model, which is inspired by functional programming models, allows pro-
grammers to focus solely on the core computational functions of the application
and how the intermediate results should be aggregated; however, it leaves the
implementation of data decomposition, task creation, synchronization, and data
communication to a runtime system. Since much of the workflow of a parallel
program in this model is abstracted away from the programmer, there can be
many opportunities for automatic performance optimizations.

Previous research on implementing the MapReduce model for specialized par-
allel architectures has yielded promising results [10, 9, 5, 7]. A basic challenge in
implementing a MapReduce runtime system is the wide diversity of the runtime
behavior of the applications developed based on this model. This is primarily
attributed to the fact that the MapReduce model makes no assumptions on
the semantics or the volume of the intermediate results. As a result, a fixed
set of data structures and algorithms for implementing the MapReduce runtime
system may not be optimized for all classes of applications that run on top of
it. Ideally, a MapReduce runtime system should adapt to different application
behaviors automatically by applying specialized optimizations for each class of
applications.

In this paper, we present a novel implementation of the MapReduce run-
time system for massively parallel programmable GPUs, called Soren. We focus
on GPUs because of their ever increasing peak computational power, reaching
to several TeraFLOPs, as well as their low cost and availability. However, we
strongly believe that many of the ideas and techniques presented in this paper
are applicable to other types of specialized parallel architectures.

The contributions of this paper is threefold. First, we identify and resolve se-
rious performance problems in existing MapReduce implementations for GPUs
that are primarily due to the mismatch between the behavior of certain classes of
applications and the schemes used for managing intermediate results in the avail-
able MapReduce engines. Second, we propose and partially implement a frame-
work for a MapReduce runtime system, which is able to monitor the behavior of
applications and dynamically adapt to it by using one of its three MapReduce
engines. Finally, we propose and partially implement techniques that allow han-
dling arbitrary amount of intermediate results and input data. Our preliminary
results suggest that many applications can substantially benefit from an adaptive
MapReduce runtime. In one case a 11x performance speedup is achieved while
in most other cases a performance improvement of 50% to 150% is observed
compared to a state-of-the art implementation of MapReduce on GPUs.

The rest of the paper is organized as follows. First, we provide a background
to the MapReduce model and the architectural issues specific to GPUs that may
pose a challenge in implementing MapReduce on GPUs. Next, we present the
design and implementation of Soren. Then, we present our experimental setup
and results. We then compare Soren with other implementations of MapReduce



3

on different types of multiprocessors. We end this paper by presenting our con-
clusions and some ideas for future work.

2 Background

2.1 MapReduce

The key advantage of the MapReduce model, which is influenced by the func-
tional programming model to a great extent, is that it allows programmers to
focus only on the core functions for processing data and aggregation of inter-
mediate results and leave all the machinery that is required to execute their
application on a potentially large parallel computer infrastructure to a runtime
system. In this model, programmers provide two main functions: (a) a map func-
tion that processes a subset of input data and emits some intermediate key/value
pairs, and (b) a reduce fucntion which takes a set of key/value pairs and combines
pairs with the same key value into an aggregate result.

The MapReduce runtime system automatically splits the input data into
chunks and create many map tasks each of which running the user-specified map
function on individual input data chunks. The runtime system also creates a
number of reduce tasks and forwards intermediate results generated by the map
tasks to them. Since both the map and reduce functions are usually specified
based on a shared-nothing assumption, they can run in parallel. The only syn-
chronization required among these tasks is in the form of producer-consumer
relationship between the map tasks that generate intermediate results and the
reduce tasks that consume them. The reduce tasks can also run in several stages
and hence form a hierarchy of tasks, each of which feeding their higher level
tasks with partially-reduced results.

2.2 GPU-specific Constraints

Scalability: Current GPU architectures support having hundreds of process-
ing elements and many more hardware threads in order to hide DRAM lantecy.
Since in the MapReduce model no parallelism is specified within a map or re-
duce function, each map or reduce task is naturally assigned to a single GPU
thread. That means, unlike in conventional mulit-core environments, there are
potentially thousands of map or reduced tasks in flight. Therefore, any imple-
mentation of MapReduce basic functions on GPUs must be scalable to a very
large number of threads.

SIMD Behavior: GPU threads cannot run completely indepdently in par-
allel because the underlying hardware implementation for instruction scheduling
is partially shared among clusters of cores. As a result, GPU programs execute
in a SIMD fashion to some extent. This is in contrast to conventional multi-core
systems where threads can execute completely different sequence of instructions
independently. The implication of this characteristic for task scheduling in a
MapReduce runtime system is that the scheduled tasks must be identical in



4

Fig. 1. The general workflow of Soren.

terms of the sequence of instruction they execute most of the time. Otherwise,
heavy serialization penalties are inflicted to GPU programs due to code diver-

gence.
Memory Access and Management: GPUs normally have a DRAM with

a modest size of few GBytes. The access latency to DRAM is normally in the
range of a few hundred cycles, but the available read/write bandwidth to DRAM
is quite larger than a normal DRAM on CPU. Therefore, GPUs employ a large
number of threads in order to hide the DRAM access latency by exploiting the
abundant bandwidth. Memory is often allocated before a computation kernel is
launched on GPU. This is mainly due to lack of proper support for dynamic mem-
ory allocation in the existing platforms such as NVIDIA’s CUDA or OpenCL.

3 Design and Implementation

There are two key principles in designing Soren. The first one is to have the
ability to automatically adapt to different application behaviors. That means the
MapReduce runtime system must be capable of monitoring metrics about the
applications while they are running and applying required performance tunings
automatically.

The second design principle is to allow the MapReduce runtime to handle
both input data and intermediate results with arbitrary size. While appropriate
mechanisms are provisioned in designing Soren to fully achieve this goal, we have
only partially implemented it at this point in time.

Fig. 1 displays the general workflow of Soren designed based on the two above-
mentioned principles. The first stage in the execution of an application on top
of Soren is Initial Monitoring where basic characteristics about the application
are collected and fed to the next stage, which is Customization. In this stage,
an appropriate variation of the MapReduce execution engine is selected based
on the application characteristics collected in the previous stage. Moreover, the
required memory size for different data structures in the MapReduce engine is
estimated and properly initialized. Then the MapReduce Execution Engine starts
processing the input data by creating and executing map and reduce tasks. This
stage can lead to application completion unless an overflow in one of the engine’s
data structures occurs. In this case an Overflow Handling stage is launched in
order to re-allocate the required memory space, load existing intermediate results



5

onto it, and resume the execution engine. In the remaining of this section we
describe the details of the design and implementation of each of these stages in
Soren.

3.1 Soren Execution Engine

First, we present the details of our implementation of the MapReduce execution
engine. The key design decision made in this implementation is to collocate
intermediate keys and values per each key in memory as they are being emitted
by map tasks. This is in contrast to previous designs in which each map or reduce
task is assigned its exclusive memory area [5]. We discuss the advantages and
drawbacks of this design principle shortly.

The GPU memory in Soren is partitioned into four contiguous regions: the
input data region, the hash table, the key space, and the values space. The
size of each region is initially set using an estimation method. However these
regions can grow or shrink dynamically based on the memory usage requirements
of applications. The details of the mechanisms for estimating region sizes and
dynamically resizing regions is described in Section 3.3.

Having contiguous memory regions for each data structure is not a funda-
mental issue in our design. However, it allows us to implement simple dynamic
memory allocation schemes that are specific to the type of data that is main-
tained in each region. An alternative is to use a general, GPU-based dynamic
memory allocation scheme such as Xmalloc [6] for all types of meta-data.

Fig. 2 shows the major data structures in Soren each of which located in one
of the four regions mentioned above. The central structure is a hash table which
is used for looking up the 〈key, value〉 pairs being emitted by map tasks. The
hash key for lookup into the hash table is built based on the key provided by the
emit operation. Each entry in the hash table contains pointers to locations inside
the keys space and the values space where the actual values for both keys and
their corresponding values are stored. Since it is not easy to use dynamic memory
allocations in current GPU technologies, we use a two-dimensional matrix for
storing the hash table entries. The elements in each column of this matrix share
the same key hash values. Storing hash elements in a column-major fashion
allows concurrent threads to exploit memory coalescing features in GPUs.

Whenever a map task emits a 〈key, value〉 pair function, the Soren runtime
searches the specified key in the hash table. If the key does not exist in the hash
table, a new entry is allocated and the provided key and value are inserted into
the keys space and values space respectively. However, if the key already exists
in the hash table, the value is simply appended into the list of values designated
for the key in the values space. In both cases, synchronization among concurrent
GPU threads is required as there might be a race for an entry in the hash table.
This is in contrast to the previous design [5] where each map task has its own
preallocated memory area to which intermediate results can be emitted without
synchronization. Although we expect the overhead of synchronization to slow
down themap phase, our experimental results indicate that the performance gain



6

void *keys;
void *vals[];

Hash Table

Keys Space

Values Space

Hash Key Column

Fig. 2. The major data structures of Soren MapReduce runtime. A column-major hash
table allows Soren to benefit from memory coalescing as new rows are appended to the
table.

of removing potentially expensive sort phase can easily outweigh the overhead
for certain types of applications.

In order to provide mutual exclusion a lock is assigned for each column of
the hash table. Acquiring and releasing locks are implemented using atomic

instructions available in most modern GPUs. By executing an atomic instruction
a thread can read, modify, and write back a location in GPU memory in a
single step without allowing other threads to either read or modify the specified
location. The following codes illustrate the acquire and release operations.

acquire_lock:

do {
oldState = atomicExch(&locks[hIndex], 1);

} while(oldState == 1);

release_lock:

atomicExch(&locks[hIndex], 0);

Incremental Combine An important advantage of collocating values of each
key as being emitted is that it allows for partial reduction of the intermediate
results during the map phase. As the reduce function provided by the user may
not be associative, an associative variation of it must be provided by the user to
allow to combine intermediate results incrementally. That is to partially reduce
values emitted for a key into a single value.

There are two main benefits in enabling incremental combine. First, it can
control the footprint of the intermediate results in the GPU memory by con-
stantly shrinking a large number of values into one. Otherwise, some applications



7

Metric Name Description Usage

KeyV alPairs the number of 〈key, value〉 pairs emitted estimating the Hash Table size

KeySize the volume of the emitted keys estimating the size of the Keys Space

KeySize the volume of the emitted values estimating the size of the Values Space

DistinctKeys the number of distinct keys emitted code variation selection

Table 1. The metrics collected during the Initial Monitoring stage and their usages.

may overflow the GPU memory by emitting too many 〈key, value〉 pairs during
their map phase. Moreover, setting a limit on the volume of the intermediate
results may enable optimizations through caching, which is not yet implemented
in Soren. Second, having a combine function allows the intermediate results to
be reduced with a higher-level of concurrency especially for applications that
do not emit many distinct keys. Writing an incremental combine function is not
a substantial burden on programmers as it can be easily derived from existing
reduce function. In fact, if the reduce function is associative, it can be directly
used as the incremental combine function. Other well-known MapReduce im-
plementations also suggested adding a combine function to enable many useful
performance optimizations [12].

3.2 Initial Monitoring

The Initial Monitoring stage executes the map stage of an application similar
to the normal execution with two differences. First, it only processes a small
fraction of the input data called TrainingData. Secondly, it is used only to
collect performance metrics and therefore, it does not actually store the emitted
values. The basic assumption is that in general for data-processing application
developed based on the MapReduce model a small part of the input data reveals
sufficient information to speculate the behavior of applications. In other word, we
expect key behavioral characteristics of applications to be more or less uniform
across the entire input data

Currently, four metrics are collected in the initial monitoring. The description
and usage of each of these metrics is mentioned in Table 1. The actual value of
these metrics over the entire execution of an application is estimated by linear
projection, i.e., multiplying the collected metrics to the ratio of total input data
size divided by the size of the TrainingData. In the current implementation the
TrainingData is set to be the first 20% of the input data.

3.3 Handling Overflows

An Overflow Handling mechanism is triggered whenever the actual size of one
of the main data structures exceeds the size predicted in the initial monitoring
stage. If a thread runs out of space during emitting the results, it saves its current
state in a global array, atomically increments a global overflow flag, and executes
no-ops. All of the threads check the overflow flag before attempting to emit. If
the overflow flag reaches a certain threshold, all active threads return causing the
kernel to terminate and the control of the program is returned back to the code
running on CPU. The overflow handling mechanism copies the existing content



8

of the data structure that caused overflow into an area on CPU memory and
deallocates its memory on GPU. Then, it reallocates the data structures with a
larger size on GPU memory and copies back the existing content onto it. After
completing overflow handling a new GPU kernel is launched to resume the map

phase from the point that overflow occurred.

Although the overflow handling mechanism is fairly costly, we expect overflow
to be an infrequent event. This is mainly because the estimates produced at the
end of the initial monitoring phase is usually accurate.

3.4 Customization

The main task in the customization stage is to select a variation of the imple-
mentation for the MapReduce runtime system that best suits an application.
There are three different variations in our current implementation. The basic
design that is described so far is the default variation. The other variations deal
with two special cases: No-Reduce and Small Number of Keys. Next, we describe
the details of the key differences between these two variations and the default
variation as well as the type of applications that benefit from each of these
variations.

No-Reduce Case: This is a special case for MapReduce applications that
have an empty reduce function and the entire computation for these applications
is done during the map phase. Consequently, there is no need for sorting or
merging the intermediate results emitted by the map tasks. An example of such
applications is Matrix Multiplication.

Since the reduce phase is empty in this case, paying the extra contention
costs for collocating 〈key, value〉 pairs of same keys is not justified anymore. As
a result, we revert to a variation of the Mars implementation of the MapReduce
framework in this case [5]. That means, each thread emits its intermediate re-
sults in a specific address range which is precomputed by a prefix sum. The main
downside of this approach is that it requires a MapCount provided by program-
mers. We intend to extend our design to remove this requirement by estimating
per-thread space during the Initial Monitoring stage.

Small Number of Keys: This special case is for MapReduce applications
that emit small number of distinct keys. That means, the 〈key, value〉 pairs are
clustered around a small number of distinct keys with each cluster containing
potentially very large number of pairs. Examples of such applications include
Histogram. This special case is activated whenever the DistinctKeys metric
collected in the initial monitoring stage is less than a configurable threshold. We
set this threshold in our design to be 1000.

Having a small number of distinct keys creates substantial contention in our
default design as we insert the 〈key, value〉 pairs for each key into its corre-
sponding cluster as they are emitted. This is because a potentially large number
of threads race to insert 〈key, value〉 pairs into a small number of clusters. The
serialization resulted by eliminating this race is so costly that it may outweigh
the benefits of removing the extra sort or merge phase.



9

Workload Description Small Medium Big

dataset dataset dataset

Word Count Counts the number of occur-

rences of each word in a docu-
ment

10MB 50MB 100MB

Histogram Computes the RGB histogram of
an image

3MB 6MB 10MB

PageViewCount Counts the number of distinct

page views from web logs

5MB 40MB 65MB

Distribute Grep Counts lines in all files in that

matches a regular expression

10MB 50MB 100MB

Matrix Multiplication Calculates the product of two

matrices

500×500 1000×1000 2000×2000

Table 2. Applications description and their dataset size.

Another issue with a small number of keys is that having too few clusters
limits parallelism at the reduce stage as there are too few reduce tasks each of
which responsible for a potentially very large amount of data. To resolve this
issue MapReduce runtime systems often break sorted intermediate results into
chunks to allow more reduce tasks run concurrently. We adopt a similar idea to
solve both of the above-mentioned problems.

For applications with too few distinct keys we augment each key with the
ThreadBlockId of the running thread to compose a new hashing key in the form
of 〈key, ThreadBlockId〉. As a result, the cluster of values for each distinct key
is broken into many smaller subclusters. This relaxes the contention problem
as a smaller number of threads compete for adding pairs to each subcluster.
Once the map phase is finished, the incremental combine operation provided by
the user is applied on values emitted into each subcluster to produce a single
value. Then a simple merge operation combines single values of clusters with
the same key but different ThreadBlockIds into a single super-cluster with the
maximum size equal to the number of thread blocks. Using incremental combine

on a potentially large number of clusters provides substantial parallelism. Finally,
the reduce operation is applied on the fairly small super-clusters.

4 Experimental Setup

We performed our experiments on a PC with an NVIDIA Geforce GTX 480
GPU [8] with 480 cores each running at 1.4GHz and 1.5GBytes of DRAM with
a maximum bandwidth of 177GByte/s. We used NVIDIA CUDA 3.0 on Linux
as a base for the implementation of Soren. We rely on atomic operations that
are available in CUDA compute capability 1.1 or higher.

We ported several applications to evaluate the performance of Soren. We
selected three programs from Mars sample applications: Word Count and Page

View Count that have both map and reduce functions, and Matrix Multiplica-

tion that only have a map function. Two more applications are implemented,
Histogram and a simplified version of Distributed Grep. In addition, three input
data sizes are used to evaluate our system for all applications. Table 2 shows
these data sizes for each workload. Next, we briefly describe the functionality of
each application and how they are organized in the MapReduce model.



10

 0

 2

 4

 6

 8

 10

 12

W
ord Count

PageViewCount

Distributed Grep

Histogram

M
atrix M

ult

Sp
ee

d 
up

Applications

Small data
Medium data

Large data

Fig. 3. Applications speed-up in Soren compared to Mars.

Word Count: Each map task processes several lines in a document. For
each word in those lines, it generates an intermediate pair in the 〈word, 1〉 form.
Each reduce task takes a key and sums up the emitted values.

Page View Count: Input file contains many log entries each of which is a 3-
ary tuple 〈URL, IP,Cookie〉: the URL of the accessed page, the host IP, and the
cookie generated when accessing the page respectively. This application has two
passes of MapReduce execution. The first one removes all of the duplicate tuples
with same IP address. The second one counts the number of distinct IP addresses
that accessed the page. In the first MapReduce pass, each map task takes one
line of the input file and outputs an intermediate pair in the 〈〈URL, IP 〉, null〉
form. No reduce and phase is required in this pass. In the second pass, each map

task takes a key generated from the first MapReduce pass and outputs pairs in
the 〈URL, 1〉 form, and each reduce task sums up the values for each URL.

Histogram: Each map task gets a portion of an image and outputs an inter-
mediate pair with in the 〈RGBV alue, 1〉 form. Each reduce task takes an RGB
value as the key and sums up all the values for it. An additional sort phase is
required to sort the resulting histogram based on the RGB values.

Distributed Grep: Each map task takes a portion of an input file and
outputs a 〈word, 1〉 pair if a word in the line matches a given expression. The
reduce function simply sums up pairs with same keys to produce the set of words
that matched the given pattern and their frequencies.

Matrix Multiplication: Each map task multiplies a row of the first matrix
by a column of the second matrix and generates a pair with the position of the
result entry as the key and its content as the value.

5 Results

Fig. 3 illustrates the achieved speed-up of the test applications compared to Mars
with varied dataset sizes. As shown in this figure, Word Count exhibits the best
speed-up due to its huge number of distinct keys which allows Soren to distribute



11

 0

 20

 40

 60

 80

 100

W
ordCount

PageViewCount

Histogram

DistributedGrep

M
atrixM

ult

T
im

e 
br

ea
kd

ow
n 

(P
er

ce
nt

ag
e)

Applications

Sort
Merge

Reduce
Map

PreProcessing

 0

 20

 40

 60

 80

 100

W
ordCount

PageViewCount

Histogram

DistributedGrep

M
atrixM

ult

T
im

e 
br

ea
kd

ow
n 

(P
er

ce
nt

ag
e)

Applications

Reduce
Group

Map
PreProcessing

(a) The time breakdown of Soren. (b) The time breakdown of Mars.

Fig. 4. Comparison of time breakdowns for Soren and Mars on the five applications
with large dataset.

new 〈key, values〉 pairs evenly across the hash table and thus minimizing the lock
contention. Moreover, the grouping of the intermediate results in Soren takes far
less time compared to Mars. This is mainly because in Mars grouping values
with the same key needs pointers and actual data to be sorted. Instead, in Soren
this task is carried out during the map phase.

As depicted in Fig. 3, Page View Count and Distributed Grep applications
achieve less speed-up because their number of distinct keys are fewer than that
in Word Count. This causes more contention when the map function inserts new
pairs in the hash table. Furthermore, the total number of pairs emitted by the
map function in these two applications is considerably less than that in Word
Count. For applications with small number of keys Soren and Mars perform
similarly. However, the gap between Soren and Mars grows as the number of
distinct keys increases.

Histogram achieves the least speed-up among the applications with both map

and reduce phases. It is worth mentioning that the number of distinct keys in
Histogram is fairly small (between 0 to 768). This incurs substantial contention
on locks that protect hash table entries. We also measured the execution time
of Histogram in Soren when the adaptation was disabled. In this case, Soren
performs worse than Mars due to having a small number of keys. With the
adaptation enabled, however, Soren increases the number of distinct keys by
augmenting the keys with ThreadBlockId.

Matrix Multiplication uses the map only workflow both in Mars and Soren
which dictates to Soren not to use the hash table. Consequently, the runtime
system uses a simple data structure similar to that in Mars to store intermediate
results. This leads to an execution time that is exactly the same as in Mars.

Although achieving high performance in Soren depends on a fast implemen-
tation of atomic operations on GPUs, our experiments on a GT200-based GPU
(with a supposedly slower implementation of the atomic operations) show only
a slight drop in speed-up compared to the GTX-480 GPU (the detailed compar-
ison is omitted due to space limits). We attribute Soren’s performance stability
to its optimizations that prevents high contentions in memory accesses.



12

Fig. 4(a) shows the breakdown of execution time in Soren. As expected, the
map phase is responsible for a substantial portion of the execution time. There
are several reasons to this; first, most of the grouping that needs to be applied
to 〈key, value〉 pairs is done during the map phase. Secondly, the incremental

combine operation starts in the middle of the map phase leading to a longer map

phase and a shorter reduce phase. Finally, it should be noted that the time shown
for the map phase in Fig. 4(a) also includes the time for the Initial Monitoring

stage where 20% of the input data is used for estimating application metrics.
Another reason for having a shorter reduce phase is that in Soren this phase

can be parallelized more effectively. The reason for this is that due to constantly
applying the incremental combine operation, the total number of values that
remain for each key by the end of the map phase is limited. As a result, the in-
termediate results that are fed to the reduce tasks are fairly balanced. Therefore,
no single reduce task can substantially slow down the entire phase.

The merge phase is also short primarily because all it does is to 〈key, value〉
pairs from the cells of the hash table into a simple list data structure which is
used to deliver the output results to the user. Operations in the merge phase
can be done using a lock-free scheme. However, a prefix sum must be computed
before the copy operation.

Finally, in the sort phase, we only sort the pointers to the 〈key, value〉 pairs
to eliminate final data copy overhead. Similar to Mars, Soren uses a bitonic sort
algorithm on the GPU [4] for sorting the pointers. However, in Mars the sort
function must be called several times not to sort not only the pointers but the
actual data as well.

Fig. 4(b) shows the same breakdown for Mars. Unlike Soren, Mars has a
fast map phase as its emit intermediate only stores intermediate results in pre-
allocated spaces in a lock-free scheme. Instead, the group phase in Mars involves
several levels of sort operations to sort pointers, keys, and values in a sequence.
This potentially expensive sequence of sorts is required because the list of val-
ues to be fed to the reduce function for each single key must be contiguously
collocated.

6 Related Work

Phoenix is a widely used MapReduce implementation for homogeneous chip-
multiprocessors [11, 12]. The main focus in the design of Phoenix is on achieving
scalability through NUMA-aware memory management. Each map thread emits
intermediate results on a space allocated on the closest memory module to the
CPU the thread is scheduled on. In contrast, the GPU DRAM is not NUMA and
the amount of local memory for each streaming multiprocessor is not sufficiently
large to allow having per-thread space for intermediate results.

In terms of adaptability, Phoenix attempts to tune some parameters such
as map chunk size based on applications behavior. However, it is the program-
mer’s responsibility to provide the Phoenix runtime with information about the
application such as the estimated size of the emitted keys and the volume of



13

intermediate results whereas in Soren these information are automatically col-
lected during the initial monitoring phase.

Similar to Soren, in Phoenix the 〈key, value〉 pairs for each are collocated
online as they are being emitted. As a result, Phoenix can also support the in-

cremental combine operation in order to reduce the volume of non-local memory
traffic. In Soren, however, the incremental combine operation is used for differ-
ent purposes, i.e., (i) to dynamically collapse the intermediate results emitted for
each key to prevent the need for allocating extra memory dynamically (which
is an expensive operation on GPUs), (ii) to reduce the total footprint of the
MapReduce runtime on GPU memory.

Merge [7] is a MapReduce for heterogeneous multiprocessors that provides
support for dynamic adaptation. However, the adaptation in Merge is primarily
focused on customization of the user-provided functions either through smart
code selection or automatic code synthesis based on generic code patterns.

MapReduce is also implemented on the IBM CellBE processor [2, 10, 9]. The
architectural difference between CellBE and GPUs is the lack of fine-grained,
hardware-level global memory access on CellBE and the explicit management
of per-core local memory. These characteristics force the map or reduce tasks to
work on local memory most of the time. As a result, the intermediate results
must be merged and sorted at the end of the map phase. Results from [9] show
that the overhead of sorting can be potentially substantial. However, due to
architectural differences between CellBE and GPUs a head-to-head comparison
between this overhead versus the contention overhead in Soren is not possible.

Mars is the most notable MapReduce implementation for GPUs [5]. In fact,
Soren inherits much of the infrastructure code from Mars. The details of the
differences between the two implementations are mentioned in Section 3. To
summarize, Soren’s default implementation collocates the intermediate results
for each key as they are being emitted in order to remove the overhead of an
extra sort phase. Moreover, Soren is capable of adapting to application behavior
by automatically selecting an efficient implementation of MapReduce.

7 Concluding Remarks

In this paper, we present an adaptive framework for MapReduce for GPUs. Our
framework is capable of monitoring the behavior of applications and dynami-
cally selecting a suitable variation of the implementation of the runtime system
for each application. Moreover, by using an incremental combine phase and an
overflow handling mechanism, we are able to handle potentially large volumes in-
termediate results. The evaluation of our framework using standard MapReduce
benchmarks shows that substantial performance improvement can be achieved
compared to a state-of-the-art implementation of MapReduce on GPUs.

There are several steps that we would like to take as our future work. First, we
believe a more diverse set of applications must be included in our evaluation to
be able to investigate the effectiveness of our adaptive design. This process may
expose other classes of applications that warrant developing new variations of



14

MapReduce to be included in our framework. Secondly, we intend to extend our
overflow handling mechanism to allow us to handle arbitrary sizes of input data.
Finally, we would like to do a more thorough analysis of the micro-architectural
behavior of GPU under our implementation to be able to come up with further
fine-grained optimization techniques such as the removal of branch divergence
and improving memory coalescing.

References

1. Apache. Hadoop. http://wiki.apache.org/hadoop/PoweredBy.
2. M. de Krujif and K. Sankaralingam. MapReduce for CellBE architecture. IBM

Journal of Research and Development, 53(5):10:1–10:12, 2009.
3. Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on

large clusters. In Proceedings of the 6th conference on Symposium on Opearting
Systems Design and Implementation, San Francisco, CA, 2004.

4. N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: high perfor-
mance graphics co-processor sorting for large database management. In SIGMOD
06: Proceedings of the 2006 ACM SIGMOD international conference on Manage-
ment of data, pages 325–336, New York, NY, USA, 2006.

5. B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: A mapreduce
framework on graphics processors. In Proceedings of the Intl. Conference on Paral-
lel Architectures and Compilation Techniques (PACT), Toronto, Canada, October
2008.

6. Xiaohuang Huang, Christopher I. Rodrigues, Stephen Jones, Ian Buck, and Wen
mei Hwu. Xmalloc: A scalable lock-free dynamic memory allocator for many-core
machines. In Proceedings of the 10th IEEE International Conference on Computer
and Information Technology, 2010.

7. M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng. Merge: A programming
model for heterogeneous multi-core systems. In Proceedings of the Intl. Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Seatle, WA, March 2008.

8. NVidia. Nvidia’s next generation cuda compute architecture: Fermi version 1.1.
2009.

9. Anastasios Papagiannis and Dimitrios S. Nikolopoulos. Rearchitecting mapreduce
for heterogeneous multicore processors with explicitly managed memories. In Proc.
of the 39th International Conference on Parallel Processing (ICPP), San Diego,
CA, September 2010.

10. M. Mustafa Rafique, Benjamin Rose, Ali R. Butt, and Dimitris Nikolopoulos.
CellMR: A framework for supporting mapreduce on asymmetric cell-based clus-
ters. In Proceedings of the IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Rome, Italy, May 2009.

11. Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Chris-
tos Kozyrakis. Evaluating MapReduce for multi-core and multiprocessor systems.
In Proceedings of the 13th Intl. Symposium on High-Performance Computer Archi-
tecture (HPCA), Phoenix, AZ, February 2007.

12. Richard M. Yoo, Anthony Romano, and Christos Kozyrakis. Phoenix rebirth:
Scalable MapReduce on a large-scale shared-memory system. In in Proceedings of
the 2009 IEEE International Symposium on Workload Characterization (IISWC),
Austin, TX, October 2009.


