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Abstract: This paper focuses on an automated ANN classification system consisting of 
two modules: an unsupervised Kohonen’s Self-Organizing Mapping (SOM) neural 
network module, and a supervised Multilayer Perceptron (MLP) neural network module 
using the Backpropagation (BP) training algorithm. Two training algorithms were provided 
for the SOM network module: the standard SOM, and a refined SOM learning algorithm 
which incorporated Simulated Annealing (SA). The ability of our automated ANN system 
to perform Land-Use/Land-Cover (LU/LC) classifications of a Landsat Thematic Mapper 
(TM) image was tested using a supervised MLP network, an unsupervised SOM network, 
and a combination of SOM with SA network. Our case study demonstrated that the ANN 
classification system fulfilled the tasks of network training pattern creation, network 
training, and network generalization. The results from the three networks were assessed via 
a comparison with reference data derived from the high spatial resolution Digital Colour 
Infrared (CIR) Digital Orthophoto Quarter Quad (DOQQ) data. The supervised MLP 
network obtained the most accurate classification accuracy as compared to the two 
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unsupervised SOM networks. Additionally, the classification performance of the refined 
SOM network was found to be significantly better than that of the standard SOM network 
essentially due to the incorporation of SA. This is mainly due to the SA-assisted 
classification utilizing the scheduling cooling scheme. It is concluded that our automated 
ANN classification system can be utilized for LU/LC applications and will be particularly 
useful when traditional statistical classification methods are not suitable due to a 
statistically abnormal distribution of the input data.  
 
Keywords: automated artificial neural network; simulated annealing; Kohonen’s self-
organizing mapping; Landsat TM; land use land cover; image classifiers; image processing; 
accuracy assessment 

 
 

1. Introduction  
 

Multispectral classification of remotely sensed data has been widely used to generate thematic 
Land-Use/Land-Cover (LU/LC) inventories for a range of applications including urban planning, 
agricultural crop characterization, and forest ecosystem classification [1-4]. In response, a number of 
different classification approaches have been developed to accomplish such tasks [5-8]. Most notable 
have been classification approaches based on Artificial Neural Networks (ANNs) [9-13]. ANNs were 
originally designed as pattern-recognition and data analysis tools that mimic the neural storage and 
analytical operations of the brain. ANN approaches have a distinct advantage over statistical 
classification methods in that they are non-parametric and require little or no a priori knowledge of the 
distribution model of input data [14]. Additional superior advantages of ANNs include parallel 
computation, the ability to estimate the non-linear relationship between the input data and desired 
outputs, and fast generalization capability. Many previous studies on the classification of multispectral 
images have confirmed that ANNs perform better than traditional classification methods in terms of 
classification accuracy, such as maximum likelihood classifiers [14-17].  

Based on the widely-used commercial software package ERDAS IMAGINE 9.0, we developed an 
automated ANN classification system to the most commonly used image classifiers such as Minimum 
Distance, Parallel Piped, and Maximum Likelihood in order to offer a more feasible and 
computationally efficient classification alternative. Our automated ANN classification system 
consisted of two ANN modules: 1) a single unsupervised Kohonen’s Self-Organizing Mapping (SOM) 
neural network module, and 2) a supervised Multi-Layer Perceptron (MLP) network module. The MLP 
network module is trained using the traditional back propagation (BP) training algorithm. In the SOM 
network module, two training algorithms were provided: 1) the standard SOM competitive learning 
algorithm, and 2) a modified SOM learning algorithm incorporating Simulated Annealing (SA) 
because it has the potential to find or approximate the global or near global optimal in a combinatorial 
optimization problem. The modified SOM learning algorithm with the embedded SA global searching 
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algorithm has an advantage over the standard SOM methodology because it can utilize the scheduling 
cooling scheme and can resolve the local minima problem and thus improves the final classification 
accuracy [18,19]. 

This paper focuses on two primary questions:  
Is the automated ANN classification system suitable for LU/LC classification applications?  
Can the modified SOM-SA network perform classification more accurately than the standard SOM 

network?  
LU/LC classifications were conducted using Landsat Thematic Mapper (TM) data and the 

supervised MLP network and two unsupervised SOM networks. This paper is structured as follows: 
Section 2 will provide a short review of MLP and SOM neural network models. Section 3 will describe 
the development of our automated ANN classification system and our classification procedures. Our 
case study is presented in Section 4, along with a comparison and evaluation of the performance of 
each of the classifiers based on the experimental results. Related implementation issues are also 
discussed. The final section presents the conclusions of the paper. 

 
2. Neural Network Classification Approaches 
 

While various ANN approaches have been applied to many LU/LC classification applications using 
remotely sensed data [14,20-22], the two most frequently-used neural networks are the supervised 
Multilayer Perceptron (MLP) [23], and the unsupervised SOM [24,25].  

The MLP neural network—a supervised model that uses single or multilayer perceptrons to 
approximate the inherent input-out-put relationships—is the most commonly used network model for 
image classification in remote sensing [26-28]. MLP networks are typically trained with the supervised 
backpropagation (BP) algorithm [23] and consist of one input layer, one or more hidden layers, and 
one output layer (Figure 1).  

In the traditional BP algorithm, the generalized delta rule used to update the weights is usually very 
slow and unstable. Both [29] and [30] found that an enhanced neural network can be achieved by 
incorporating a momentum term (the past increment to the weight) to speed up and stabilize the BP 
learning. Although there are many examples of successful MLP applications [11,17,26-28,31,32], it is 
widely recognized that MLPs are sensitive to many operational factors including the size and quality of 
the training data set, network architecture, training parameters, and over-fitting problems. These 
factors are application-dependent and best addressed on a case-by-case basis. Thus, the operational 
issues will be discussed in concert with the case study in Section 4. 
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Figure 1. The structure of three-layer MLP neural network with 4 input nodes, 10 hidden 
nodes, and 5 output nodes. Each hidden layer is directly connected to each component of 
the input layer and also to each of the components in the output layer. 

 

 
 

2.1. Kohonen’s Self-Organizing Mapping (SOM) Neural Network 
 
Developed as an unsupervised clustering ANN, Kohonen’s Self-Organizing Mapping (SOM) 

network [25] creates a one- or two-dimensional map of relationships among input data patterns 
(Figure 2).  
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Figure 2. The structure of Kohonen’s Self-Organization Mapping neural network. 

 
 
SOM networks have been found to be capable of analyzing complex multivariate data from natural 

systems [10]. The standard SOM algorithm is summarized by [33,34]. During training, the SOM has 
an input layer that can accept multiple inputs that are passed to an output or competitive layer 
consisting of one or two dimensions. A node in the competitive layer with the weight vector closest to 
this input vector in terms of Euclidean distance is called the “winning” node. Only this winning node 
and the nodes in its neighbourhood update their weight vectors during the training procedure. This 
spatial neighbourhood property makes the SOM network different from other competitive  
networks [30] as it has the ability to preserve the topological relationships in the original input data, by 
which the clusters with similar spectral signatures in image classification are assigned to the 
neighbouring nodes in the competitive layer [35].  

X1 X2 X3 X4 

Output Layer 

Connection Weights 

Input Layer 



Remote Sens. 2009, 1              
 

 

248

The SOM neural network is particularly ideal for classification problems where class labels for 
training patterns are impossible or very expensive to obtain (e.g., heterogeneous landscape conditions). 
SOM also has operational advantages over supervised methods in terms of reduced interaction time by 
the analyst; however, it offers less control over the resulting classes [36].  

K-means clustering algorithms produce similar classification results as SOM neural networks 
because they have a similar objective—to minimize the distances between the input patterns and the 
assigned clusters centres via a gradient descent-based searching process. K-means type algorithms are 
known to produce good results only if the clusters are well-separated in the feature space, and 
hyperspherical in shape when Euclidean distance is used. However, in a complex problem that cannot 
be solved by a simple convex cost function, the local minima problem is inevitable.  

Alternatively, Simulated Annealing (SA) was developed on the basis of an analogy between the 
physical annealing process of solids and the large combinatorial optimization problems [37-40]. SA 
was proven to have great potential to find or approximate the global or near-global optimal in a 
combinatorial optimization problem [41]. The premise of SA is to incorporate some randomness in the 
assignments of cluster labels to pixels in the clustering procedure, thus reducing the limitation of local 
minima. As a result, using the SA-based approach to classification has the potential to improve the 
accuracy for land cover classification.  

In this investigation, the standard SOM learning algorithm was modified by incorporating SA 
global searching procedures. The modified SOM-SA uses a cooling schedule required by most SA-
related applications. This combination of SOM and SA therefore becomes an interesting contribution 
to the classification of digital remotely-sensed data for land use and land cover application. For the 
SOM-SA training, a control parameter denoted as the temperature T was introduced. The SOM-SA 
procedure is as follows: 

Start with a high temperature T that decreases gradually and an arbitrary initial assignment of each 
training pattern to an arbitrary output node.  

An input pattern Xi is randomly selected and presented to the SOM-SA network. The input pattern 
presented to this network is selected based on a parameter called generation probability. 

For each randomly selected input pattern, Xi, reassign it to an output node n that is different from its 
previous assigned output node m.  

Compute the Euclidean distances between the input patterns and each output node. 
Instead of simply choosing the output node with the closest weight vector in the standard SOM 

learning algorithm, the winning node is determined either with a distance decrease, or with a distance 
increase according to a positive probability of the temperature at this state.  

Repeat steps 2 to 5 until a certain number of iterations are reached at this temperature. 
Decrease the temperature T in a given schedule.  
Go to step 2 until the temperature T approaches zero.  
The SOM-SA learning algorithm is less computationally efficient than the standard SOM learning 

algorithm, but has the advantage of more frequently escaping the local minima limitations as compared 
to the standard SOM and therefore is expected to improve classification performance.  
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3. Development of an Automated ANN Classification System 
 

ANN approaches have been widely used for image classification in remote sensing since the  
1990s [24,27,31,32,42-44]. Our automated ANN classification system was built within the working 
environment provided by the commercial remote sensing software, ERDAS IMAGINE 9.0 [45].  

The automated system consists of three classification modules: 1) a SOM module based on 
unsupervised SOM neural networks, 2) a modified SOM module to utilize the SA allowing a 
scheduling cooling scheme, and 3) a MLP module based on supervised MLP neural networks. 

Each module in the ANN system is composed of several sub-modules: pattern conversion, network 
training, and the network generalization sub-module. The ANN-based classification system and 
functions of each sub-module are summarized in a working flowchart (Figure 3). Several steps take 
into account the unsupervised SOM and the supervised MLP classification results in determining the 
pattern conversion sub-module for the desired output data before creating the network training sub-
module that in turn defines the training parameters for a well-trained network. These results are then 
applied to the unseen pixels of the original image to produce the classified map. 

The pattern conversion sub-module performs the following functions:  
1) sampling a certain number of training and testing patterns from a number of selected image 

subsets;  
2) scaling the input pattern into the network operational interval; and  
3) generating training or testing pattern files.  
In the pattern conversion sub-module of the supervised MLP network, the corresponding class label 

must be provided for each pattern. Network training sub-modules provide the graphical user interfaces 
to allow the user to interactively define the architecture and parameters needed and to perform the 
training once all the parameters are set. In the SOM module, two training sub-modules are provided: 
the standard SOM and the SOM-SA training sub-module. In the MLP module, the BP training sub-
module is used. During a network training trial using each of the training sub-modules, an error file is 
generated to record the training MSEs to assist in monitoring the training behaviour and selecting the 
appropriate network and parameters. After training is completed, network generalization sub-modules 
are implemented to generalize the entire image using the trained network and to produce the classified 
map.  

The primary graphical interfaces of the ANN system (Figure 4), were built using ERDAS 
IMAGINE EML [45]. The ANN classification algorithms were implemented using C/C++ and the 
ERDAS IMAGINE Toolkit [45].  
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Figure 3. Flowchart of the ANN-based classification system. 
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Figure 4. Main interface of the ANN system. 

 
 

4. Case Study: Neural Network Classification 
 

A Landsat TM image was used to test of the suitability of our automated ANN system in 
performing LU/LC classifications using the supervised MLP network and the two SOM networks.  
 
4.1. Study Area and Classification Scheme 

 
The lower Neuse River Basin region of North Carolina—including Craven, Jones, Pamlico, and 

Onslow counties—was used as a study area due to the variety of urban, agricultural, and hydrologic 
thematic features in the coastal plain. The dominant classes include: forest, agricultural lands, and open 
water, and there are large areas of woody wetlands and transitional lands. A September 1999 Landsat 
TM image (Figure 5), was used to perform the classification. By visually interpreting this image with 
the high spatial resolution Digital Color Infrared (CIR) Digital Orthophoto Quarter Quad (DOQQ) data 
of the study area (acquired between January and March 1998), the classification scheme (Table 1) was 
determined using the LU/LC classification scheme proposed by [46]. Eight major categories were 
defined. Six TM bands, with a spatial resolution of 30 m were used for the classification. The thermal 
band was excluded because its spatial resolution (60 m) would require additional pre-processing work. 
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Figure 5. The standard false color display of the acquired Landsat TM image. 

 

 
Table 1. Classification scheme and category definition. 

 
Class Number Class Name Class Definition 

1 Urban Commercial/Industrial/Residential/transportation 
2 Forest Natural Forested Upland including evergreen, deciduous, 

and mixed forests 

3 Planted crop 
field 

Planted crop fields for the production of crops 

4 Grass/pasture Vegetation planted in developed settings for 
recreation, erosion control, or aesthetic purposes, or hay 
crops or pasture 

5 Bare/fallow area Bare construction sites, rock, sand, or fallow agricultural 
land 

6 Transitional area Areas dynamically changing from one land cover to 
another 

7 Woody wetland Areas of forested or shrubland vegetation where soil or 
substrate is periodically saturated with or covered with 
water 

8 Water All areas of open water 
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4.2. Operational Issues in Neural Network Classification 
 
Although previous studies have proven neural network approaches to be powerful, the performance 

of the ANN classifiers is sensitive to several factors including: 1) the quality and size of the training 
data sets; 2) the complexity of the network architecture; and 3) controlling parameters such as learning 
rate [16,43,44].  
 
4.2.1. Quality and size of training data sets 
 

The training data set should provide as complete a representative description of each land category 
as possible, thus the size of the set should increase considerably along with increases in the spectral 
variability of desired classes, the number of associated weights, and the desired classification 
accuracy [30,47] points out that incorporation of some boundary patterns from each class is 
particularly useful in achieving satisfactory classification accuracy. A network trained with boundary 
patterns may have lower training accuracy, but can have better generalizing performance than a 
network trained with homogeneous patterns.  
 
4.2.2. Network architecture complexity  
 

In a typical MLP neural network, the number of input and output nodes are usually determined by 
the specific application (i.e., the number of input nodes equals the input dimension and the number of 
output nodes equals the number of desired LU/LC categories). Single hidden layer networks are found 
to be sufficient for most classification problems [26,27,48]. Thus the remaining problem is to 
determine the number of hidden nodes in the single hidden layer. Networks with varying numbers of 
hidden nodes, (e.g., the same, twice, or three times the number of input nodes or output nodes), are 
determined through experimentation. The network architecture with the best performance is selected. 
In the SOM network, the number of the input nodes equals the input dimensions. Similarly, the number 
of the SOM output nodes may not always match the number of the desired land categories. The 
optimal number of the output nodes in the SOM network indicates the number of separable spectral 
clusters and is closely related to the geometrical characteristics of the input data 
 
4.2.2.1. Network input/output coding 
 

Using the ERDAS IMAGINE 9.0 platform, the input coding is conducted by the pattern conversion 
sub-module, which automatically scales each pattern into a vector within the range while sampling 
training or testing patterns from a number of image subsets. The scaled input vectors and the coded 
desired output unit vector (supervised case) are stored in pattern files, which are presented to network 
training. Most neural network algorithms are designed to deal with continuous data ranging from 0 to 
1.0. Since most spectral band value ranges from 0 to 255, each input data is scaled by 255 before it is 
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presented to the network. The inputs are also associated weights, activation function, and the bias. In 
the pattern conversion sub-module of the MLP classification module, the desired class label of each 
input pattern is coded as a unit vector with the same size as the number of classes, in which only the 
element with the class label is equal to 1 and all other elements are assigned to 0. The scaled input 
vectors and the coded desired output unit vector (supervised case) are stored in pattern files, which are 
presented for network training. Once the training is completed, the network generalization sub-module 
performs the final classification of the entire image by assigning each input pixel to the class of the 
output node with the highest output value or closest weight vector. 

 
4.2.3. Training parameters and learning rate 

 
The number of training parameters varies with the type of network and algorithm used. In our 

investigation, the required parameters of the MLP network included: 1) initial learning rate, 2) final 
learning rate, 3) the momentum rate, and 4) the number of training epochs. The learning rate must be 
kept small enough in order to keep the network training stable. However, the computational cost of 
using a very small learning rate is high. Thus, in practice one usually starts with a slightly larger 
learning rate to run the training faster at the early stage of training, gradually lowering the learning rate 
to stabilize the training. The momentum rate should also be chosen via experimentation. The number 
of iterations must be large enough to gain sufficient knowledge of class membership from the training 
data set, but not too large to have the training data over-trained. In the MLP network, we used epoch 
training as it is more efficient stable than pixel-by-pixel training [30]. As such, the weight adjustment 
from each input pixel is computed and stored without changing the weights. After the entire training 
set passes through the network, the average weight adjustment is used to update the weight. 

Standard SOM network training requires the definition of the following parameters: 1) the initial 
learning rate, 2) the final learning rate, 3) the initial neighbourhood radius, 4) the neighbourhood 
decrement interval, and 5) the number of training iterations. The selection of learning rates and the 
number of training iterations is similar to that in MLP network. The initial neighbourhood radius is 
usually set equal to the larger size of row or column and decreases after a certain number of iterations. 
The determination of the initial neighbourhood radius and the neighbourhood decreasing factor is 
crucial for SOM networks to achieve a topology-preserving map from the input space to the discrete 
output. In addition to these standard SOM training parameters, SOM-SA training requires a cooling 
schedule as follows: 1) the initial value of the control temperature T, 2) the decrement factor for 
decreasing T, 3) the final value of T, 4) the number of iterations at each temperature value, and 5) a 
generalization probability to control which pixel in the training set is selected to train the network. 
Several guidelines for selecting these SA-related parameters were developed by [56]. An optimal 
selection of parameter combinations is critical to obtaining good classification accuracy.  

Over-fitting is a situation that arises when the neural network classifier is over-trained. This 
problem can considerably decrease generalization accuracy when some land classes are not properly 
represented in training data sets. One of the most effective methods to avoid over-fitting is to use a 
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cross-validation approach to stop the training at an appropriate time [49,50]. Basically, two data sets 
should be collected: one for training the network and the other for testing it. During network training, 
only the training data set is used to train the network and update the weights. However, the 
classification performances with both testing and training data are computed and monitored during the 
process. If training error keeps decreasing, while testing error continuously increases, the training will 
be terminated. Via the cross-validation approach, the training can be stopped before the over-fitting 
occurs [27]. Ultimately, the cross-validation approach can provide clues as to whether the collected 
training data sets completely represent land cover classes. Consequently, cross-validation was used as 
the default training method. 

 
4.3. Neural Network Classification and Discussions 

 

For each class, multiple image subsets were first selected from the TM image using ERDAS 
IMAGINE tools. Our goal was to collect image subsets from homogeneous and heterogeneous areas. 
The number of the image subsets for each land category varied because of the spectral variability 
within that category. Categories with high within-class spectral variability, such as urban and crop 
lands, were assigned more image subsets than others. The selected image subsets were processed using 
the pattern conversion sub-modules in the ANN classification system. By using this sub-module, a 
certain number of training and testing patterns per class were extracted from the image subsets, coded, 
and saved into training and testing pattern files. In MLP classification, the corresponding class label 
related to each sampled pattern was provided. In this application, a total of 3360 training pixels and 
360 testing pixels were chosen, composed of 420 training and 45 testing pixels for each of the eight 
classes. During the network training, only the 3360 training patterns were used to train the network. 
After each iteration, the MSEs of the training and testing sets were calculated and recorded into an 
error file which was used to monitor the training behaviors and assist in selecting optimal network 
architecture and training parameters.  

In the MLP classification, we used the three-layer perceptron network, consisting of six input nodes 
and eight output nodes. We ran a number of MLP experiments using different hidden nodes and 
training parameters. After each iteration, an error file was generated to record the training and testing 
errors. Based on these error files, the optimal network architecture and training parameters was 
determined. In this case, the optimal MLP network architecture was found to be a single layer network 
with 15 hidden nodes. The best MLP training was obtained when the parameters were set as: 1) 
training epochs (150,000), 2) initial learning rate (1.5), 3) final learning rate (0.05), and 4) momentum 
(0.08). The well-trained MLP network was input into the network generalization sub-module, and then 
used to classify the TM image into a map with eight LU/LC classes shown in Figure 6(a). The learning 
curve of the mean squared errors vs. training epochs for both training and testing sets indicated a good 
generalization of the trained MLP network. The cross-validation training, described earlier, method 
proved effective in this application in terms of avoiding over-fitting. 
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Figure 6. Classified maps of the three network classifiers. 

 

The optimal SOM network training used 16 output nodes that were arranged as two rows and eight 
columns. The parameters in the optimal SOM training were set as below: 1) training iterations (5000), 
2) initial learning rate (0.2), 3) final learning rate (0.005), 4) initial neighbourhood size (8), and 5) the 
neighbourhood decrement interval iterations (400). The optimal SOM-SA training was obtained using 
the same architecture as the SOM network. The parameters were set as below: 1) initial T (1.0), 2) final 
T (0.01), 3) decrement factor of T (0.95), 4) generation probability (0.80), 5) iterations at each T (50), 
6) initial learning rate (0.8), 7) decrement factor of learning rate (0.95), 8) initial neighbourhood size 
(8), and 9) neighbourhood decrement factor (0.75). Using the two SOM-based networks, instead of the 
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eight classes we expected, resulted in 16 spectral clusters. We manually interpreted the 16 clusters and 
matched them with one of the eight classes. The two feature maps from the SOM and SOM-SA 
networks (see Figure 8(a-b)) were created to reflect the information class membership of each spectral 
cluster in this classification application. The resulting classified maps with eight classes from the SOM 
and SOM-SA networks are shown in Figure 6(b) and Figure 6(c), respectively.  

The SOM and SOM-SA networks have topological preservation capability such that pixels with 
similar spectral values are assigned to the neighbouring classes, and nodes in the competitive layer 
with similar spectral signatures are located as near neighbours [35]. Our observation of these two 
feature maps (see Figures 7(a-b)) verified this phenomenon. Furthermore, by analyzing the relative 
location of each spectral cluster and its represented information class, we obtained some knowledge of 
the inherent spectral relationship between classes such as the within-class and between-class spectral 
variability. From Figures 7(a-b), we observed that the urban class consisted of four spectral clusters, 
three of which were within the close neighbourhood and one of which was farther away, indicating its 
widely scattered within-class variability.  

 
Figure 7. Topological maps from the SOM and SOM-SA networks where U: Urban, F: 
Forest, C: Crop field, G: Grassland, B: Bare soil, T: Transitional area, WW: Woody 
wetland, W: Water. 
 

 
 

 

 
 

 

(b) Topological map the SOM-SA network 

T WW2 W U2 WW3 WW4 U3 U4 

C1 G1 B1 F1 U1 G2 T1 WW1 

W1 B1 T1 F1 C1 U1 U2 U3 

W WW1 U4 F2 B2 F3 G1 U5 

(a) Topological map from the SOM network 
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4.3.1. Accuracy assessment 
 
To evaluate the three resultant classified maps, we assessed the classification accuracy based on a 

pixel-by-pixel comparison. Using a stratified sampling method, 60 pixels per class were randomly 
selected from the MLP classified map and a total of 480 pixels were used for the accuracy assessments 
of the three network classifiers. That is, the sample size for the accuracy assessment was 60 samples 
per land use/land cover category. While using the data collected by field visitation as reference data is 
always preferred, we feel that the level of details observed on the very high resolution one-meter 
digital multispectral data produced no confusion between the classes of interest in this study and 
therefore judged appropriate to be used as reference data. To this effect, the three error matrices for the 
three classifications were generated by visually and carefully interpreting the one-meter CIR DOQQ 
for each sample site and the corresponding TM imagery for each of the 480 pixels as shown in Table 2 
to Table 4. This type of very high resolution multispectral imagery has often used as reference data 
where field data was not available [53]. An error matrix provides an appropriate beginning for many 
techniques of multivariate statistical analysis [51]. One measure used in accuracy assessment is called 
KAPPA [52]. KAPPA is designed to deflate the amount of agreement by the amount, which would be 
expected by chance. It can be interpreted as a “proportionate reduction in error”, the proportion that the 
results improve upon a model of statistical independence (the cross-product term in the above 
equation).  

 
Table 2. Error matrix on the classified map from the MLP network. 

  Reference Data 

C
la

ss
ifi

ed
 Im

ag
e 

 1 2 3 4 5 6 7 8 Classified 
Totals 

Users’ 
Accuracy

1 46 1 1 1 11    60 76.7% 
2  60       60 100.0% 
3  2 52 6     60 86.7% 
4  2 4 53 1    60 88.3% 
5 2  1 1 56    60 93.3% 
6  4 2   52 2  60 86.7% 
7  12    3 44 1 60 73.3% 
8        60 60 100.0% 

Reference 
Totals 

48 81 60 61 68 55 46 61 480  

Producers’ 
Accuracy 

95.8% 74.1% 86.7% 86.9% 83.4% 94.6% 95.7% 98.3%   

  Overall Accuracy: 423/480 = 88.13% 
 



Remote Sens. 2009, 1              
 

 

259

Table 3. Error matrix on the classified map from the SOM network. 

  Reference Data 

C
la

ss
ifi

ed
 Im

ag
e 

 1 2 3 4 5 6 7 8 Classified 
Totals 

Users’ 
Accuracy

1 22  1  10    33 66.7% 
2 8 75  1 1 13 30  128 58.6% 
3 12 5 59 60 27 9 1  173 34.1% 
4 1    4    5 0.0% 
5     19    19 100.0%
6 5 1   7 33 3  49 67.4% 
7       12 1 13 92.3% 
8        60 60 100.0%

Reference 
Totals 

48 81 60 61 68 55 46 61 480  

Producers’ 
Accuracy 

45.8% 92.6% 98.3% 0.0% 27.9% 60.0% 26.1% 98.4%   

  Overall Accuracy: 280/480 = 58.33% 

 
Table 4. Error matrix on the classified map from the SOM-SA. 

  Reference Data 

C
la

ss
ifi

ed
 Im

ag
e 

 1 2 3 4 5 6 7 8 Classified 
Totals 

Users’ 
Accuracy

1 13    22    35 37.1% 
2 1 56   1    58 96.6% 
3 3  32 12 1    48 66.7% 
4 14 5 27 48 15 5 1  115 41.7% 
5     12    12 100.0%
6 17 4 1 1 16 42 1  82 51.22%
7  16   1 8 40 1 66 60.6% 
8       4 60 64 93.6% 

Reference 
Totals 

48 81 60 61 68 55 46 61 480  

Producers’ 
Accuracy 

27.1% 69.1% 53.3% 78.7% 17.7% 76.4% 87.0% 98.4%   

  Overall Accuracy: 303/480 = 63.13% 
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KAPPA is designed to adjust for some of the differences between different matrices, so it can be 
used to compare results for different regions or different classifications [53]. Thus, the KAPPA 
statistic was calculated for each error matrix to assess if any of the classifiers had significantly 
improved classification accuracy over the others.  

The findings indicated that, of the three classifiers, the MLP network obtained the best classification 
accuracy—88.13%, representing 29.8% greater accuracy than the SOM network and 25% higher than 
the SOM-SA network (Table 5 and 6). A comparison of the SOM and SOM-SA networks revealed that 
the overall classification accuracy of the SOM-SA network was 4.8% higher than that of the SOM 
network. At the 90% confidence level [55], the SOM-SA network was moderately better than the SOM 
network (Table 6) due to the incorporation of SA into the standard SOM network. Both of the SOM-
based networks had low individual classification accuracies in anthropogenic land use classes (e.g., 
urban and grassland). This may be due to their unsupervised nature, having less human control on the 
assignment of pixels to classes. As a result, in complex LU/LC mapping applications, we would 
recommend the use of supervised MLP networks for image classification, with the assistance of 
unsupervised SOM networks to analyze the inherent spectral relationships between classes [56].  

 
Table 5. Individual Kappa Analysis for the three network error matrices. 

 MLP SOM SOM-SA 
KHAT 0.86 0.52 0.58 
Kappa Variance 0.0003 0.0006 0.0006 
Z-Value 51.32 20.70 23.48 

 
Table 6. Kappa analysis results for the comparisons of the three error matrices. 

 MLP SOM SOM-SA 
MLP  11.44 9.55 
SOM   1.72 

SOM-SA    

 
5. Conclusions and Future Work 
 

Many previous studies have shown that one of the traditional iterative unsupervised approaches, K-
means, suffers from the aforementioned local minima problem [57,58]. SA has proved to be able to 
overcome the local minimum problem [41,59]. In this paper, we presented an automated two-module 
ANN classification system, consisting of an unsupervised SOM network module and a supervised 
MLP neural network module. The MLP network module was trained using the BP algorithm. In the 
SOM network module, two training sub-modules were provided including the standard SOM training 
sub-module and the refined SOM-SA training sub-module. Three network classifications of a selected 
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Landsat TM image were performed to verify the operational suitability of the developed ANN system. 
Based on the experimental results and our analysis of these results, we summarize our study as follows: 

The comparison of the Overall Accuracy, the KHAT, and the Z values indicated that SOM-SA 
performed better than the standard SOM (63.13% versus 58.3% for the overall accuracy, 0.58 versus 
0.52 for KHAT, and 23.48 versus 20.70 for the Z values. However both of these classifications did not 
perform as well as the MLP classification scheme. For the two unsupervised SOM networks, the 
classification performance of the SOM-SA network was moderately better than that of the SOM 
network, indicating that the incorporation of SA could help improve the classification performance of 
the standard SOM network in this classification application. 

Both SOM and SOM-SA networks preserve topological capability. In the resultant feature maps, 
clusters with similar spectral signatures were located as neighbouring nodes in the output layer. The 
feature maps from SOM networks could provide useful information regarding the representation, the 
variability, and the similarity of spectral classes related to the desired land categories. This information 
may be useful in selecting training data for supervised classification.  

Key conclusions that can be drawn from this study are:  

 An automated ANN classification system was developed within the working environment 
of ERDAS IMAGINE and has been shown to be suitable for land cover mapping using 
remotely sensed data and could be especially useful when the distribution of the input data 
are not normal.  

 This study provided one strong case study to verify the better classification capabilities of 
the automated SOM_SA over the single SOM system for land cover and land use 
classification applications. Based on the knowledge obtained from this case study, we 
recommend that in complex LU/LC mapping applications, supervised MLP networks be 
used to derive detailed and more accurate image classification, and unsupervised SOM 
networks be used to assist in analyzing the inherent spectral characteristics between and 
within classes. This can be highly useful in the laborious and critical task of selecting and 
analyzing the training data sets to be utilized for any supervised classification of complex 
land use and land cover.  

 Though powerful, the performance of neural network approaches is sensitive to the 
selection of operational parameters, including the size and quality of training data set, 
network architecture, and training parameters. Furthermore, the over-fitting problem was 
effectively avoided using a cross-validation training method. 

 The parallel computing potential and the computational efficiency of the SOM and SOM-
SA classifier when combined with the ability to estimate the non-linear relationship 
between the input data and the desired output present advantages over the MLP classifier. 
Thus, for large study areas such as regional and national applications, one may consider the 
SOM_SA classification over the supervised classifiers for the reasons discussed in this 
article.  
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We feel that better land use and land cover SOM-SA based classification results can be obtained by 
using other types of high-resolution satellite imagery such as SPOT 5, IKONOS, and QuickBird. 
Recommendations for the future work include: 1) comparison of SOM_SA with other more 
conventional unsupervised clustering algorithms such as K-means as applied to the complex and 
diverse study areas; 2) Incorporation of SA with other unsupervised classifiers such as K-mean; 3) 
Fusion of various sources of remotely sensed data for land use and land cover classification; and 4) 
Integration of conventional spatial data types such as topographic, hydrologic, climatic, geopolitical, 
etc. utilizing an integrated approach of SA-assisted classification. 

An ideal and powerful fusion system is expected to be able to fuse a variety of spatial data sets. SA-
based approaches are known to be independent of the distribution model of the input data, which could 
provide great potential to fuse a variety of data sets for further improved land use and land cover 
classification. 
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