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Abstract

Based on rolling bearing fault signal modulation model in the process of spreading, an improved method
that combining Hilbert envelop extraction algorithm and large parameter setting rules in stochastic
resonance (SR) is proposed for features extraction. Firstly, Hilbert transform can effectively eliminate
the interference of high frequency carrier signal. Secondly, parameters setting rules in a certain frequency
range are summarized based on the simulation research on the realization of stochastic resonance under
the condition of big parameters. Then, the improved method is used to deal with the experimental data
of rolling bearing with typical faults. The experimental results show that the improved method can
extract the fault feature and identify the fault type effectively.
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1 Introduction

Rolling bearings is one of the most commonly used general spare parts in all kinds of rotating
machinery. The fault diagnosis from the weak signals have become one of the research focus all
over the world [1]. The traditional diagnosis methods usually base on the time domain or fre-
quency domain vibration signals analysis. In recent years, the methods combining time-frequency
transform and statistical analysis have gotten rapid development. The representative methods are
wavelet packet technology, blind source separation and stochastic resonance. Comparing with the
original wavelet algorithms, wavelet packet [2] can perform some more detailed examinations and
more flexible time-frequency resolution for the weak signals. But its effectiveness for weak signals
analysis strongly depends on the prior experiences. For example, the analysis results of a same
signal are different as the different wavelet base functions are used. Blind source separation [3,4]
is another good method to separating the original signal from noise as the prior knowledge and
the training data be gained in advance. Nonetheless, the method of blind source separation
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doesn’t work well as the signal source number is unknown or the signal can’t fully satisfy the
constraint conditions [5]. Stochastic resonance (SR) is also a common method of extracting the
fault features from the weak signal [6]. It is a kind of nonlinear phenomenon: when the original
signal and the noise, which are put into the SR system, match the SR system to some extent,
some noise energy will be transferred to the periodic signal and the signal-to-noise ratio of the
output signals will be rising to the peak. However, the SR method is restricted to be used under
the condition of adiabatic approximation [6], just the low frequency small parameter, which is
much less than that of the signals acquired in practical engineering application.

In order to overcome the limitation of the adiabatic approximation and promote its applications
in the fields of fault feature extraction, an improved method that combined with the Hilbert
transform [7] and the large parameter SR algorithm is proposed based on the rolling bearing
modulation model in this paper. In addition, the large parameter setting rules are also put
forward in certain frequency range based on a serial of simulation experiments. Then the improved
method and the large parameter setting rules are used to diagnose three typical faults of rolling
bearings. The experiment results show that obvious peaks appear at fault features frequency and
the signal-to-noise ratio of the useful signal has been increased dramatically.

2 Principle of the Improved Method for Fault Feature

Extraction

2.1 Rolling bearing fault signal modulation model

Rolling bearing is a kind of high precision parts. It can generate two kinds of vibrations in the
normal operation. One is normal vibration, the other is natural vibration. Natural vibration has
a large natural frequency at 1∼20KHz, and sometimes up to 80KHz [8]. Once some local damage
appears in rolling bearing, periodic collision will occurs on contact surface with other components,
which is called through vibration (fault vibration). When rolling bearing faults happen, the actual
collected vibration signal always contains normal vibration and natural vibration. Various kinds
of signals produced by different vibration sources are relatively independent. They are mixed
and superimposed into the measured vibration signal by way of multiplication or plus, whose
multi-mixed mechanism is similar to amplitude modulation. Because the natural vibration signal
has the largest amplitude and frequency, the rolling bearing modulation model can be simplified
as follows:

s(t) = A(1 +
k∑

i=1

risin(2πfit+ θi))sin(2πfrt+ φ) + n(t) (1)

where fi is the fault features frequency or other ingredient, fr is the natural frequency, Asin(2πfrt
+φ) is a modulation signal, and risin(2πfit+θi) is high frequency natural oscillation carrier signal.

Based on the above rolling bearing modulation model, Fig. 1 is a block diagram of fault feature
extraction, and the part in dotted line box is the improved method proposed in the paper.

Fig. 1: Principle of the improved method for fault feature extraction
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2.2 Hilbert envelope detection principle

Hilbert transform has the many advantages, such as excellent envelope detection ability, good
adaptability and high feature extraction accuracy as the high frequency carrier signal is unknown.
It can be used to eliminate the interference of high frequency noise. Suppose x(t)=b(t)g(t), g(t)
is the high frequency signal, and b(t) is the low frequency signal, the Hilbert transfer of x(t) is as
follows:

x̂(t) = b(t)ĝ(t) (2)

The above Eq. (2) [9] descripts that if a low frequency signal multiplies a high frequency signal, the
latter one plays a leading role in Hilbert transformation of their product term. As a hypothesis,
non-noise part in rolling bearing vibration model is shown by Eq. (3):

s1(t) = A(1 +
k∑

i=1

risin(2πfit+ θi))sin(2πfrt+ φ) (3)

Depending on Eq. (2), the Hilbert transformation of s1(t) can be worked out as follows:

s1(t) = A(1 +
k∑

i=1

risin(2πfit+ θi))cos(2πfrt+ φ) (4)

|ŝ1(t)| =
√
s1(t)2 + ŝ1(t)2 =

∣∣∣∣∣A(1 +
k∑

i=1

risin(2πfit+ θi))

∣∣∣∣∣ (5)

As seen, |ŝ1(t)| in Eq. (5) is the signal envelop that comprises all kinds of fault features according
to Eq. (1). From Eq. (3) to Eq. (5), it is demonstrated that high frequency part can be
eliminated from the modulated model through Hilbert transformation, and the low frequency
envelope containing fault features can be separated without damaging the original signal. Of
course, this is the ideal result without noises. In fact, the signal frequency spectrum after Hilbert
transformation still contains other frequency components, and the features of fault are not evident
yet. So it is needed to use SR to making a further operating and extracting the fault features.

2.3 Principle of the improved SR

SR algorithm can highlight the periodic signal from an input signal mixed with noise and enhance
signal-to-noise ratio (SNR) of the output. Double steady-state system is a typical SR. The
Langevin equation of Eq. (6) is the typical model to describe double steady-state nonlinear
system.

dx

dt
= ax− bx3 + s(t) + n(t) (6)

In Eq. (6), x(t) is the system output; s(t) is input signal of the nonlinear systems, and n(t)
is random noise signal. Because of the adiabatic condition (low frequency small parameter), the
original SR system is not satisfied for most of the actual signals. A variable step algorithm [10] is
used to realize the large parameter SR in the improved method.In the solving process, the change
of parameters make a huge impact on the output. To clearly observe the influence on output by
parameters changing, this paper defines a new variable Apsd:

Apsd = (
Opsd

Ipsd
)f=f0 (7)
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Opsd and Ipsd are respectively output power spectrum value and input signal power spectrum
value of SR at the periodic signal frequency.

In Eq. (6), suppose that s(t)=Asin(2πf0t) and noise variance of n(t) is D. fs is sampling
frequency, and h is difference iteration step length. Tab. 1 show results that are figured out
under different parameter values. As seen, Apsd declines with the increase of f , but its value is
always more than two. So the obvious phenomenon of SR can be obtained under the condition
of large frequency through adjusting variable step length and parameters values.

Table 1: Parameters adjustment list of SR under different signal frequency

f/Hz fs/Hz h a b A D Apsd

0.01 5 0.2 1 1 0.3 0.6 11.124573

0.1 50 0.02 0.6 1 0.3 0.6 8.5211374

1 500 0.02 0.4 1 0.3 0.6 6.4888122

10 5000 0.02 0.3 1 0.3 0.6 5.6229949

50 25000 0.02 0.3 1 0.3 0.6 2.3423976

100 50000 0.02 0.2 1 0.3 0.6 2.5345462

500 250000 0.02 0.2 1 0.3 0.6 2.4079289

3 Large Parameter Setting Rules in SR

According to the information in Tab. 1, a conclusion can be drawn that the parameters variation
of fs, h, a and b have effects on the performance of the large parameter SR. Therefore, it is
necessary to study and summarize the large parameter setting rules in SR. The sampling frequency
is respectively set at f=10Hz and f=100Hz. Initial parameter values of s(t) and n(t) are set as
shown in Tab. 1.

3.1 Operation parameter setting rules of fs and h

In Fig. 2(a), the power spectral gain at the periodic signal frequency of Apsd roughly heightens
linearly with the increase of fs.

(1) When fs/f = 300, Apsd = 1.

(2) When fs/f < 300, Apsd < 1. Periodic signal energy is weakened after the SR system.

(3) When fs/f > 300, Apsd > 1. Periodic signal energy is enhanced after the SR system. The
system has the de-noising effect.

Although raise of fs can contribute to improve the performance effect of the SR system, he
higher requirement for calculating ability of computer hardware is needed in practical application.
So it is suggested taking fs/f ≥ 300.
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(a) The changing curve of Apsd with fs (b) The changing curve of Apsd with h

Fig. 2: The changing curve of Apsd with operation parameter at f=10Hz and f=100Hz

Step of h is usually assigned as h= 1
fs

[11]. Fig. 2(b) show the changing curve Apsd of with h

at fs/f=500. When the value of h is too large or too small, Apsd will shape declines. When h is
assigned a value in (0.15, 0.6), Apsd will be greater than 1and power spectral gain will be great.

3.2 Structural parameter setting rules of a and b

In order to analyze the influence of parameters a and b on the performance of larger parameter
SR respectively, two experiments are conducted as follows:

(1) Setting b=1 and the response curve of Apsd in relation to a is gained and shown in Fig. 3(a).

(2) Setting a=0.1 and the response curve of Apsd in relation to b is gained and shown in Fig.
3(b).

Compared Fig. 3(a) with Fig. 3(b), it is found that Apsd begins to decline obviously after a > 0.3
and b > 2. In Fig. 3(a), decreases to 0 as a increase to 1. In Fig. 3(b), Apsd decreases to 0 as b
increase to 10. That is to say, a makes a greater impact on Apsd than b. Therefore, the setting
rule can be summarized as that a should be assigned in (0, 0.3) and b in (0, 2). For the sake of
simplicity, b=1 is the assignment in this experiment.

(a) The changing curve of Apsd with a (b) The changing curve of Apsd with b

Fig. 3: The changing curve of Apsd with operation parameter at f=10Hz and f=100Hz

3.3 Noise parameter setting rules of D

When the SR system is used to extract the target signals, its anti-noise ability is a focus of most
concern. The response curve of Apsd with D is shown in Fig. 4. Apsd decreases to 1 with a
small slope as D increase from 0.5 to 10. Therefore, a conclusion can be drawn that the value
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Fig. 4: The changing curve of Apsd with D at f=10Hz and f=100Hz

assignment of D has minimal impact on the anti-noise performance of SR system when sampling
frequency of fs, a and b values are assigned according the setting rules summarized above.

4 Experiment Results

4.1 Experimental data source

Rolling bearing type is 352226x2−2RZ. Their main structural parameters are listed in Tab. 2.
In the experiment, the bearing rotational speed is 500r/s, the sampling frequency is 5120Hz and
the acquisition time length is 20s.

Table 2: Main technical parameters of the rolling bearing of 352226x2− 2RZ

the middle diameter the diameter of roller contact angle The number of rollers

D/mm d/mm α/◦ z

176.29 24.74 8.833 20

4.2 The experiment results with the applications of the improved
method

The paper mainly studies three kinds of typical faults of rolling bearings, such as inner ring
surface damage, outer ring stripping injury and roller electrical erosion. Every test has just one
fault. According to parameres in Tab. 2, the theoretical frequency value of three kinds of typical
faults are calculated and shown in Tab. 3. In order to observe the experiment cures clearly, a
data section of 4096 sampling point length is randomly cut out from the data package to calculate
according to the improved method. The experimental results are shown in Fig. 5, Fig. 6, Fig. 7.

From Fig. 5 to Fig. 7, no feature can be seen in figure (a)(b)(c), while there is obvious peak
in each figure (d). But a notice need to be emphasized is that frequency ranges of Fig. 5(d),
Fig. 6(d) and Fig. 7(d) are all in (0, 500)Hz, because the spectrum energy concentrates here.
According to informations in advance, the fault feature frequency of inner ring surface damage
bulges at 70Hz, as the fault feature frequency of roller electrical erosion at 91Hz, and the fault
feature frequency of the outer ring stripping injury at 30Hz. Comparing with the theoretical
frequency value in Tab. 3, gaps between measured values and theoretical values are not big.

To sum up, through the Hilbert transform and SR system, obvious peak appears at the fault
feature frequency in the figure of the output signal power spectrum of SR, noise power spectral
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Fig. 5: Faults features extraction for surface damage of the inner ring

Fig. 6: Faults features extraction for surface damage of the inner ring

component evidently decreases, and signal-to-noise ratio (SNR) of the useful signal increases,
which verify the feasibility of the proposed method.

4.3 Error analysis

Tab. 3 is the error analysis for three kinds of rolling bearing faults. It is easy to see from the
fourth column that there is a small difference between the theoretical frequency value and the
corresponding experiment measured one. The reasons for the errors can be summarized in two
aspects. One is the parameters accuracy of the rolling bearing itself, such as geometry size error,
not pure rolling of rolling element and so on. Another is outside factors, such as random measure
error, noise and algorithmic calculation error. Because the errors in are all less than 5% and there
are no other larger frequency values near the fault feature frequency, the errors don’t affect its
application in practice.

Table 3: Experiment error analysis

Fault type Theoretical value /Hz Measured value /Hz Error

Inner ring surface damage 72.24 70 3.2%

Roller electrical erosion 95.5 91 4.9%

Outer ring stripping injury 29.31 30 2.3%
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Fig. 7: Faults features extraction for surface damage of the inner ring

5 Conclusion

According to the simplified modulation model of the rolling bearing fault signal, an improved
method with combination of Hilbert transform and the large parameter stochastic resonance
algorithm is put forward and used to extracting fault features from test data. Firstly, Hilbert
envelope detection algorithm is used to eliminate high frequency noise efficiently. Secondly, large
parameter setting rules are summarized to overcome the limitation of the adiabatic approximation.
Finally, improved method is applied to extract the fault features from the rolling bearing vibration
signal and the experiment results have proved the effectiveness of the improved method. In
addition to the research field of rolling bearing fault diagnosis, the method can be also applied to
other rotating mechanical fault feature extraction, such as gears, rotors, shafts, etc.
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