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ABSTRACT

Techniques for Modeling and Analyzing RNA and Protein Folding Energy

Landscapes. (December 2007)

Xinyu Tang, B.S., University of Electronic Sci. and Tech. of China, Chengdu;

M.S., Zhejiang University, Hangzhou

Chair of Advisory Committee: Dr. Nancy M. Amato

RNA and protein molecules undergo a dynamic folding process that is important

to their function. Computational methods are critical for studying this folding pro-

cess because it is difficult to observe experimentally. In this work, we introduce

new computational techniques to study RNA and protein energy landscapes, includ-

ing a method to approximate an RNA energy landscape with a coarse graph (map)

and new tools for analyzing graph-based approximations of RNA and protein energy

landscapes. These analysis techniques can be used to study RNA and protein fold-

ing kinetics such as population kinetics, folding rates, and the folding of particular

subsequences. In particular, a map-based Master Equation (MME) method can be

used to analyze the population kinetics of the maps, while another map analysis tool,

map-based Monte Carlo (MMC) simulation, can extract stochastic folding pathways

from the map.

To validate the results, I compared our methods with other computational meth-

ods and with experimental studies of RNA and protein. I first compared our MMC

and MME methods for RNA with other computational methods working on the com-

plete energy landscape and show that the approximate map captures the major fea-

tures of a much larger (e.g., by orders of magnitude) complete energy landscape.
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Moreover, I show that the methods scale well to large molecules, e.g., RNA with

200+ nucleotides. Then, I correlate the computational results with experimental

findings. I present comparisons with two experimental cases to show how I can pre-

dict kinetics-based functional rates of ColE1 RNAII and MS2 phage RNA and their

mutants using our MME and MMC tools respectively. I also show that the MME

and MMC tools can be applied to map-based approximations of protein energy energy

landscapes and present kinetics analysis results for several proteins.
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CHAPTER I

INTRODUCTION∗

RNA and protein molecules undergo a conformational change process called folding

that is important to their function. In this dissertation, we present a novel method

to model RNA energy landscapes and new computational techniques to study RNA

and protein folding kinetics. Composed of a sequence of nucleotides or amino acids,

a Ribonucleic acid (RNA) or protein molecule can go through the so-called folding

process to change its configuration (spatial molecular conformation). Each molecular

configuration is associated with an energy that denotes its stability. The folding pro-

cess probabilistically favors lower energy configurations. Normally, the folding process

results in the most energetically stable configuration, called the native state, that has

the lowest energy among all possible configurations. A sequence of configurations

the molecule passes through during the folding process is called a folding pathway.

Figure 1 shows an example folding pathway for an RNA molecule.

There are two general, but related, types of computational studies of RNA and

protein folding: structure prediction and investigations of the kinetics of the folding

process. The focus of our research is on the latter. The structure prediction problem

is to predict the structure of the native configuration given the RNA or protein’s

sequence of residues. It was once believed that an RNA’s or protein’s functions are

The journal model is IEEE Transactions on Automatic Control.

∗Part of the data reported in this chapter is reprinted with permission from “Us-
ing Motion Planning to Study RNA Folding Kinetics” by X. Tang, B. Kirkpatrick,
S. Thomas, G. Song and N.M. Amato, 2005, Journal of Computational Biology, vol.
12, no. 6, pp. 862-881. Copyright 2005 by Mary Ann Liebert Inc., and from “Kinet-
ics Analysis Methods For Approximate Folding Landscapes” by L. Tapia, X. Tang,
S. Thomas, N.M. Amato, Bioinformatics, vol. 23, no. 13, pp. 539-548, Copyright
2007 by Oxford University Press.
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Fig. 1. An example of an RNA folding pathway.

primarily determined by its residues and the native state. Partly because of this,

many computational studies focus on the structure prediction. However, such studies

typically do not provide insight into the folding process which is involved in some

critical functions. For example, misfolded proteins are related to some devastating

diseases such as Mad Cow disease or Alzheimer’s disease [26]. Insight into the kinetics

and detailed mechanics of the folding process will help explain critical information

about the protein such as why it misfolds and may help us find treatment for these

diseases. RNA folding also participates in many diverse and important functions

such as synthesizing proteins [100, 14], catalyzing reactions [100, 42], splicing introns

[100, 60], and regulating cellular activities [100, 58, 24]. Therefore, in the past decade,

there has been increased interest in studying the RNA folding process [25, 104].

Besides studying these kinetics-related functions, there are at least three more

important reasons to study RNA or protein folding kinetics. First, a better under-

standing of the folding process will aid the development of more efficient structure

prediction algorithms. Second, it has recently been discovered that catalytic RNA

often fluctuate away from their native configuration to interact with other RNA, pro-

teins, and ligands [100], and we cannot model or predict these fluctuations without
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studying energy landscapes. Third, we must study folding kinetics to understand how

and why RNA and protein molecules misfold and thus may find treatments to some

diseases. In summary, it is imperative to have a computational method that can study

both the global (macroscopic) folding kinetics (e.g., the folding rates) and more de-

tailed (microscopic) features (e.g., substructure formation) related to kinetics-based

functions.

One way to model the folding process is with a so-called “energy landscape” which

can be analyzed to extract folding kinetics. The energy landscape can be thought

of as adding energy as another dimension to the other parameters specifying the

configuration. As shown in Figure 2, each point on the energy landscape is a molecular

configuration with an associated energy that denotes the stability of this configuration

– the lower the energy, the more stable the configuration. The landscape contains all

possible molecular configurations and their associated energies. The energy landscape

is believed to be shaped like a funnel with the most stable, native configuration at the

base [34]. The size of the landscape grows exponentially with the sequence length, so

it is infeasible to compute the complete landscape.

An RNA molecule may probabilistically change its configuration in favor of lower

energy (i.e., more stable) configurations. The energy landscape describes the proba-

bilities of possible changes (or transitions) between configurations. Thus, given the

energy landscape, we can simulate the folding process as a sequence of probabilistic

transitions between configurations on the energy landscape. As will be described

in detail later, the energy landscape encodes information about folding pathways,

transition rates, intermediate states, and population kinetics.

In this dissertation, we present tools to model and analyze energy landscapes.

We first develop a technique to approximate the RNA folding energy landscape with

a graph-like structure we call a roadmap. We then develop a set of general map-
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Fig. 2. An illustration of RNA energy landscape.

based analysis tools that can be used to analyze graph-like approximations of RNA

or protein energy landscapes to extract both global properties and detailed features

of the folding process.

In particular, our modeling tool is based on the probabilistic roadmap method

(prm) [57], first introduced for robotic motion planning, that samples RNA configu-

rations and then connects them together to form a graph, or roadmap, that approx-

imates the energy landscape. Figure 3 illustrates such a roadmap for RNA folding,

where each node is an RNA configuration and an edge connecting two nodes denotes

a transition between these two nodes. This method has been successfully applied to

study protein folding [88, 89, 7, 5, 6, 90, 12, 11, 87, 98, 99, 97], but we are the first

to apply it to study RNA folding [92, 93, 95, 96]. Our modeling tool scales well for

large RNA consisting of hundreds of nucleotides by using a new statistical sampling
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method.

Fig. 3. A PRM roadmap approximates the RNA folding energy landscape.

We develop some novel map-based analysis tools to analyze RNA energy land-

scapes approximated by our roadmaps. These map-based tools can be used to analyze

roadmaps for different types of molecules including RNA [92, 93, 95, 96] and protein

[97]. Our map-based Master Equation (MME) analysis method can be used to study

some macroscopic folding properties such as population kinetics (i.e., the time evo-

lution of the population of a molecular configuration). We also develop another tool

called map-based Monte Carlo (MMC) simulation to probabilistically extract micro-

scopic folding pathways from the roadmap. With these analysis tools, we can study

folding rates, transition states and the folding of particular sub-sequences. Some of

these features can be correlated with certain kinetics-related functions and provide

some information to study these functions.

For our RNA folding application, we validate our methods against both another
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computational method (Monte Carlo Simulation, denoted as MC) and experimental

data. We first compare kinetics measures extracted using MME and MMC on our

small roadmaps with those captured using MC on a complete energy landscape. The

comparisons show that our roadmaps can efficiently capture the major features of

much larger energy landscapes. We also demonstrate that our method can effectively

handle large RNA with hundreds of nucleotides. Finally, we present two cases studies

to demonstrate how we can use our method to study kinetics-based functions. First,

we compare folding rates computed using our MME method for ColE1 RNAII and its

mutants against experimental rates. We show that we can compute the same relative

folding order as seen in experiment. Second, we predict the gene expression rates of

MS2 phage RNA and three of its mutants using our MMC method and match them to

experiment. Again, we show that we can compute the same relative functional rates

as seen in experiment. In this dissertation, we provide results for RNA molecules

with up to 200 nucleotides, and we expect that our technique can be used for even

larger RNA.

We also applied our map-based analysis techniques MMC and MME to study

protein energy landscapes. We study protein G and two mutants of G (NuG1 and

NuG2) and show that our map-based Master Equation (MME) can accurately com-

pute the relative folding rates of protein G and the two variants. Then we use our

map-based Monte Carlo (MMC) simulation to investigate the population kinetics of

the native state for several proteins.

In summary, we provide a new modeling technique for RNA folding and develop

map-based analysis tools for both RNA and protein folding. Our modeling tool for

RNA folding provides a sparse representation of the landscape that captures its main

features – typically, the roadmap is at least 10 orders of magnitude smaller than

the full RNA energy landscape. This small approximation of the landscape can be



7

conducted efficiently for even large RNA, e.g., RNA with 200+ nucleotides. Our

map-based analysis tools can be used to compute folding kinetics from the roadmaps.

They bridge the gap between macroscopic folding events and microscopic details of

folding kinetics. With the map-based analysis tools MME and MMC we developed,

we can study both macroscopic properties such as kinetic measurements (e.g., popu-

lation kinetics or folding rates), and also microscopic properties such as the folding

of particular sub-sequences.

Most of the results reported in this dissertation have already been published.

Our early method and results for RNA energy landscapes shown in Chapter IV,

Section V. B and Section VI. A appear in [92, 93]. Our work on RNA folding described

in Chapter IV, Section V. A. 2 and Section VI. A-B can be found in [95, 96]. Our

map-based analysis methods and results for protein folding in Chapter VII have been

published in [99].

A. Outline

We begin in Chapter II with an overview of energy landscapes for RNA and protein

folding. In Chapter III we present a primer on motion planning and an introduction

to the probabilistic roadmap method (prm). We describe our framework to model

RNA energy landscapes in Chapter IV. Next, in Chapter V, we present our map-

based analysis tools MME and MMC to analyze energy landscapes and to generate

pathways for both RNA and protein folding. Next, we discuss in Chapter VI and

Chapter VII our results on RNA and protein folding. We validate our MMC and

MME methods with other computational methods and with experimental results.

We present two case studies for RNA molecules to show how our method can be used

to study kinetics-related functions. For protein folding, we correlate our results with
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experimental findings. We conclude with some final remarks in Chapter VIII.



9

CHAPTER II

A PRIMER ON ENERGY LANDSCAPES∗

In this chapter, we first introduce energy landscapes and some analysis methods of

the energy landscape. Then, we provide more detail about RNA and protein energy

landscapes and related work in this area. The estimation of RNA energy landscape

size in Section II. D. 2 was previously published in [92, 93].

A. Energy Landscape

Energy landscapes are widely used to study RNA or protein folding. On the energy

landscape, each point is a molecular configuration (spatial molecular conformation)

with its associated energy. For example, as shown in Figure 4, if we add the energy

of each configuration as another dimension to the configuration space of an RNA or

protein molecule, we can get its energy landscape. That is, the energy landscape

contains all possible molecular configurations and their associated energies. In some

cases, the energy landscape is believed to be shaped like a funnel with the most stable,

native configuration at the base [34].

An RNA or protein molecule can change (or transition) to a neighboring or

nearby configuration that has similar structure. This transformation between nearby

configurations corresponds to the transition process from one point to another point

on the energy landscape. Once we know the energy landscape, we can calculate this

transition probability (i.e., the probability for a certain transition to happen) from

the energy landscape and simulate this probabilistic configurational change process,

∗Part of the data reported in this chapter is reprinted with permission from “Us-
ing Motion Planning to Study RNA Folding Kinetics” by X. Tang, B. Kirkpatrick,
S. Thomas, G. Song and N.M. Amato, 2005, Journal of Computational Biology, vol.
12, no. 6, pp. 862-881. Copyright 2005 by Mary Ann Liebert Inc.
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Fig. 4. The energy landscape can be considered as adding free energy to the molecular

transition network. Here we show RNA energy landscape as an example.

that is, the folding process.

B. Probabilistic Transitions on the Energy Landscape

1. Markov Model of Transitions

The folding process of a molecule can be considered as a probabilistic transition pro-

cess between neighboring configurations on the energy landscape. This probabilistic

process is performed on a Markov model [40], where the transition probability to

the next state (configuration) only depends on the current state (configuration). In

other words, the transition probability between two configurations is static and only
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depends on the energy landscape but does not depend on the previous state of the

transition process. So, the energy landscape can be modeled as a Markov transition

network, where each node is a RNA or protein configuration, while the transition

probability between neighboring configurations is the Boltzmann transition probabil-

ity.

2. Transition Probability

There are several rules to calculate the Boltzmann transition probability. In our work,

we calculate the Boltzmann transition probability Kij (or transition rate) of moving

from qi to qj using the Metropolis rules [34]:

Kij =











e
−∆E

kT if ∆E > 0

1 if ∆E ≤ 0
(2.1)

where ∆E = Ej − Ei, k is the Boltzmann constant, and T is the temperature of

folding. There are some other techniques for calculating transition probabilities.

For a detailed discussion of different methods for calculating transition probabilities,

please refer to [34].

3. Boltzmann Equilibrium Distribution

The transitions between configurations will eventually stabilize and reach equilibrium

where the population of each configuration does not change. The equilibrium distri-

bution of RNA or protein folding can be calculated from the free energy E of each

configuration. The Boltzmann distribution factor Pi of a given configuration i with

free energy Ei is:

Pi = e
−Ei
kT (2.2)

where k is the Boltzmann constant, and T is the temperature of folding.
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4. Detailed Balance

The transition probabilities between two configurations i and j should satisfy the

detailed balance so that in the equilibrium distribution, the mutual flow of population

in both directions is balanced:

Pi × Kij = Pj × Kji (2.3)

Here Pi and Pj are the populations of configuration i and j, respectively. In equi-

librium, the population of RNA or protein configurations will stay in the Boltzmann

distribution [55]. So the transition probabilities should satisfy the detailed balance:

Kij

Kji

= e
−(Ej−Ei)

kT (2.4)

The Metropolis rules shown in Equation 2.1 satisfy the detailed balance.

C. Energy Landscape Analysis

1. Monte Carlo Simulation

Intuitively, given the energy landscape or the Markov transition network, we can

simulate the stochastic folding process as a random walk guided by the Boltzmann

transition probability. One method to simulate such a random walk is called Monte

Carlo simulation.

Monte Carlo simulation has been used for many years to study chemical reactions

[40]. As shown in Algorithm 1, at every time step, the traditional Monte Carlo sim-

ulation collects information of configurations neighboring the current configuration.

Then it computes the transition probabilities to all its neighbors and probabilistically

chooses a promising transition for the next step.

Since it needs to calculate the local energy landscape at every time step, Monte
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Carlo simulation is expensive and inefficient. For example, some areas on the energy

landscape are the “main streams” of the folding process and are frequently visited.

The Monte Carlo simulation recalculates such areas repetitively. Moreover, since the

Monte Carlo simulation does not have global information about the energy landscape,

it is prone to getting trapped in local minima.

Algorithm 1 Monte Carlo Simulation

1: Set current configuration i as the initial (e.g., an unstructured) configuration ;

2: Set the current time step t = 0;

3: while t is smaller than the predefined simulation time do

4: for each neighbor j of current configuration i do

5: compute the transition probability Kij;

6: end for

7: Probabilistically select the next i from all neighbors;

8: Increment the current time t;

9: end while

Continuous Time Monte Carlo (CTMC) simulation [71] was proposed to speed

up Monte Carlo simulation when the process is trapped in a local minimum doing

self-transition repeatedly. CTMC can handle self-transition efficiently by estimating

the expected waiting time in this local minima instead of repeatedly simulating each

step of self-transition. While the strategy of CTMC is very efficient in the case of

self-transition, it only works effectively for small local minima since it only knows the

neighboring area of the current configuration on the energy landscape.

For protein folding, the size of the protein’s configurational space limited the

application of Monte Carlo techniques to small proteins (e.g., all-atom 56 residue

protein [84]). Flamm [39] proposed a base-pair level Monte Carlo simulation that
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runs reasonably fast on RNA folding. His implementation is included in the publicly

available Vienna RNA package [47]. We use this program to generate the Monte

Carlo simulation results presented in this dissertation.

2. Population Kinetics
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Fig. 5. Example of population kinetics calculated from Monte Carlo simulation.

Population kinetics is the time evolution of the population of a configuration

during the folding process. One intuitive way to calculate the population kinetics is

to count the number of occurrences of a particular configuration (its population) in

an ensemble of pathways at a given time.

Figure 5 shows population kinetics computed from 1000 Monte Carlo folding

pathways. It shows the population kinetics of the native state and the open chain
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(an unstructured configuration). The x-axis is the folding time and the y-axis is the

population normalized to [0,1]. The population of native state starts from 0 and keeps

increasing until it reaches the equilibrium distribution. In contrast, the population of

the open chain starts from 1 and keeps decreasing until the equilibrium is reached.

Population kinetics tells us how the population of each RNA or protein configu-

ration evolves during the folding process. It provides comprehensive information for

us to probe the ensemble properties of RNA or protein folding. For example, if we

could compute the equilibrium distributions of all configurations, then we could iden-

tify metastable configurations as results of misfolding. The equilibrium distribution

can tell us the probability for the misfolding to occur.

We can also identify the rate at which the RNA or protein folds (folding rate).

As we will show in Chapter VI, some RNA’s activities are regulated by their folding

rates. Given the population kinetics, we may estimate the activity of such a new

RNA.

We can further determine the transitional intermediate states that have high

population and long duration throughout the folding process. They are typically the

rate-limiting steps. Information about their structures may help us understand how

the RNA or protein gets trapped in these structures and how we may design new

RNA or protein to make them fold faster or slower. As shown in Chapter VI, since

some RNA functions are related to these intermediate states, such information may

also help us infer the functional rates of the RNA.

D. Energy Landscape of RNA Folding

In the past decade, there has been increased interest in studying the RNA folding

process [25, 104]. The growing interest in RNA folding kinetics is partly motivated
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by the recent finding that some RNA functions such as Gene expression regulation

[58, 24, 14] and catalysis [42, 60] are related with the folding process [100, 14, 42,

60, 58, 24]. Such functions are actually performed before the RNA finishes folding.

For example, RNA folding kinetics may regulate the plasmid copy number, e.g.,

accelerating the refolding speed of RNA II can increase the E. coli ColE1 plasmids

copy number [43, 58]. It has also been shown that the mRNA folding kinetics regulate

the expression of phage MS2 maturation protein [41, 58, 46]. The mRNA acts as a

regulator only when a particular sub-sequence is open. The longer the RNA stays in

an open metastable state, the higher the gene expression rate. In Section VI. B. 2,

we will show how our techniques can be used to study these functions.

Although generally similar to protein folding, RNA folding is different from pro-

tein folding in several aspects. First, an RNA molecule normally has a smaller energy

landscape than a similar sized protein since it only has four different types of nu-

cleotides while a protein has 20 types of amino acids. Second, as we will explain in

detail below, the configuration space of RNA folding is discrete, which is very different

from proteins (or robots). This means that we cannot directly apply implementations

for protein folding to RNA folding. Third, the energy landscape of RNA folding is

typically bumpier than that of proteins. This means that we need to study a broader

area of energy landscape than the area close to the native state, and hence we cannot

use the sampling strategy used for proteins that bias our sampling only near native

state. Also, while the bumpy energy landscape makes it harder for RNA to fold cor-

rectly, it gives some RNA longer folding times which is important because some RNA

functions can be performed only during the folding process. It is possible that the

structure of the energy landscape might provide information about such functions.
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(a) Primary Structure

(b) Secondary Structure

(c) Tertiary Structure

Fig. 6. The three representations of an RNA configuration: (a) primary structure, (b)

secondary structure, and (c) tertiary structure.

1. RNA Structure

An RNA molecule is a sequence of nucleotides (bases). There are four types of bases:

adenine (A), cytosine (C), guanine (G), and uracil (U). The complementary Watson-

Crick bases, C-G and A-U, form stable, hydrogen bonds (base pairs) when they form

a contact. The wobble pair G-U constitutes another strong base pair. These are the

three most commonly considered base pairings [101, 110, 47], and are also what we

consider in our model.

As shown in Figure 6, there are three types of structures to represent RNA

configurations. The tertiary structure of an RNA molecule is a 3D spatial RNA

configuration with a set of base pairs. The secondary structure of an RNA molecule is

a planar representation of an RNA configuration. Although there are slightly differing

definitions [25, 47], secondary structure is usually considered to be a planar subset

of the base pair contacts present (see Table 1, case 3). Non-planar contacts, often

called pseudo knots, are usually considered tertiary interactions and not allowed in

secondary structure. Many definitions of secondary structure, including the one we
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3’

(a)

(b)

. . . ( ( ( ( ( ( . . . . ) ) ) . ) ) ) .

(c)

Fig. 7. Three representations of the same secondary structure for the sequence

GGCGUAAGGAUUACCUAUGCC which denote contact pairs with bonds (a),

arcs (b), and pairs of brackets (c).

adopt, eliminate other types of contacts that are not physically favored. Contacts

considered invalid in our secondary structure are defined in Table 1; this definition

is also used in [47]. Three common representations for RNA secondary structure are

shown in Figure 7 [110].

The tertiary structure gives the most complete representation of RNA structure.

However, the secondary structure is commonly used [109, 110, 47] for several reasons.

First, the energy function [110] of RNA secondary structure has been well studied

and is currently more accurate than the function of tertiary structure. Second, in

many cases the secondary structure provides sufficient information to study many

aspects of folding while dramatically reducing the size of the RNA configuration

space to explore. One justification for this simplification is that research has shown

that the RNA folding process is hierarchical, i.e., secondary structure forms before

tertiary structure [100, 110]. In this work, we focus on the first stage, the formation
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Table I. Definition of valid secondary structure for any two contacts [i, j] and [k, l]

with i < j and k < l.

Description Valid Con-

tact

Invalid

Contact

Case 1: (Separation) Bases of each pair

must be separated by at least 3 other

residues, i.e., |i − j| > 3

i j i j

Case 2: (Multiplicity) Each base can be

paired to only one other, i.e., i = k if and

only if j = l

i k lj k li,j

Case 3: (Planarity) The contacts must be

planar (no pseudo-knots), i.e., if i < k < j,

then i < k < l < j

li j k i k j lj

of secondary structure. Since our method is general, we can use tertiary structure as

long as a good energy function is available.

2. Configuration Space of RNA Secondary Structure.

For a given RNA nucleotide sequence, an RNA (secondary structure) configuration

is a planar set of valid base pairs. As we only consider secondary structure in our

method, we will usually omit this qualification when referring to configurations and

configuration space. The secondary structure configuration space, C, of an RNA

sequence contains all sets of base pairs that meet the criteria in Table 1. The size

of C, |C|, grows exponentially as sequence length increases [110, 33]. Knowledge of

|C| is used to determine the feasibility of enumerating all configurations, or if some
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sampling will be needed. Since exact computation of |C| requires enumerating C,

it should be estimated. A widely used coarse estimation [110] of |C| = 1.8n only

considers the nucleotide sequence length n.

However, |C| depends not only on the RNA sequence length but also on the

sequence itself. If two RNA molecules have the same length but different nucleotide

sequences, the sizes of their configuration spaces will be different. Zuker and Sankoff

[110] developed a close estimation of |C| using a stochastic approach to account for the

effect of the specific sequence. Given an RNA sequence of length n, they calculate

the probabilities pA, pC , pG, and pU of the occurrence of each nucleotide, i.e., the

percentage of that nucleotide in the sequence. They then use p = 2(pApU + pCpG) as

the probability of two bases making a contact and obtain the approximation |C| ≈

hn
3
2 αn, where α = (

1+
√

1+4
√

p

2
)2 and h =

α(1+4
√

p)1/4

2
√

πp3/4 .

Unfortunately, however, the Zuker and Sankoff estimate does not fit our model

because they do not consider the wobble pair G-U or the restriction of the minimal

hairpin size to 5. We modified this formula to fit our model by including the wobble

pair in the probability p′ = 2(pApU + pCpG + pUpG), and then scaling the probability

p′ to p = p′ · (n − 3)(n − 4)/n2 to restrict the minimal hairpin size to 5. Our revised

estimate results from substituting the new p in the equations for α and h.

As can be seen in Table 2, our estimate can be a significantly better estimate

of |C| for our model than the estimate used in [110]. Our exact enumeration results

match Cupal’s results [47]. It can also be seen that |C| grows exponentially with

sequence length, and hence it becomes impractical to enumerate all configurations

when the sequence length exceeds 40 nucleotides [32] and thus some type of sampling

must be used instead.



21

Table II. Estimated and actual sizes of C-space for several RNA sequences.

Estimation

Sequence # nucl Exact |C| 1.8n Zuker [110] Ours

(ACGU)2 8 5 110 22 6

(ACGU)3 12 35 1157 206 47

ACUGAUCGUAGUCAC 15 1.4 × 102 6.75 × 103 1.0 × 103 2.4 × 102

GGCGUAAGGAUUACCUAUGCC 21 8.6 × 103 2.3 × 105 6.2 × 105 1.3 × 104

(ACGU)10 40 1.7 × 108 1.6 × 1010 1.6 × 1010 3.3 × 109

3. Free Energy of an RNA Secondary Structure

Each RNA configuration has a value of free energy to denote the stability of this

structure. The free energy of RNA configurations guides the folding process. Config-

urations with lower free energy are more stable.

Turner rules or nearest neighbor rules [109] are one of the most commonly used

energy functions to compute the free energy of an RNA secondary structure. This

method involves determining the types of loops that exist in the molecule and looking

up their free energy in a table of experimentally determined values. The energy of the

entire structure is the summation of the free energy of each sub structure. Below we

list some common sub-structures of RNA in order of increasing stability. Intuitively,

more base-pair contacts, especially adjacent base-pair contacts, typically yield more

stable structures with lower energy.

One of the most stable substructures (subunits) is called a stack (stem). A stack-

pair contact is a set of adjacent base-pair contacts, i.e., no contacts are isolated from

the others. More formally, if a stack-pair contact has a contact [i, j], where i < j,

then it must also have at least one of the contacts [i − 1, j + 1] or [i + 1, j − 1]. For
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example, Figure 7 (a)-(c) shows an RNA secondary structure composed of two stacks.

Much work has been done to make these rules more detailed and accurate. In our

work, we use Turner rules [109] to calculate the free energy of RNA configurations.

Since our method is general, we can also use other available energy functions such as

the energy functions proposed by Nussinov [72] or Isambert [106].

4. Probabilistic Transition between Neighboring RNA Secondary Structures

During the folding process, an RNA molecule probabilistically changes its configu-

ration from one secondary structure to another neighboring secondary structure in

favor of lower energy configurations.

An RNA molecule can change it’s configuration (secondary structure) by opening

or closing a base pair contact. So on the energy landscape, one configuration is

the neighbor of another configuration if there is only one different base-pair contact

between them. RNA can change its configuration to another distant one through a

sequence of transitions between neighbors.

It is known that during the folding process, RNA tends to form or break sta-

ble subunits (e.g., stems) instead of isolated basepairs [100]. As mentioned in Sec-

tion II. D. 3, a stem (stack) is a stable substructure composed by a set of adjacent

base-pair contacts. This fact is widely utilized by researchers to model RNA fold-

ing. Some researchers propose stem-based Monte Carlo simulation to avoid the local

minimum problem by running the Monte Carlo simulation in larger steps. Instead of

opening/breaking a new base-pair contact at each time step, the stem-based Monte

Carlo simulation forms or breaks a stem (stack) that is a stable subunit of the struc-

ture. Higgs [46] successfully used stem-based Monte Carlo simulations to study some

large RNA. Isambert [106] was able to use a stem-based Monte Carlo simulation to

handle pseudo-knots.
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5. Related Work on RNA Folding

Computational research on RNA folding falls into two main categories: structure

prediction and folding kinetics. Structure prediction attempts to compute the native

state given only the nucleotide sequence. Folding kinetics, on the other hand, is

concerned with the folding process itself and not just the end result.

a. RNA Structure Prediction

Structure prediction is commonly solved with dynamic programming. Nussinov intro-

duced a dynamic programming solution to find the configuration with the maximum

number of base pairs [72]. Zuker and Stiegler [109] formulated a dynamic program-

ming algorithm to address the minimum energy problem. Today, Zuker’s MFOLD

algorithm is widely used for structure prediction. Basically, it attempts to identify

the combination of sub-structures that yields the minimum summation of free energy

using nearest neighbor rules.

McCaskill’s algorithm [67] uses dynamic programming to calculate the partition

function, i.e., the the sum of Boltzmann factors over all possible secondary structures.

The Vienna RNA package [47], implements Zuker and McCaskill’s algorithms as well

as some energy functions and are publicly available as open source projects.

Eddy and Dirks et al., [79, 36] include pseudo-knots in their structure prediction

algorithms. Partly due to the inaccuracy of the energy model, the prediction of

pseudo-knot structures is typically less accurate. Therefore, Ren and Condon et al.,

proposed some heuristics to predict pseudo-knot configurations [78].

Although the studies of structure predictions may not directly provide informa-

tion about folding kinetics, they improved the accuracy of the energy functions that

eventually benefit the studies of the energy landscape. Moreover, the algorithms for
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structure prediction also help us identify low energy configurations to capture the

important features of the energy landscape.

b. RNA Folding Kinetics

Several approaches have been used to study RNA kinetics. Some methods study

RNA folding kinetics by generating microscopic folding pathways. For example, [40,

39, 46, 106] used Monte Carlo algorithms to find folding pathways. As mentioned in

Section II. C. 1, the Monte Carlo method [71, 55] simulates this random walk in the

real (or complete) energy landscape. Flamm [39] proposed a base-pair level Monte

Carlo simulation that runs reasonably fast. His well-known implementation Kinfold

is included in the publicly available ViennaRNA package [39]. In Chapter VI we will

present a comparison of our results with Kinfold.

Higgs [46] proposed a stack-pair level Monte Carlo simulation that only consid-

ers configurations in stack-pairs (see Section II. D. 3. Isambert [106] proposed an

extended stack-pair based Monte Carlo simulation to handle pseudo-knots. In our

work, we also use stack-pairs to handle large RNA efficiently.

Gultyaev et al., [43] proposed the first genetic algorithm to study RNA folding

pathways. Basically, the genetic algorithm attempts to optimize the current config-

urations by perturbing its secondary structures. Then, the sequence of intermediate

configurations generated were kept as the folding pathway. Shapiro et al., [83] devel-

oped a parallel Genetic Algorithm to generate folding pathways. Both methods are

able to study the kinetics of some real RNA.

The above methods for folding pathways can be computationally intensive since

at each step they must calculate the local energy landscape to choose the next step.

As we will describe in Chapter V, in our work, we propose an equivalent Monte Carlo

simulation on our approximated energy landscapes.
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Some methods involve computations on the global energy landscape. Dill [25]

used matrices to approximate the partition function over all possible structures and

uses it to approximate the complete energy landscape. This can give Boltzmann dis-

tribution factors of all configurations. Ding and Lawrence [35] extended McCaskill’s

algorithm to generate statistical sampling of RNA structures based on the parti-

tion function. This method will probabilistically generate a few configurations that

satisfy the Boltzmann distribution. Therefore, we can approximate the energy land-

scape using such a small subset of configurations while still preserving the majority of

Boltzmann distribution. While we propose a different framework, in our method, we

follow the same strategy to probabilistically generate nodes to represent the energy

landscape.

Wuchty [105] augmented Zuker’s algorithm to generate all secondary structures

within some given energy range of the native structure. Flamm and Wolfinger [39, 104]

extended this algorithm to find local minima within some energy threshold of the

native state and connect them via energy barriers. The resulting energy barrier tree

represents the energy landscape. To calculate the energy barrier, they used a flooding

algorithm that is exponential in the size of RNA. Thus, it is impractical for large RNA.

Some statistical mechanical methods are also used to study RNA folding kinet-

ics. For example, the Master Equation is used to compute the population kinetics of

the energy landscape. It uses a matrix of differential equations to represent the tran-

sition probabilities between configurations. Once solved, the dominate modes of the

solution describe the general folding kinetics [74, 55, 25]. Unfortunately this method

is normally not feasible for large RNA since the complete energy landscape is expo-

nential in the length of the RNA molecule. In [104], using the energy barrier tree to

describe the energy landscape, Wolfinger solved the Master Equation on several small

RNAs. However, their Master Equation solutions seem to have a large discrepancy
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with the Monte Carlo simulation results. Moreover, the barrier tree needed to enu-

merate secondary structures which is not feasible for RNA larger than 40 nucleotides.

In our work, using a smaller roadmap to approximate the energy landscape, we are

able to solve the Master Equation on our roadmaps and the solutions compare well

with Monte Carlo simulation results.

E. Energy Landscape of Protein Folding

It is critical that we better understand protein motion and the folding energy land-

scape for several reasons. First, understanding the energy landscape can give insight

into how to develop better structure prediction algorithms [48, 82]. Second, treat-

ments for diseases such as Alzheimer’s and Mad Cow disease can be found by study-

ing protein misfolding [61]. Despite the explosion in protein structural and functional

data, our understanding of protein folding and movement is still very limited. Exper-

imental methods cannot operate at the time scales necessary to record protein folding

and motions [34, 85]. In general, computational results can be used to augment exper-

imentally obtained information to gain a better understanding of the folding process

and to guide the design of future experiments.

1. Protein Structure

Each protein consists of a sequence of amino acid residues [22]. A protein, under

certain physiological conditions, will spontaneously form a stable close-packed three-

dimensional structure, known as the native state [9] (see Figure 8).

The dynamic process of forming the native state is called protein folding. A

protein’s three-dimensional structure is normally referred to as the tertiary structure,

which consists of some local structure components that are called secondary struc-
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Fig. 8. The native state of protein G (B1 immunoglobulin-binding domain of strepto-

coccal protein G). It consists of a central alpha helix and a four strand beta

sheet.

tures. Known secondary structures include alpha helices, beta strands, turns, and

possibly loops [22] (see Figure 8). It is generally believed that in many cases a pro-

tein’s native state possesses the global minimum free energy, or the lowest free energy

accessible [34].

We model the protein as an articulated linkage. Using a standard modeling

assumption for proteins that bond angles and bond lengths are fixed [91], the only

degrees of freedom in our model are the backbone’s phi and psi torsional angles which

are modeled as revolute joints with values in the range [0, 2π).

2. Energy Calculation

There are many methods to calculate the potential function. For the results presented

in this dissertation, we use a coarse potential function [88, 89, 87] similar to [63]. We

use a step function approximation of the van der Waals potential component and

model side chains as spheres with zero dof. If any two spheres are too close (i.e.,

less than 2.4Å during sampling and 1.0Å during connection), a very high potential is
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returned. Otherwise, the potential is:

Utot =
∑

restraints

Kd{[(di − d0)
2 + d2

c ]
1/2 − dc} + Ehp (2.5)

where Kd is 100 KJ/mol and d0 = dc = 2 Å as in [63]. The first term represents

constraints favoring known secondary structure through main-chain hydrogen bonds

and disulphide bonds, and the second term is the hydrophobic effect. The hydrophobic

effect is computed as follows: if two hydrophobic residues are within 6 Å of each other,

then the potential is decreased by 20 kJ/mol.

3. Related Work on Protein Folding

There are many different methods for studying protein folding kinetics. In this section

we briefly introduce some of the methods, comment on their strengths and weaknesses,

and discuss the kinetics that each method provides.

Molecular Dynamics. Molecular dynamics simulates the dynamics of the fold-

ing process using Newton’s classical equations of motion. The forces applied are

usually approximations computed using the first derivative of an empirical poten-

tial function. Molecular dynamics studies are highly realistic and help give insight

into how proteins fold in nature. They also facilitate study of the underlying folding

mechanism, provide folding pathways, and identify intermediate folding states. While

they give physically realistic simulations, these simulations come at a large compu-

tational cost. For example, it has taken months of supercomputer time to simulate

a microsecond of a very small (36 residues) protein folding [37] using molecular dy-

namics! Researchers are identifying ways to counteract the cost of MD simulations.

For example, the Folding@Home distributed computing project [85, 27, 20] computes

MD simulations with a cluster of over 2 million CPUs worldwide.

Monte Carlo Simulation. Monte Carlo simulation finds a single folding trajec-
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tory [31, 59]. However, each run is computationally expensive because at each point

in the configuration space search, complex kinetics and thermodynamics are simu-

lated. Multiple runs are often done because the search is stochastic. Like molecular

dynamics, Monte Carlo simulations provide highly realistic insight into the folding

process.

Master Equation Kinetics. Folding kinetics have also been studied through a

computation across the energy landscape. One way this has been done is through the

use of lattice models that have enumerated the energy landscape, and then the Master

Equation is computed for this landscape [28, 75, 76, 74]. One advantage of these

approaches is that the transition state emerges from the dominate modes of the master

equation solution. However, these models are very simplistic and do not represent

real structures or sequences. Recent applications of the Master Equation have been

able to study proteins with full structures [103, 102]. However, the enumeration of the

folding landscape is limited to the formation of contact clusters, which are groupings

of nearby contacts as derived from the native-state contact map.
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CHAPTER III

A PRIMER ON PROBABILISTIC ROADMAP METHODS

Fig. 9. A simple motion planning environment. Given a description of the movable

object and the obstacles, the objective is to find a collision-free path from taking

the movable object from the start configuration to the goal configuration.

The Probabilistic Roadmap Method (prm) is a randomized method to solve

motion planning problems. Given a description of the environment and a movable

object (the ‘robot’), the motion planning problem is to find a feasible path that

takes the movable object from a given start to a given goal configuration [62]. An

example is shown in Figure 9. The environment contains several wall-like obstacles

(some with holes) and a movable stick. The objective is to find a path taking the

stick through the holes in the obstacles to the final configuration. As mentioned in

Chapter I, motion planning is a problem that was originally studied in the context

of robotics [62] and techniques for motion planning have been successfully applied to

a broad range of problem domains. Most motion planning techniques [62, 52] take

advantage of a useful abstraction called configuration space [66], where the object
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whose motion to be planned is mapped to a point in this space. A major advantage

of such an abstraction is that techniques developed in this abstract space can be

applied easily to many problem domains, including the RNA and protein folding

problem studied here. In this chapter, we first introduce configuration space. We

then describe the Probabilistic Roadmap Methods (prms) [57], a successful technique

for motion planning that has been used to solve many problems in high dimensional

configuration space [44, 107, 68, 54, 30, 45, 94, 56, 10, 17, 80, 16, 64, 19, 86, 88,

89, 7, 5, 6, 90, 87, 12, 11, 98, 99, 97, 92, 93, 95, 96, 1, 3, 21, 51]. We conclude the

chapter with an example showing how prms can be applied to study protein folding

[88, 89, 7, 5, 6, 90, 87, 98, 99, 97].

A. Configuration Space

A configuration of an arbitrary object is a specification of the position of every point

of the object relative to some fixed frame [13]. The configuration space [66] or C-space

of the object is the space that includes all its configurations. For example, one way

to specify the exact configuration of a three-dimensional rigid body is to use three

numbers (x, y, z) to specify the position of some point (e.g., the center of mass), and

to use another three numbers (roll, pitch, yaw) to specify its orientation. Thus, the

six-tuple (x, y, z, roll, pitch, yaw) completely specifies a configuration of the three-

dimensional rigid body. The corresponding C-space is therefore six-dimensional, with

axes corresponding to x, y, z, roll, pitch, yaw, respectively.

It is important to note that C-space contains all configurations, feasible or not.

A common feasibility test in applications such as robotics is collision detection. We

say a configuration is in collision if it collides with the environment (or itself) when

the object is placed in that configuration. Based on a binary feasibility test, such as
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collision detection, C-space can be partitioned into the set of feasible configurations,

denoted as the Free C-space, or C-free, and the set of all infeasible configurations,

denoted as C-obstacle [62]. Other feasibility tests are used in other applications. For

example, in some molecular applications [90, 98, 99], we use energy to measure the

feasibility of a configuration.

Note that the three-dimensional rigid body is mapped to a point in its C-space,

namely (x, y, z, roll, pitch, yaw). This is true no matter how complicated the geometry

of the three-dimensional rigid body is. The complexity of its geometry certainly does

not disappear, but it is absorbed and reflected in the complex shape of the C-obstacles.

Indeed, much of the power of the C-space abstraction is that any object is represented

by a single point in that object’s configuration space. Thus, algorithms developed for

one C-space can often be applied to other C-spaces. Therefore, there is a trade-off

between the complexity of the object and of the C-space obstacles.

B. The Complexity of Motion Planning

Although many different motion planning methods have been proposed, most are

not used in practice because they are computationally infeasible except for some

restricted cases, e.g., when the movable object has very few degrees of freedom (dof)

[62]. Indeed, most motion planning problems of interest are known to be PSPACE-

hard [77]. For example, Hopcroft et al. showed that motion planning for planar

linkages [49] and multiple rectangles [50] is PSPACE-hard. Joseph and Plantiga [53]

showed that motion planning for planar arms is PSPACE-hard.

There is strong evidence that any complete planner (one that is guaranteed to

find a solution or determine that none exists) requires time exponential in the number

of dof of the movable object [23], which matches the complexity of the most efficient
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algorithm known to date [23].

C. Probabilistic Roadmap Methods (prms)

Due to the intractability of the problem, attention has focused on randomized or prob-

abilistic motion planning methods. In particular, we note the probabilistic roadmap

methods, or prms, that have recently proved successful on many previously un-

solved problems involving high-dimensional C-spaces such as closed-chain systems

[44, 107, 68, 54, 30, 45, 94], deformable objects [56, 10, 17, 80], flocking behaviors

[16, 64, 65, 18], and even computational Biology and Chemistry (e.g., drug docking

[19, 86], protein folding [88, 89, 7, 5, 6, 90, 12, 11, 87, 98, 99, 97]) and RNA folding

[92, 93, 95, 96].

Our approach to the folding problem is based on the prm approach to motion

planning [57]. Briefly, prms work by sampling points ‘randomly’ from C-space, and

retaining those that satisfy certain feasibility requirements (e.g., they correspond to

collision-free configurations of the movable object, see Figure 12(a)). Then, these

points are connected to form a graph, or roadmap, using some simple deterministic

planning method to connect ‘nearby’ points (see Figure 12(b)). During query pro-

cessing, the start and goal configurations are connected to the roadmap and paths

connecting them are extracted from the roadmap using standard graph search tech-

niques (see Figure 12(c)). Figure 11 shows a pseudo code description of the algorithm.

A major strength of prms is that they are quite simple to apply, even for problems

with high-dimensional configuration spaces, requiring only the ability to randomly

generate points in C-space, and then test them for feasibility (the local connection

can often be performed using multiple applications of the feasibility test).
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PRM Roadmap − after Node Generation

C−Space

(a)

C−obst

C−obst
C−obst

C−obst

C−space

PRM Roadmap − after Connection

(b)

start

C−obst

C−obst
C−obst

C−obst

goal

C−Space

PRM Roadmap − Query 

(c)

Fig. 10. A prm roadmap in C-space. A prm roadmap: (a) after node generation, (b)

after the connection phase, and (c) using it to solve a query.

D. PRMs for Protein Folding

As an example PRM application, we now describe a prm-based method to study

protein folding when the native structure is known [89, 7, 6, 90, 87, 98, 99, 97]. This is

foundational work for this dissertation and also illustrates how we can apply a prm to

study a biological problem. Distinguished from the usual prm applications, here the

moving object is the protein, and the collision-detection feasibility test is replaced by a

preference for low energy configurations. Moreover, we are interested in energetically

feasible pathways between configurations, whereas many prm applications are only
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PRMs: Probabilistic Roadmap Methods

I. Preprocessing: Roadmap Construction

1. Node Generation (find valid configurations)

2. Connection (connect nodes to form roadmap)

(repeat as desired)

II. Query Processing

1. Connect start/goal to roadmap

2. Find path in roadmap between connection nodes

Fig. 11. A pseudo code description of the prm algorithm.

concerned with determining any feasible pathway.

(a) (b) (c)

Fig. 12. A prm roadmap for protein folding shown imposed on a visualization of the

potential energy landscape: (a) after node generation (note sampling is denser

around N, the known native structure), (b) after the connection phase, and

(c) using it to extract folding paths to the known native structure.

In this application, we assume that the native fold is known and our goal is to

simulate and study the protein folding process, i.e., how the protein folds to the native
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state from some initial state.

The method is simple and consists of three main steps: (1) sampling configura-

tions from the landscape (see Figure ??(a)), (2) making transitions between sampled

configurations (see Figure ??(b)), and (3) analyzing the energy landscape and gen-

erating folding pathways (see Figure ??(c)). In the first step, configurations (nodes)

are sampled on the energy landscape. Several sampling methods have been proposed,

including Gaussian sampling [7, 6, 90, 87] and Rigidity-based sampling [98, 99] to

bias sampling to configurations near to or that have similar rigidity components as

some given configurations, e.g., the known native configuration. In the second step,

connections (edges) are made between sampled configurations with similar structure

(so that there may be feasible transition between them). Weights are assigned to

directed edges to reflect the energetic feasibility of transitioning between the two

endpoint configurations. This combination of nodes and weighted edges forms a

roadmap that approximates the energy landscape. This roadmap encodes thousands

of folding pathways. In the third step, pathways are extracted from the roadmap and

the folding kinetics are analyzed.

An edge connecting two nodes, q1 and q2, is labeled with an edge weight that

reflects the energetic feasibility of transitioning between them. A local planner is

used to identify a transition that goes from q1 to q2 through transitional nodes,

q1 = c0, c1, ..., cn−1, cn = q2. For each pair of consecutive configurations ci and ci+1,

the probability Pi of transitioning from ci to ci+1 depends on the difference between

their potential energies ∆Ei = E(ci+1) − E(ci):

Pi =











e
−∆Ei

kT if ∆Ei > 0

1 if ∆Ei ≤ 0
(3.1)

This keeps the detailed balance (see Section II. B. 4) between two adjacent states
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and enables the edge weight to be computed by summing the logarithms of the prob-

abilities for all pairs of consecutive configurations in the sequence. With this edge

weight definition, simple graph search algorithms [29] can be used to extract the most

energetically feasible pathways (that has lowest total summation of edge weights) in

the roadmap between two given states (e.g., from the unfolded state to the folded

state).
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CHAPTER IV

USING PROBABILISTIC ROADMAP METHODS TO MODEL RNA ENERGY

LANDSCAPES∗

Our approach to RNA folding is based on the probabilistic roadmap (prm) technique

for motion planning [57]. As explained in Chapter III, motion planning determines

valid paths to move objects from one configuration to another. prms build graphs

(roadmaps) that approximate the topology of the feasible planning space by first

sampling valid configurations (nodes) and connecting them with feasible transitions

(edges). In the context of RNA folding, such a roadmap provides a natural model of

the energy landscape from which we can study many different properties.

As explained in Chapter II, we model a RNA secondary structure as the set of

existing base pair contacts in the secondary structure. Then we use Turner rules (see

Section II. D. 3) to calculate the free energy for this set of base pair contacts. The

goal of roadmap construction is to build an approximation of the energy landscape

that captures its important features. The quality of the approximation depends on

our node sampling (generation) and connection methods.

Some early roadmap construction methods in Section IV. A- C were published

in [92, 93]. The extended node sampling and local planning methods in Section IV. A

and Section IV. C were published in [95, 96].

∗Part of the data reported in this chapter is reprinted with permission from “Us-
ing Motion Planning to Study RNA Folding Kinetics” by X. Tang, B. Kirkpatrick,
S. Thomas, G. Song and N.M. Amato, 2005, Journal of Computational Biology, vol.
12, no. 6, pp. 862-881. Copyright 2005 by Mary Ann Liebert Inc.
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A. Node Generation

Our method is general and can use configurations generated by techniques other than

the ones mentioned in this dissertation. We have developed three techniques for

generating RNA configurations: complete base-pair enumeration (BPE), stack-pair

enumeration (SPE), and probabilistic Boltzmann sampling (PBS). Each method has

its strength and weakness. While BPE completely describes the energy landscape,

it is limited to small RNA where enumeration is feasible (e.g., 40 nucleotides or

less). SPE attempts to generate metastable configurations using only stable subunits.

It approximates the energy landscape well using a smaller (one or two orders of

magnitude) roadmap than a complete BPE roadmap. The PBS method scales even

better (using a roadmap 10 orders of magnitude smaller than a BPE roadmap) for

much larger RNA (with hundreds of nucleotides).

Complete Base-Pair Enumeration (BPE). Since RNA secondary structures

are discrete configurations, it is possible to enumerate all configurations for small RNA

molecules. However, it is not feasible for molecules with more than 40 nucleotides [32].

Let S be the set of all possible base-pair contacts. To generate a valid configuration,

we first select one contact in S. Then we remove all contacts from S that would

yield an invalid secondary structure [109] if combined with already selected contacts.

The process of selecting a valid contact from S and then removing invalid contacts

from S continues until S is empty. Each time we select a new contact, we define a

new secondary structure. To enumerate the entire space, we enumerate all possible

combinations of a valid set of contacts from S as above. Figure 13 shows the complete

enumeration for the RNA sequence ACGUCACGU.

Stack-Pair Enumeration (SPE). This enumeration contains only those con-

figurations containing stack-pair contacts. A stack-pair contact is a set of adjacent
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Fig. 13. Complete enumeration of all configurations for RNA sequence ACGUCACGU.

Configurations (a), (c), (d), (h) and (j) are stack-pair configurations.

base-pair contacts, i.e., no contacts are isolated from the others. More formally, if

a stack-pair contact has a contact [i, j], where i < j, then it must also have at

least one of the contacts [i − 1, j + 1] or [i + 1, j − 1]. For example, the contacts in

Figure 13(c) form a stack, but the contacts in Figure 13(f) do not because they are

not adjacent. A configuration is a valid stack-pair configuration if it only has stack-

pair contacts, i.e., if there are no isolated base-pair contacts. The configurations in

Figure 13(a), (c), (d), (h), and (j) are the enumeration of stack-pair configurations

for RNA sequence ACGUCACGU. We favor these configurations because isolated
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base-pair contacts are unstable. This simplification has also been used in [108]. We

can study larger RNA molecules with this method than is possible with complete

enumeration (BPE) because we can enumerate all stack-pair configurations without

enumerating all configurations. The stack-pair enumeration is implemented similarly

to the base-pair enumeration except that S contains stacks instead of base-contact

pairs.

Table A lists the number of nodes generated for some small RNA using BPE and

SPE, respectively. We can see that for small RNA, the number of nodes generated

using SPE is much smaller than BPE. Unfortunately, the SPE method does not scale

well as the number of nucleotides increases. Typically, an RNA with around 40

nucleotides would have over 105 stack-pair configurations.

Probabilistic Boltzmann Sampling (PBS). Here we attempt to probabilis-

tically generate configurations according to the Boltzmann probabilities. We first

use Wuchty’s algorithm [105] to enumerate low energy (suboptimal) configurations

within a given energy threshold and use them as “seeds” for roadmap construction.

By increasing the energy threshold, we can generate more suboptimal configurations

using Wuchty’s algorithm. However, as the size of the RNA or the energy threshold

increases, the number of suboptimal configurations increases exponentially. Thus, it

is expensive for Wuchty’s algorithm to generate high energy configurations. There-

fore, we augment the suboptimal sampling with additional random configurations.

Then, we use a probabilistic Boltzmann filter to retain a subset of the configurations

based on their Boltzmann distribution factors. For a given configuration i with free

energy Ei, the probability Pi to retain it is:

Pi =











e
−(Ei−E0)

kT if (Ei − E0) > 0

1 if (Ei − E0) ≤ 0
(4.1)
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Table III. Comparison between different roadmap construction strategies. BPE and

SPE denote base-pair enumeration and stack-pair enumeration.

# Generation #

Name Sequence length Method Nodes

RNA0 ACUGAUCGUAGUCAC 15 BPE 142

SPE 15

RNA1 CGCGCUACUCCUAGAGCU 18 BPE 876

SPE 22

RNA2 UAUAUAUCGACACGAUAUAUA 21 BPE 5,353

SPE 250

RNA3 GGCGUAAGGAUUACCUAUGCC 21 BPE 8,622

SPE 167

1K2G CAGACUUCGGUCGCAGAGAUGG 22 BPE 12,137

SPE 71

where E0 is a reference energy threshold which we can use to control the number of

samples kept, k is the Boltzmann constant, and T is the temperature of folding. In

this way, we may generate more configurations probabilistically with the Boltzmann

distribution which prefers low energy configurations but will allow some high energy

configurations. Our results in Chapter VI indicate that this sampling method is

efficient in capturing the important features of the energy landscape.

B. Node Connection

Once we have a set of samples, we must connect them to form an approximate map of

the energy landscape. Each connection will end up with an edge that corresponds to
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the transition between two nodes. Ideally, we want the edges to capture the dominant

transitions between configurations, and the edge weights should reflect the transition

probabilities.

1. Identifying Nodes for Connection

It is impractical (and generally not necessary) to attempt all possible connections.

Instead, we attempt to connect a configuration with the k closest neighboring con-

figurations according to some distance metric, where k is a small constant typically

ranging from 5 to 50. This strategy is commonly used [57, 8, 3, 15, 2, 4]. Then, each

pair of neighboring configurations are connected using a local planner.

2. Distance Metrics

The distance metric defines which configurations are close to each other and which

are far apart. Ideally, it should be consistent with the local planner so that if a

pair of configurations are considered to be close by the distance metric, then they

should be likely connected by the local planner [15, 2, 4]. In this dissertation, we

use base-pair distance (i.e., the number of base-pair contacts that differ between two

configurations) since it is the minimum number of steps needed (i.e., base pairs that

have to be opened or closed) to transition from one configuration to another. Our

approach can utilize other distance metrics such as string edit distance or tree edit

distance [81], but we found that base-pair distances perform well on the RNA we have

studied.



44

C. Local Planners

To connect a given pair of configurations, we not only want to compute a representa-

tive transition path (i.e., a set of intermediate configurations) between them, but we

also want to assign the edge weight to approximate the Boltzmann transition proba-

bility. Note that these two goals are not always the same. If two configurations are

far apart, there might be many possible transition paths while none dominate the

transition probability.

1. Generating Transition Pathways

In this section, we present two local planners that we developed. First we present a

greedy local planner that generates a single transition path and computes the tran-

sition probability (encoded in the edge weight) from that path. This local planner

works well when configurations are close to each other. Then we present the second

local planner we designed to generate probabilistic pathways for larger RNA.

Greedy Local Planner. The first local planner follows a greedy strategy to com-

pute a transition pathway between two configurations. Our goal here is to identify low

energy transitions that connect each pair of nodes. Algorithm 2 shows the framework

of this local planner. To generate a transition from configuration c1 to configuration

c2, we first identify the set O of contacts to be opened (i.e., contacts in c1 but not

in c2) and the set L of contacts to be closed (i.e., contacts in c2 but not in c1). See

Figure 14(a): contacts q1 and q2 are in O; contacts p1 and p2 are in L. To ensure

that transitional configurations do not violate our planarity constraint, we construct

a conflict graph G between O and L. G describes which contact pairs cannot exist

together in a valid configuration. If one contact p ∈ L conflicts with another contact

q ∈ O, then p cannot be closed until q is opened, and we have an edge from q to
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p in G. See Figure 14(b): q1 and q2 conflict with p1; q2 conflicts with p2. A valid

transition is a sequence of transitional configurations that doesn’t violate G.

Algorithm 2 Greedy Local Planner.

Input. A pair of nodes c1 and c2 to be connected

Output. The edge e composed of the transitional configurations

1: Identify the set O of contacts that only exist in c1

2: Identify the set L of contacts that only exist in c2

3: Construct a conflict graph G between O and L

4: while O and L is not empty do

5: Use a greedy strategy to identify a contact in O or L to open or close

{The order to choose contacts should not violate the conflict graph G}

6: Generate a new transitional configuration c after each opening/closing opera-

tion

7: Push the new configuration c into the edge e

8: end while

9: return the edge e

c1:  . . . . . ( . ( ( . . . . ) ) ) . . . . 

c2:  . . . . . ( . ( ( . . . ) ) . ) . . . . 

q1 q2

p1 p2

(a)

q1 q2

p1 p2

O:

L:

(b)

c1: . . . . . ( . ( ( . . . . ) ) ) . . . . 
c3: . . . . . ( . ( ( . . . ) . ) ) . . . . 
c4: . . . . . ( . ( ( . . . ) ) . ) . . . . 
c2: . . . . . ( . ( ( . . . ) ) . ) . . . . 

(c)

Fig. 14. Transitional node generation. (a) Start and goal configurations and contact

pairs to be opened and closed: q1, q2 are in O; p1, p2 are in L. (b) Conflict

graph: q1 and q2 conflict with p1, q2 conflicts with p2. (c) Sequences generated:

First open q2 and close p2, then open q1 and close p1. c3 and c4 are the two

transitional configurations to connect c1 and c2, here c4 happens to be identical

to c2.
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Our framework can use any strategy to determine the order to open contacts in

O and close contacts in L. The most naive method is to first open all the contacts in

O and then to close all the contacts in L. This does not violate G, but it produces

high energy transitional configurations. To find low energy transitions, we want to

produce configurations with as many contacts as possible since they usually have

lower energy. So, once we open a contact, we close all contacts in L that do not

violate G.

We use a greedy strategy to determine the order for opening the contacts. In

particular, we sort the contacts in L according to the number of contacts in O they

conflict with (given by their indegree in L). We select the contact in L with the

smallest number of conflicts and open all the contacts in O that conflict with it. We

then close all the contacts in L that have no conflicts. See Figure 14(c): c3, c4 are the

two transitional configurations generated for the connection. This is repeated until

both O and L are empty. This strategy works well for the RNA we have studied.

Stem-based Local Planner. We also develop another local planner that is based

on some known features of RNA folding. It is known that during the folding pro-

cess, RNA molecules tend to form or break stable subunits (e.g., stems) instead of

isolated basepairs. This local planner takes advantage of this information to generate

transitional configurations.

Algorithm 3 shows the stem-based local planner algorithm. Although the frame-

work looks similar to the greedy local planner, there are two major differences. First,

in the stem-based local planner, we find subunits (stems) between the start and goal

configurations and calculate the nucleation cost (which is the energy barrier to form

each stem) for each of them. Then, we generate a transition pathway connecting

the start and the goal configuration by probabilistically opening/closing the stems.

Similar to Monte Carlo simulation, at every step it chooses a stem probabilistically



47

Algorithm 3 Stem-based Local Planner.

Input. A pair of nodes c1 and c2 to be connected

Output. The edge e composed of the transitional configurations

1: Identify the set O of stems that only exist in c1

2: Identify the set L of stems that only exist in c2

3: Construct a conflict graph G between O and L

4: while O and L is not empty do

5: Probabilistically select a stem in O or L to open or close

{The probability depends on the nucleation cost of the stem}

{The order to choose stems should not violate the conflict graph G}

6: Generate a new transitional configuration c after each operation to open/close

a base-pair contact

7: Push the new configuration c into the edge e

8: end while

9: return the edge e



48

by its nucleation cost. We will use this method later in our analysis tools MMC (see

Section V. A. 2).

2. Computing the Transition Probability

When an edge (qi, qj) is added to the roadmap, it is assigned a weight Wij that re-

flects the Boltzmann transition probability between its two end nodes qi and qj, i.e.,

the probability the molecule folds from one configuration to the other. We develop

two different ways to calculate this transition probability. In the first method, we

calculate the transition probability using all transitional configurations on a domi-

nant transition pathway between two points. In the second method, we calculate

the transition probability only considering the configuration with the highest energy

(energy barrier). The first method works well if two end nodes are not far from each

other and therefore the edge is a dominant path connecting the two end nodes. When

two nodes are far from each other, the second method can better approximate the

transition probability.

Calculation Using all Transitional Configurations. The method we de-

scribe here works well if the nodes are close enough that the sequence of transitional

configurations closely approximates the dominant path connecting two configurations.

When an edge (q1, q2) is added to the roadmap, suppose it is composed of the sequence

of transitional configurations {q1 = c0, c1, c2, . . . , cn−1, cn = q2} that are determined

by the local planner. For each pair of consecutive configurations ci and ci+1, we use

the Metropolis rules to calculate the Boltzmann transition probability Pi of moving

from ci to ci+1:

Pi,i+1 =











e
−∆Ei,i+1

kT if ∆Ei,i+1 > 0

1 if ∆Ei,i+1 ≤ 0
(4.2)
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where ∆Ei,i+1 = E(ci+1)−E(ci), k is the Boltzmann constant, and T is the tempera-

ture of folding. Basically, the transition probability calculated from Equation 4.5 will

satisfy the detailed balance (see Section II. B. 4):

Pi,i+1

Pi+1,i

= e
−(Ei+1,i−Ei,i+1)

kT (4.3)

If the transition from node q1 to q2 is dominated by the sequence of transitions

from c0 to c1, c1 to c2, . . . , until cn−1 to cn, then the transition probability K(q1, q2)

from q1 to q2 is the multiplication of the transition probabilities of the sequence.

Therefore, the Boltzmann transition probability K(q1, q2) is calculated as

K(q1, q2) =
n−1
∏

i=0

Pi. (4.4)

Approximation using Energy Barrier. When two nodes get further from

each other, there may be multiple pathways connecting two nodes, so the single

transition path analyzed in the previous method may not be the dominant pathway,

and as a result, accuracy will be lost. Therefore, in this section we develop another

method to approximate the transition probability. First, we find the stable subunits

(stems) that are different between qi and qj. We calculate the nucleation cost (i.e.,

the energy cost to close the stem) for each stem and identify the maximum one. This

maximum cost is the energy barrier Eb the folding process must go over to form all

the stems. We use Eb to estimate the transition probability between qi and qj. This

strategy is widely used in Monte Carlo simulations [46, 106] and genetic algorithms

for folding pathways [43, 83].

We calculate the Boltzmann transition probability Kij (or transition rate) of
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moving from qi to qj using Metropolis rules [34]:

Kij =











e
−∆E

kT if ∆E > 0

1 if ∆E ≤ 0
(4.5)

where ∆E = max(Eb, Ej)−Ei, k is the Boltzmann constant, and T is the temperature

of folding. Note that the same energy barrier Eb is also used to estimate the transition

probability from Kji, so the transition probabilities satisfy the detailed balance (see

Section II. B. 4):

Kij

Kji

= e
−(Ej−Ei)

kT (4.6)

3. Encoding the Transition Probability in the Edge Weight

In our work, we calculate the edge weight Wij as:

Wij = −log(Kij)) =
−∆E

kT
. (4.7)

(Negative logs are used since 0 ≤ Kij ≤ 1.)

There are two reasons for us to encode the transition probability in the edge

weight in this way. First, now the transition probability of a pathway can be quickly

calculated from the summation of edge weights on this path. Suppose we have a

path composed of a sequence of nodes: {q0, q1, q2, . . . , qn−1, qn}. Then the transition

probability of Kq0,qn =
∏n−1

i=0 Pqi,qi+1
=

∏n−1
i=0 e−Wqi,qi+1 = e−

Pn−1
i=0 Wqi,qi+1 .

Second, now the path with the lowest edge weight will correspond to the path

with the highest transition probability. By assigning the weights in this manner, we

can easily extract the most energetically feasible path in our roadmap using simple

graph search algorithms for the smallest-weighted path [29]. This is the same method

used in other prm applications [44, 56, 19], including our previous work on protein

folding [88, 89, 5, 6, 90, 87, 98, 99].
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D. Results of Roadmap Construction

Recall that we have three sampling methods to generate nodes in the roadmaps: BPE,

SPE and PBS. A BPE roadmap contains a full enumeration of all possible secondary

structures and is considered to be a description of the complete energy landscape. Its

size will grow exponentially in the RNA length and thus is only practical for small

RNA (less than 40 nucleotides). An SPE roadmap enumerates all stack-pair (see

Section IV. A) configurations that are a small subset of the complete energy landscape.

The size of a PBS roadmap can be even smaller since we can control the size of the

roadmap using the sampling threshold (see Section IV. A). In Section VI. A, we will

show that the PBS method can use smaller roadmaps to approximate the complete

energy landscapes better than the SPE roadmaps.

In Table 4 we list some of the roadmaps we have constructed for several RNA.

Note that the BPE roadmap is the complete enumerated energy landscape and grows

very quickly – thus we cannot generate them for larger RNA. In contrast, the SPE and

PBS sampling methods yield much smaller roadmaps as we expect. These roadmaps

are used to generate the results presented in Chapter VI.
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Table IV. Comparison between different roadmap construction strategies. BPE, SPE,

and PBS denote base-pair enumeration, stack-pair enumeration, and prob-

abilistic Boltzmann Sampling. It shows the number of roadmap nodes and

edges, and running time for RNA sequences studied.

# # Running

Name Sequence Length Method Nodes Edges Time (s)

RNA0 ACUGAUCGUAGUCAC 15 BPE 142 946 0.39

SPE 15 92 0.02

PBS 14 82 0.02

RNA1 CGCGCUACUCCUAGAGCU 18 BPE 876 11,491 14.31

SPE 22 132 0.03

PBS 19 114 0.02

RNA2 UAUAUAUCGACACGAUAUAUA 21 BPE 5,353 74,254 523.37

SPE 250 1,620 1.33

PBS 63 425 0.12

RNA3 GGCGUAAGGAUUACCUAUGCC 21 BPE 8,622 119,628 1335.4

SPE 167 1,057 0.64

MCS 40 249 0.06

1K2G CAGACUUCGGUCGCAGAGAUGG 22 BPE 12,137 626,348 2,561.94

SPE 70 3,524 1.10

PBS 43 1,170 0.13
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CHAPTER V

TOOLS TO ANALYZE ENERGY LANDSCAPES∗

The roadmap is an approximation of the energy landscape. We have developed several

tools to analyze the roadmaps that enable the study of individual folding pathways as

well as global folding kinetics. These are general tools for analyzing energy landscapes

approximated by roadmaps. We developed these tools for RNA [92, 93, 95, 96] and

have also applied them to proteins [97]. We expect to apply these tools to study

energy landscapes of other molecules in the future. In this chapter, we describe two

types of map-based analysis tools that can be used to analyze the macroscopic and

microscopic features of the energy landscape.

The first type of tools extract individual folding pathways from the roadmaps. We

developed both a deterministic tool to extract energetically feasible folding pathways

and a probabilistic tool called map-based Monte Carlo (MMC) method to stochasti-

cally extract folding pathways. Such pathways provide microscopic information about

the folding process and can be used to study detailed folding events such as the for-

mation of substructures and energy profiles on pathways. Sometimes such events are

associated with some kinetics-based functions. As will be shown in Section VI. B. 2,

using our tools, we successfully predicted functional levels for some of these functions.

The second type of tools can be used to study the global kinetics of the energy

landscape. We developed a new tool called map-based Master Equation (MME) to

∗Part of the data reported in this chapter is reprinted with permission from “Us-
ing Motion Planning to Study RNA Folding Kinetics” by X. Tang, B. Kirkpatrick,
S. Thomas, G. Song and N.M. Amato, 2005, Journal of Computational Biology, vol.
12, no. 6, pp. 862-881. Copyright 2005 by Mary Ann Liebert Inc., and from “Kinet-
ics Analysis Methods For Approximate Folding Landscapes” by L. Tapia, X. Tang,
S. Thomas, N.M. Amato, Bioinformatics, vol. 23, no. 13, pp. 539-548, Copyright
2007 by Oxford University Press.
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study population kinetics that provides macroscopic properties of the folding process

such as the folding rate and transition states. Such properties can be observed in

experimental studies and are well correlated with our results as we will show in

Section VI. B. 1.

On the one hand, these two types of tools provide information from different

(macroscopic and microscopic) perspectives of the folding process. On the other

hand, both tools can be used to study some common features of the folding kinetics.

For example, we can compute the population kinetics by either solving the map-

based Master Equation (MME) or analyzing an ensemble of map-based Monte Carlo

(MMC) simulation pathways. Section VI. A compares population kinetics calculated

using these two types of tools. The MME method in Section V. B. 3 was previously

published in [92, 93, 97, 95, 96] while the MMC method in Section V. A. 2 was

published in [97, 95, 96].

A. Pathway Extraction

A folding pathway is a sequence of transitional configurations the molecule goes

through during the folding process from an unfolded configuration to the native con-

figuration. Below we present a deterministic and probabilistic method to extract

pathways from our roadmaps.

1. Energetically Feasible Pathways

The deterministic method extracts the most energetically feasible folding pathways

to the native state. This has been done in other previous work to study molecular

motions using prm [88, 89, 7, 5, 6, 90, 12, 11, 87, 98, 92, 93]. As described in Sec-

tion IV. C. 3, the weight of an edge in a roadmap represents the energetic feasibility
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of the transition represented by that edge. That is, the shortest pathway (with the

minimum total weight) has the highest transition probability. Therefore, we can use

graph algorithms (such as Dijkstra’s algorithm [29]) to extract the shortest pathway

corresponding to the most energetically feasible transition. For a given folding path-

way, we can compute the free-energy profile, energy barriers, and important states

of the folding process. We provide an individual RNA folding pathway result in

Section V. A. 2.

We can also extract an set of folding pathways to analyze some global features

of the energy landscape. For example, using an ensemble of pathways, we can study

the overall formation order of substructures on the entire energy landscape. These

pathways represent the major streams from different configurations to the native state.

We can analyze each folding pathway to identify the formation of substructures on the

pathway. Then, we group these pathways by their substructure formation orders and

get the statistical formation order of these substructures. For example, for structurally

similar protein G and L and two mutants of G, we successfully identified the same

secondary structure formation order as observed in experimental studies [98, 99].

More results of our studies on secondary structure formation order for many proteins

are presented in [88, 89, 5, 6, 90, 87, 98, 99].

2. Map-based Monte Carlo Simulation

While the shortest pathway shows the most energetically feasible pathway with the

highest probability, it does not mirror the stochastic nature of the folding process

and cannot be used to determine the statistical kinetic information in which we are

interested. The folding process is actually stochastic rather than deterministic [55].

Transitioning from one configuration to another is probabilistically biased by the

Boltzmann transition probabilities. As explained in Section II. C. 1, the Monte Carlo
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method [40, 55, 71] simulates this random walk on the real (or complete) energy

landscape. Kinfold is a well-known implementation of Monte Carlo simulation in the

publicly available ViennaRNA Package [39], while several other groups [31, 59] also

use Monte Carlo to study protein folding. These simulations can be computationally

intensive since at each step they must calculate the complete local energy landscape

to chose the next step.

We develop the map-based Monte Carlo (MMC) simulation to generate prob-

abilistic pathways from our roadmaps. Similar to the Monte Carlo simulation, our

method starts from a random configuration in this roadmap and iteratively chooses

the next configuration probabilistically from the neighbors of the current configura-

tion based on the transition probabilities. Hence, distinguished from the standard

Monte Carlo simulation, running on pre-computed roadmaps as an approximation of

the energy landscape, our MMC method does not need to calculate the local energy

landscape at every time step. In particular, on a roadmap, we have immediate ac-

cess to all the neighbors of a given node (configuration) and can quickly compute

the transition probability to each neighbor. Because the edge weight Wij encodes

the transition probability between two endpoints i and j (see Equation 4.7), we can

easily recalculate the transition probability Kij from the edge weight Wij as K0e
−Wij

where K0 is a constant adjusted according to experimental results.

In essence, our MMC method is just the standard Monte Carlo (MC) simu-

lation running on a different description of the energy landscape. The simulation

results of MMC should be comparable to MC if our roadmaps accurately describe

the energy landscape. We will compare some simulation results of MMC and MC in

Section VI. A.
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3. An Example of Folding Pathway

In this section, we present example folding pathways for an RNA and compute the

free-energy profile, energy barriers, and important states of the folding process. From

all the folding pathways to the native configuration, we extract the pathway with

minimum total weight because this corresponds to the most energetically feasible

path in our roadmap.

For a given pathway, its energy profile shows the energy of each transitional

configuration, and it is easy for us to find the local minima and energy barriers on

the pathway. These profiles provide an informal visualization of the folding process.

Figure 15 gives an example folding pathway. It shows the energy profile and

folding pathway for RNA3 (GGCGUAAGGAUUACCUAUGCC). It first folds into a

misfolded configuration (configuration 6) and then folds to the native state (configu-

ration 18). From the misfolded configuration, it has to overcome a high energy barrier

to reach the native configuration as shown in its energy profile in Figure 15(a). In

Figure 15(b), we can see that although the misfolded configuration has low energy,

its configuration is actually far from the native state.

B. Population Kinetics

While we can extract individual pathways to provide microscopic information about

folding kinetics, we can also compute population kinetics to study macroscopic fea-

tures of the folding kinetics. Population kinetics (see Section II. C. 2) denotes the

time evolution of the populations (e.g., relative density) of different configurations .

They provide global folding information such as the folding rate, the equilibrium dis-

tribution, and transition states. As will be shown in Section VI. B, those parameters

can be used to correlate with or even predict experimental results.
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Fig. 15. An example folding pathway for RNA sequence GGCGUAAGGAU-

UACCUAUGCC from a open configuration (0) to a misfolded configuration

(6), then to the native configuration (18). Each transitional configuration is

numbered according to its position on the pathway. (a) The energy profile

of the transitional configurations. (b) The distance from each transitional

configuration to the native configuration.

Below, we introduce two methods we developed to compute population kinetics.

In the first method, we calculate the statistical population kinetics from an ensemble

of probabilistic pathways generated by map-based Monte Carlo (MMC) or standard

Monte Carlo (MC) simulation. In the second method, called map-based Master Equa-

tion (MME), we solve the Master Equation on our roadmaps to get a deterministic

solution of the population kinetics.
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1. Comparison of Analysis Techniques

The map-based Master Equation (MME) method calculates global properties of the

folding process while MC or MMC simulations provide details related to individual

folding pathways. However, they can both produce population kinetics, one directly

and the other indirectly. Given an ensemble of MC or MMC simulation pathways,

we can compute the population kinetics of a particular configuration by summing up

its population in each pathway for every time step. This approach is statistical, so

its solution has some variance which makes it less accurate than the deterministic

solution of MME. While we can improve the accuracy by using more pathways, it

will take significantly more time and space. However, this method does not have the

same numerical limitations as the MME and can handle much larger molecules. So

this statistical method becomes relatively more practical when the roadmap is too

large to be handled by the MME solver.

Table 5 empirically compares the capabilities and limitations of each method

according to our experiments on some small RNA up to 56 nucleotides. Applications

of our MME and MMC tools on proteins show similar tendencies while the traditional

MC is normally infeasible for the size of protein we have studied. In our experimental

results (Section VI.A), we compare the population kinetics of several RNA computed

by the MMC, MC (implementation from the ViennaRNA Package [47]), and MME.

2. Computing Population Kinetics from Folding Pathways

We can do some statistics on an ensemble of our folding pathways to determine the

population of a specific configuration at any time. For example, suppose we are given

Np pathways and we want to get the population kinetics of configuration i. Let us

use Pi(t) to denote the population of a configurational state i at time t. From the
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Table V. Comparison of capabilities and limitations for Monte Carlo simulation (MC),

map-based Monte Carlo simulation (MMC), and the map-based Master

Equation (MME). Running time and space requirements are based on aver-

age performance on the small RNA studied in this dissertation.

Analysis Running Space Population Individual Folding Substruct.

Method Time Required Kinetics Pathways Rate Formation

MC 10x 400x Approx. Yes Approx. Yes

MMC 1x 40x Approx. Yes Approx. Yes

MME 50x 1x Yes No Yes No

given ensemble of folding pathways, we can count the number of pathways Ni(t) that

has configuration i at time t. Then the population Pi(t) = Ni(t)
Np

.

In this way, we can do the same computation to calculate the population Pi(t)

for all time steps of the entire simulation, that is, the population kinetics of the

configuration i during the entire folding process.

3. Computing Population Kinetics Using the Map-based Master Equation

The solution of the map-based Master Equation (MME) provides an analytical so-

lution of the population kinetics. The map-based Master Equation calculation gives

insight into the folding rate, the equilibrium distribution, and transition states. How-

ever, it requires a detailed model of the possible configurations and their associated

transitions. In the past, this has been done by enumerating landscapes – feasible only

for small molecules.

In this dissertation, we develop a strategy for applying the Master Equation

to the approximation of the energy landscape provided by our roadmaps. As we
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will show, our roadmaps provide a suitable framework to apply the Master Equation

without requiring an enumeration of the configuration space. A major benefit of this

is that the map-based Master Equation (MME) technique enables us to apply the

Master Equation to much larger molecules than was possible before.

Master Equation formalism has been developed for folding kinetics in a number

of earlier studies [55, 108]. The stochastic process of folding is represented as a set of

transitions among all n configurations (states). The time evolution of the population

of each state, Pi(t), can be described by the following differential equation:

dPi(t)/dt =
n

∑

i6=j

(KjiPj(t) − KijPi(t)) (5.1)

where Kij denotes the transition rate (probability) from state i to state j. Thus, the

change in population Pi(t) is the difference between transitions to state i and tran-

sitions from state i. We compute transition rates from the roadmap’s edge weights:

Kij = K0e
−Wij where K0 is a constant adjusted according to experimental results.

If we use an n-dimensional column vector p(t) = (P1(t), P2(t), . . . , Pn(t))′ to

denote the population of all n configurational states, then we can construct an n× n

matrix M to represent the transitions, where











Mij = Kji i 6= j

Mii = −∑

i6=j Kij

(5.2)

The Master Equation can be represented in matrix form:

dp(t)/dt = Mp(t). (5.3)

The solution to the Master Equation is:

Pi(t) =
∑

k

∑

j

Nike
λktN−1

kj Pj(0) (5.4)
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where N is the matrix of eigenvectors Ni for the matrix M in Equation 5.2 and Λ is the

diagonal matrix of its eigenvalues λi. Pj(0) is the initial population of configuration

j.

From Equation 5.4, we see that the eigenvalue spectrum is composed of n modes.

If sorted by magnitude in ascending order, the eigenvalues include λ0 = 0 and several

small magnitude eigenvalues. Since all the eigenvalues are negative, the population

kinetics will stabilize over time. The population distribution p(t) will converge to the

equilibrium Boltzmann distribution, and no mode other than the mode with the zero

eigenvalue will contribute to the equilibrium. Thus the eigenmode with eigenvalue

λ0 = 0 corresponds to the stable distribution, and its eigenvector corresponds to the

Boltzmann distribution of all configurations in equilibrium.

Large magnitude eigenvalues correspond to fast folding modes, i.e., these which

fold in a burst. Their contribution to the population will die away quickly. Conversely,

small magnitude eigenvalues have a large influence on the global folding process.

Thus, the global folding rates are determined by the eigenvalues of these slow modes.

For some folders (2-state folders), their folding rate is dominated by only one non-

zero slowest mode. If we sort the eigen spectrum by ascending magnitude, there will

be one other eigenvalue λ1 in addition to eigenvalue λ0, that is significantly smaller in

magnitude than all other eigenvalues. This λ1 corresponds to the folding mode which

determines the global folding rate. We will refer it as the master folding mode. Its

corresponding eigenvector denotes its contribution to the population of each state.

Hence, the large magnitude components of the eigenvector correspond to the states

whose populations are most impacted by the master folding mode. These states are

the transition states [73, 74]. The folding rate intuitively tells us how fast the folding

happens. In Section VI. B. 1, we use it to estimate the functional rates of some RNA.

In Section VII. A, we validate the folding rates with experimental results for several
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proteins.

We apply the Master Equation formalism to our roadmaps by assigning each

node in our roadmap to a row (and column) in the matrix M . The transition rates

are computed directly from the edge weights: Kij = K0e
−Wij . K0 is the constant

coefficient adjusted according to experimental results. We will use MME to compute

the relative folding rates for several RNA and proteins with known kinetics.

C. Specialization for Different Molecules

While our tools are general and in principle can be applied to analyze any energy

landscape, we can also specialize our implementations for different types of energy

landscapes to achieve improved performance.

1. MMC for RNA Folding

RNA folding is normally considered to be easier to model than protein folding, par-

tially because it has a much smaller energy landscape. Moreover, it is known that

during the folding process, RNA tends to form or break stable subunits (e.g., stems)

instead of isolated basepairs. In our MMC application on RNA, we take advantage

of this information to generate transitional configurations using the stem-based local

planner described in Section IV.B.1. Basically, it finds all the stems that only exist in

either the start or goal configuration, and then probabilistically chooses an order to

open/close them by their nucleation costs. Similar strategies have been widely used

in Monte Carlo simulation [46, 106].
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2. MMC for Protein Folding

Since the sizes of protein energy landscapes are much larger than RNA energy land-

scapes, it is more difficult to generate energetically feasible transitions between two

protein configurations. Therefore, it is harder to apply Monte Carlo simulation to

protein folding. Previously, the size of the protein’s configuration space limited the

application of Monte Carlo techniques to small proteins (e.g., 56 residue protein [84]).

However, our roadmap provides a pre-computed framework for the transitions and

greatly simplifies the computation required by Monte Carlo simulation.

In order to apply the MMC technique to our roadmap, we must ensure that the

likelihood of transitioning from one neighbor to another is probabilistically biased

by the Boltzmann transition probability. Ideally, the edge weight of a directed edge

in the roadmap should reflect the energetic feasibility of transitioning from one end

point to the other. However, in reality it is hard to identify the energetic feasibility

of transitioning between two protein configurations. While there are in general many

possible pathways connecting two end points of an edge, the weight we assign to

an edge reflects the transition probability for the particular pathway that is found

by the selected local planner (see Section IV.C.3). Therefore the edge weights are

typically highly overestimated by our local planners and thus are too high for Monte

Carlo simulation. Hence, we need to reduce the overestimation effects in our MMC

implementation. We still want to use the edge weights to identify edges with relative

high transition probabilities (i.e., low edge weights), but we do not want to use these

overestimated values of edge weights to compute transition probabilities that are

too low for MMC. One way to solve this problem is to cluster the edge weights into

disjoint buckets that reflect a grouping of edge weight qualities. After all edge weights

are assigned a bucket, edge weights within a bucket are assigned a probability Qij
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reflecting their quality within the bucket. In doing so, the probability of each edge

weight is assigned in a biased Gaussian fashion that favors clear discrimination of

low edge weights, yet still can differentiate between edges of all weights. Then the

probability to transition between two states, Pij can be calculated as:

Pij =











Qij

1+
Pn−1

j=0 Qij
if j 6= i

1
1+

Pn−1
j=0 Qij

if j = i
(5.5)

where n is the number of outgoing edges from node i. This ensures the sum of all

probabilities (including the self-transition probability) out of node i is one. Note

that the transition probability is dependent on the number of outgoing edges from a

node. Since during roadmap construction we only attempt connections between the k

closest neighbors according to some distance metric, where k is some small constant,

the out-degree for all nodes is similar. Thus, this transition probability calculation is

fair to all nodes in the roadmap and maintains detailed balance (see Section II. B. 4).
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CHAPTER VI

RESULTS FOR RNA FOLDING∗

In this chapter, we present our RNA folding analysis results and validate our methods

against both another computational method (Monte Carlo Simulation) and experi-

mental data. The computational validations show that our small roadmaps can effi-

ciently capture the major features of much larger complete energy landscapes. The

roadmaps scale well with RNA length, which enables us to study larger RNA consist-

ing of hundreds of nucleotides. The experimental validation shows that our methods

correctly computed the kinetics-based functions of two different RNA and their mu-

tants by studying two different properties of the folding kinetics. These results have

been published in [92, 93, 95, 96].

In Section VI. A, we compare the population kinetics using our roadmaps against

several other computational methods that are applied to complete energy landscapes.

We first quantitatively compare the population kinetics computed from different maps

and show that we can capture the major features of larger complete folding landscapes

using much smaller roadmaps. Then, we empirically compare the scalability of our

methods on different RNA. We present population kinetics using three different anal-

ysis methods: map-based Master Equation (MME), Monte Carlo (MC) simulation,

and map-based Monte Carlo (MMC) simulation. As we will see, the results show

that the solutions of different methods are comparable to each other. They also in-

dicate that our roadmaps scale well for large RNA. In Section VI. B, we present

two case studies to demonstrate how we can use our method to study kinetics-based

∗Part of the data reported in this chapter is reprinted with permission from “Us-
ing Motion Planning to Study RNA Folding Kinetics” by X. Tang, B. Kirkpatrick,
S. Thomas, G. Song and N.M. Amato, 2005, Journal of Computational Biology, vol.
12, no. 6, pp. 862-881. Copyright 2005 by Mary Ann Liebert Inc.
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functions. Our method correctly predicts (i) the relative plasmid replication rates

of ColE1 RNAII and its mutants, and (ii) the relative gene expression rates of MS2

phage RNA and its mutants.

A. Computational Validations

In this section, we compare our methods with other computational methods. Re-

call that we have several different analysis methods to calculate population kinetics

including map-based Master Equation (MME), Monte Carlo (MC) simulation and

map-based Monte Carlo (MMC) simulation. We demonstrate that the different anal-

ysis methods produce comparable results and can be used interchangeably.

Recall that we also use several different methods to construct roadmaps: base-

pair enumeration (BPE), stack-pair enumeration (SPE) and probabilistic Boltzmann

sampling (PBS) methods. We first present population kinetics of several small RNA

calculated from these different roadmaps. The results demonstrate that SPE and PBS

roadmaps can capture the major features of the complete energy landscape (described

by the BPE roadmap) even though they use significantly fewer samples. We also use

two larger RNA to show that the PBS roadmap scales well as the size of the RNA

increases.

1. Approximated Roadmap vs. Complete Landscape

In this section, we compare the population kinetics of several RNA calculated from

different roadmaps. We show that generally, the SPE and PBS roadmaps are able to

capture major features of the complete landscapes even though they are much smaller

than the BPE roadmaps (which correspond to the complete energy landscape).

We validate our method in several aspects. First, we compare the Boltzmann
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equilibrium distribution (calculated from the enumeration of the energy landscape)

with our MME solutions on different roadmaps. This not only demonstrates the

efficiency of our sampling method but also the correctness of our MME method.

Second, we compare the eigenvalues and eigenvectors of the MME solutions on

different roadmaps. This shows a quantitative comparison between our approximate

maps and the complete energy landscapes.

Third, we compare the population kinetics computed using Kinfold (MC) with

those computed by our MME method on complete energy landscapes. Our results

indicate that our MME method successfully generates comparable solutions to other

independent computational method.

RNA0. RNA0 has 15 nucleotides (ACUGAUCGUAGUCAC). There are 142

configurations in the complete energy landscape. In our SPE and PBS roadmaps,

there are 15 and 14 configurations, respectively.

Figures 16(a), 16(b), and 16(c) demonstrate the similarities of the eigenvalues

and eigenvectors between the three roadmaps. Figures 16(a) compares the smallest

four eigenvalues of the BPE, SPE and PBS roadmaps. Figures 16(b) and 16(c)

illustrate the small differences in magnitude of the components of the first and second

eigenvectors for all three roadmaps.

Most significant is the discovery that the eigenvalues for the BPE, SPE and PBS

roadmaps are all approximately the same (Figure 16(a)). This means that the folding

rates calculated using these roadmaps are similar to each other. Figure 16(b) shows

the eigenvectors corresponding to the zero eigenvalues. As discussed in Section V. B,

the eigenvectors correspond to the equilibrium distributions of the three roadmaps.

To validate our implementation, we compared our MME results to the Boltzmann

distribution, and they match exactly. Figure 16(c) compares the eigenvectors for the

smallest non-zero eigenvalues. These eigenvectors correspond to the distributions of
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Fig. 16. The folding kinetics of the 15 nucleotide sequence ACUGAUCGUAGUCAC

with the native structure ...(((....))).. and a C-space of 142 configurations. (a)

An illustration of the differences in the eigenvalues and overall folding rates for

BPE, SPE, and PBS roadmaps. A comparison of the 15 biggest components

of eigenvector (b) N0 and (c) N1.
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transition states in the three maps (see Section V. B). Note that the components of

the eigenvectors from different roadmaps are close to each other. This indicates that

the SPE and PBS roadmaps encode the major features of the folding kinetics.

Figure 17(a)-(c) shows the population kinetics of the four most significant con-

figurations† calculated using the MME on BPE, SPE, and PBS roadmaps. These

configurations have the largest population during or after the folding process, so their

existence is more likely to be observed in experiments. Figure 17(d) shows the pop-

ulation kinetics of these configurations calculated from the MC simulation (Kinfold

[39]).

As illustrated in Figures 17(a), 17(b) and 17(c), the population kinetics calcu-

lated from the BPE, SPE and PBS roadmaps are very similar to each other during

the folding process. They share several features. First, they all end up with the same

equilibrium distribution. Second, their curves have similar features. They all start

with zero and then increase monotonically until they reach equilibrium. Recall that

the BPE roadmap describes the complete energy landscape. Hence, for this RNA, the

SPE and PBS roadmaps are good approximations of the complete energy landscape.

They preserve the main characteristics of the energy landscape while using notably

fewer configurations (15 vs. 14 vs. 142).

Moreover, as shown in Figure 17(d), the BPE, SPE and PBS roadmaps yield

similar population kinetics to those generated by Kinfold. Note that these results

are interchangeable to each other even though they are generated from two totally

different approaches. This strongly justifies the validity of our method.

RNA1. RNA1 has 18 nucleotides (CGCGCUACUCCUAGAGCU). There are

†The four significant configurations are ...(((....))).., ...............,
..(((......)))., and ..((((....)))).. Note that all four are both base-pair and
stack-pair configurations.
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Fig. 17. The population kinetics of the 15 nucleotide RNA 0. A comparison of the

folding kinetics of (a) the BPE roadmap (142 configurations), (b) the SPE

roadmap (15 configurations), and (c) the PBS roadmap (14 configurations).

(d)The Kinfold folding kinetics of the four most significant configurations.
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876, 22 and 19 nodes in the BPE, SPE and PBS roadmaps, respectively.

Figures 18(a), 18(b), and 18(c) demonstrate the similarities of the eigenvalues

and eigenvectors between the three roadmaps. Figure 18(a) compares the smallest

four eigenvalues of the BPE, SPE and PBS roadmaps. Note that the eigenvalues for

the BPE, SPE and PBS roadmaps are all approximately the same (Figure 18(a)). This

means that the folding rates calculated from these roadmaps are close to each other.

Figure 18(b) shows the equilibrium solutions of the three roadmaps. To validate our

approach, we compared our MME solutions to the Boltzmann distribution, and they

match exactly.

In addition, the components of the eigenvectors (Figure 18 (c)) are close. Fig-

ure 18(c) illustrates the small differences in magnitude of the components of the

second eigenvector for all three roadmaps.

Figure 19 shows the population kinetics of the four most significant configura-

tions‡ calculated using the BPE, SPE, and PBS roadmaps. These configurations have

the largest population during or after the folding process, so their existence is more

likely to be observed in experiments.

As illustrated in Figures 19(a), 19(b) and 19(c), the population kinetics calcu-

lated from the BPE, SPE and PBS roadmaps are very similar to each other during

the folding process. They all increase monotonically and end up with the same equi-

librium distributions. Hence, for this RNA, the SPE and PBS roadmaps are good

approximations of the complete energy landscape. They preserve the main charac-

teristics of the energy landscape while using notably fewer configurations (22 vs. 19

vs. 876). In addition, the BPE, SPE and PBS roadmaps yield similar population

‡The four significant configurations are .((.(((....))).)). ,
.................., ...(((........)))., and ...(((.((...))))).. Note
that all four are both base-pair and stack-pair configurations.
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Fig. 18. The folding kinetics of the 18 nucleotide sequence CGCGCUACUCCUA-

GAGCU with the native structure .((.(((....))).)). and a C-space of 876 con-

figurations. (a) The differences in the eigenvalues and overall folding rates for

BPE, SPE, and PBS roadmaps. A comparison of the 15 biggest components

of eigenvector (b) N0 and (c) N1.
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Fig. 19. The population kinetics of the 18 nucleotide RNA1. A comparison of the

folding kinetics of (a) the BPE roadmap (876 configurations), (b) the SPE

roadmap (22 configurations), and (c) the PBS roadmap (19 configurations).

(d) The Kinfold folding kinetics of the four most significant configurations.
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kinetics to those generated by Kinfold, Figure 19(d). Minor discrepancies are caused

by different energy and transition rate constants.

RNA2. RNA2 has 21 nucleotides (UAUAUAUCGACACGAUAUAUA). There

are 5353, 250 and 63 configurations in our BPE, SPE and PBS roadmaps, respectively.

Figures 20(a), 20(b), and 20(c) demonstrate the similarities of the eigenvalues

and eigenvectors between the three roadmaps. Note that the eigenvalues for the

BPE, SPE and PBS roadmaps are all approximately the same (Figure 20(a)), which

corresponds to the folding rates calculated from these roadmaps. In addition, the

components of the eigenvectors (Figure 20(b) and 20(c)) are close. Figure 20(b)

shows the equilibrium solutions of the three roadmaps. To validate our approach, we

compared our MME results to the Boltzmann distribution, and they match exactly.

Figure 20(c) illustrates the small differences in magnitude of the components of the

second eigenvector for all three roadmaps.

Figure 21 shows the population kinetics of the four most significant configura-

tions§ calculated using the BPE, SPE, and PBS roadmaps. In the map-based Master

Equation solution, these configurations have the largest population during or after

the folding process, so their existence is more likely to be observed in experiments.

As illustrated in Figures 21(a), 21(b) and 21(c), the population kinetics calcu-

lated from the BPE, SPE and PBS roadmaps are very similar throughout the folding

process. Hence, for this RNA, the SPE and PBS roadmaps are good approxima-

tions of the complete energy landscape. They preserve the main characteristics of

the energy landscape while using notably fewer configurations (250 vs. 63 vs. 5353).

In addition, both the BPE and SPE roadmaps yield similar population kinetics to

§The four significant configurations are (((((((((...))))))))),
....................., ((((((((.....)))))))), and .((((((((...))))))))..
Note that all four are both base-pair and stack-pair configurations.
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Fig. 20. The folding kinetics of the 21 nucleotide sequence UAUAUAUCGACAC-

GAUAUAUA (RNA2) with a C-space of 5353 configurations and the na-

tive structure (((((((((...))))))))). (a) An illustration of the differences in the

eigenvalues and overall folding rates for BPE, SPE, and PBS roadmaps. A

comparison of the 20 biggest components of eigenvector (b) N0 and (c) N1.
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Fig. 21. The population kinetics of RNA2. A comparison of the folding kinetics of (a) a

BPE roadmap (5353 configurations), (b) a SPE roadmap (250 configurations),

and (c) a PBS roadmap (63 configurations). (d) The Kinfold folding kinetics

of the four most significant configurations.
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these generated by Kinfold, Figure 21(d). Minor discrepancies are caused by different

energy and transition rate constants.

2. Scalability of the Approximated Roadmaps

In this section, we show that our methods scale well as the size of the RNA increases.

In the previous section we show that solutions of our MME method and MC method

are comparable to each other. Here, we first use a 22 nucleotide RNA to demonstrate

that all three different analysis methods (MME, MC, MMC) produce comparable

results and can be used interchangeably. This is important since some methods such

as MME do not scale as well with RNA size as others such as MMC.

We then compare the population kinetics of a 56 nucleotide RNA using MC (on

the complete energy landscape) and our MMC method on a small PBS roadmap. The

results show that our small PBS roadmap successfully captures major features of the

energy landscape that is about 10 orders of magnitudes larger.

RNA 1k2g.

In the first case, we present the results of 1k2g (CAGACUUCGGUCGCAGA-

GAUGG), a 22 nucleotide RNA. Figure 22 compares the population kinetics of the

native state using (a) standard Monte Carlo (MC) simulation (implemented by Kin-

fold [39]), (b) MMC on a BPE roadmap (12,137 configurations), (c) MMC on a SPE

roadmap (70 configurations), (d) MME on a SPE roadmap (70 configurations), (e)

MMC on a PBS roadmap (42 configurations), and (f) MME on a PBS roadmap (42

configurations). The fully enumerated roadmap is the most accurate model. How-

ever, its map size is exponential in the number of nucleotides. In contrast, the SPE

and PBS roadmaps yield much smaller subsets of the entire configuration space that

effectively approximate the energy landscape. Note that numerical limitations in

computing the eigenvalues and eigenvectors limit the MME to small roadmaps (e.g.,
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(e) MMC, PBS Map

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path Steps

P
op

ul
at

io
n 

P

Population Kinetics: 1k2g, PBS map, ME

(f) ME, PBS Map

Fig. 22. The population kinetics of the native state of 1k2g. (a) Kinfold MC simula-

tion. (b) MMC simulation on a BPE map (12,137 configurations). (c) MMC

simulation and (d) MME solution on a SPE map (70 configurations). (e)

MMC simulation and (f) MME solution on a PBS map (42 configurations).

All analysis techniques produce similar population kinetics curves and similar

equilibrium distribution.
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up to 10,000 configurations).

All population kinetics curves have similar features (see Figure 22). In each plot,

the population first increases quickly, then it gradually decreases and eventually sta-

bilizes to the equilibrium distribution. Note that the equilibrium (final) distributions

are very close to each other at 82%, even though the PBS roadmap 22(e)-(f) contains

less than 0.4% of all possible configurations. Also notice that the equilibrium distri-

bution of the SPE roadmap is higher than the PBS roadmap even though it involves

more configurations. This is because the SPE sampling method does not generate

some configurations with significant population. Figure 23(b) displays the population

of the top 20 configurations in the equilibrium distribution. It clearly shows that the

population of the native state was overestimated by the SPE roadmap, while several

configurations were not sampled by it. In contrast, the PBS roadmap contains these

configurations using fewer samples. On the other hand, even though the SPE map

misses some configurations, it can still capture important features of the population

kinetics. Thus, the SPE and PBS roadmaps capture the main features of the energy

landscape. In particular, this data indicates that the PBS and BPE methods can be

used interchangeably for this RNA.

Figure 23(a) compares the four smallest eigenvalues of the BPE, SPE and PBS

roadmaps. All the eigenvalues, i.e., folding rates, are similar. This indicates that our

extremely sparse roadmaps not only capture the major features of the equilibrium

distribution, but also capture the major features of the kinetics.

Leptomonas Collosoma Spliced Leader RNA. Here we compare our simu-

lation results on a larger 56 nucleotide RNA. Leptomonas Collosoma Spliced Leader

RNA is known to have many metastable structures [35]. This RNA has approximately

2.0 ∗ 1014 configurations, so it is not feasible to enumerate even the stack-pair config-

urations, let alone the entire configuration space. Thus, we are only able to compare
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Fig. 23. (a) Comparison of the eigenvalues of 1k2g from the MME solution on a BPE

roadmap (12,137 configurations), a SPE roadmap (70 configurations) and

a PBS roadmap (43 configurations). Both eigenvalues are similar between

the different roadmaps. (b) Comparison of equilibrium distribution from the

MME solution on a BPE roadmap, a SPE roadmap and a PBS roadmap.
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kinetics from the Kinfold Monte Carlo simulation and our map-based Monte Carlo

simulation using PBS roadmaps. For each simulation technique, we compute 1000

different folding pathways. We combine these pathways to calculate the population

kinetics of a particular configuration.

Figure 24 shows that although we only use 5453 conformations in the map, our

MMC simulation results in (b) have qualitatively similar features with the Kinfold

Monte Carlo simulation in (a). To quantitatively compare the two simulations, we fit

parameters to a two state kinetic model (U-to-F) to the Kinfold data, black (dark) line

in Figure 24 (a)), and then used these parameters to fit a curve on the data derived

from the MMC simulations, black (dark) line in Figure 24(b)). The agreement is

excellent, with only the simulated rate changing from 89 for the Kinfold data to

130 from MMC. For comparison, a fit of the MMC data is shown without bias from

the Kinfold parameters, red (light) line in Figure 24(b)). This fit better captured the

equilibrium distribution and reduced the simulated rate to 90. The similarity in these

plots is striking because the MMC simulation approximates the entire conformation

space (2.0∗1014 conformations) with only a small subset (5.0∗103). In contrast, such

kinetic features are very different from other RNA, such as the population kinetics

of 1k2g shown in Figure 22. Again, this gives strong evidence that our sparse map

captures the main features of the energy landscape. Another benefit of our MMC

simulation is that it requires fewer iterations to stabilize (an order of magnitude

fewer) and uses less space (1G versus 8G for Kinfold).

B. Experimental Validation: Kinetics Related Functions

Many RNA can perform a variety of functions such as regulating the gene expression

rate or plasmid replication rate. It has been found that some functions are not
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Fig. 24. Population kinetics comparison of a metastable state for Leptomonas Collosoma

Spliced Leader RNA using (a) Kinfold Monte Carlo simulation [39] and (b) our

MMC simulation on a PBS map with 5453 conformations. Shown on both plots are

kinetic fits using parameters optimized on the Kinfold plot, black (dark) lines. On

the MMC plot the red (light) line shows an optimized kinetic fit without Kinfold

bias. We are able to capture similar kinetics while only sampling a small fraction

of the entire conformation space.
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only determined by their native states but also by metastable states formed during

the folding process, where the functional units are active [41, 58, 46, 69]. Thus

these functions are based on the RNA’s folding kinetics. These functions are studied

experimentally by comparing the kinetics and functional rates of different mutants

that share the same thermodynamic stability and native structure. Below we give

two case studies that show how we can also study these kinetics-based functions and

compare to experimental data.

1. ColE1 RNAII: Predict Plasmid Replication Rates

ColE1 RNAII regulates the replication of E. coli ColE1 plasmids through its folding

kinetics [43, 58]. The slower it folds, the higher the plasmid replication rate. A

specific mutant, MM7, differs from the wild-type (WT) by a single nucleotide out of

the 200 nucleotide sequence. This mutation causes it to fold slower while maintaining

the same thermodynamics of the native state. Thus, the overall plasmid replication

rate increases in the presence of MM7 over the WT.

We can study this difference computationally by computing the folding rates of

both WT and MM7 using MME and comparing their eigenvalues. A similar study is

performed in [43]. However, they solve the Master Equation on a much more simplified

energy landscape using a specific sub-sequence (130 of 200 nucleotides) and 9 stems

hand-picked from 30 configurations. In contrast, we simulate the kinetics of the entire

sequence using approximately 4000 configurations.

Figure 25 shows the eigenvalues calculated using MME. Note that the smallest

non-zero eigenvalues correspond to the folding rate. All eigenvalues of WT are larger

than MM7 indicating that WT folds faster than MM7. Thus, our method correctly

estimated the functional level of the new mutant.
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Fig. 25. Comparison of the 10 smallest non-zero eigenvalues (i.e., the folding rates)

for WT and MM7 of ColE1 RNAII as computed by the MME. The overall

folding rate of WT is faster than MM7, matching experimental data.
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2. MS2 Phage RNA: Predict Protein Expression Rate

MS2 phage RNA (135 nucleotides) regulates the expression rate of phage MS2 mat-

uration protein [41, 58] at the translational level. It works as a regulator only when

a specific sub-sequence (the SD sequence) is open (i.e., does not form base-pair con-

tacts). Since this SD sequence is closed in the native state, this RNA can only perform

this function before the folding process finishes. Thus, its function is based on its

folding kinetics and not the final native structure. Three mutants have been stud-

ied that have similar thermodynamic properties as the wild-type (WT) but different

kinetics and therefore different gene expression rates. Experimental results indicate

that mutant CC3435AA has the highest gene expression rate, WT and mutant U32C

are similar, and mutant SA has the lowest rate [41, 58].

Intuitively, the functional rate (e.g., gene expression rate in this case) is correlated

with the opening of the SD sequence. If the SD sequence is opened longer, or has

higher opening probability (i.e., having more nucleotides on the SD sequence open),

then the mutant should have a higher functional rate. We use our simulation method

to study this opening probability during the folding process. In our study, we first

simulate the folding process for each mutant by generating 1000 folding pathways

for each mutant using map-based Monte Carlo simulation. Then we analyze the

pathways for each mutant and calculate the opening probability of the SD sequence.

We calculate the opening probability as the percentage of open nucleotides in the SD

sequence. In [46], Higgs performed a similar study using a stem-based Monte-Carlo

simulation. However, in that work, they simulated the folding process only when the

RNA sequence is growing. Their results may depend on the selection of growth rate.

If the growth rate was too high or too low, the results may or may not be able to

compare to experiment. Our simulation results, on the other hand, do not require this
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growth rate parameter and thus can be used to quantitatively predict the functional

level of a new mutant in a more reliable way.

Figure 26 shows the time evolution of the SD opening probability for the WT and

the three mutants. Note that CC3435AA has the longest duration at a relatively high

level of opening probability while SA has the shortest duration. This correlates with

experimental data. The opening probability of U32C decreases earlier but finishes

later than WT, so it is not clear which one has a larger total opening probability

during folding, again matching experimental findings.

The gene expression rate is determined from two factors: (i) how high the open-

ing probability is at any given time, and (ii) how long the RNA stays in the high

opening probability state. To compare each RNA quantitatively, we compute the

integration of the opening probability (Figure 26) over the whole folding process.

Note that the RNA regulates gene expression only when the SD opening probability

is “high enough”. We used thresholds ranging from 0.2 to 0.6 to estimate the gene

expression rate. Thresholds higher than 0.6 will yield zero opening probability on WT

and most mutants and thus cannot be correlated to experimental results. Similarly,

thresholds lower than 0.2 are not considered since mutant SA could be active in the

equilibrium condition, contradicting experimental results. Table 6 shows the results

for the WT and for each mutant. For most thresholds, mutant CC3435AA has the

highest rate and mutant SA has the lowest rate, the same relative functional rate

as seen in experiment. In addition WT and mutant U32C have similar levels (par-

ticularly between 0.4-0.6), again correlating with experimental results. Aside from

simply validating our method against experiment, we can also use our method to

suggest that the SD sequence may only be active for gene regulation when more than

40% of its nucleotides are open.
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(a) CC3435AA (b) U32C

(c) WT (d) SA

Fig. 26. Comparison of the SD opening probabilities for 4 mutants of RNA MS2 during

the folding process.
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Table VI. Comparison of expression rates between WT and three mutants of MS2.

It shows that we can predict similar relative functional rates as seen in

experiments.

Experimental Rates Our Estimation

Mutant (order of magnitude) t = 0.2 t = 0.3 t = 0.4 t = 0.5 t = 0.6

SA 0.1 0.1 0.04 0.03 0.03 0.08

WT 1 1.0 1.0 1.0 1.0 1.0

U32C 1 2.1 1.8 1.4 0.8 1.2

CC3435AA 5 7.2 8.4 3.8 3.5 9.8
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CHAPTER VII

APPLICATION OF MAP-BASED ANALYSIS TOOLS TO PROTEIN FOLDING∗

In this chapter we demonstrate how our map-based analysis tools MME and MMC

can also be used to extract protein folding kinetics from our roadmaps. In particular,

we use the same map-based analysis tools MMC and MME as first used for RNA,

but we specialize them for protein folding to analyze the protein folding kinetics

more effectively and efficiently. The results of MME and MMC on proteins have been

published in [97].

As mentioned in Section V. C. 2, since the size of a protein energy landscape

is much larger than energy landscape of a comparably sized RNA, it is more diffi-

cult to generate energetically feasible transitions between two protein configurations.

Therefore, it would be computationally prohibitive to apply the traditional Monte

Carlo simulation or the Master Equation to these proteins. In contrast, our map-

based tool provides an approximate view of a protein’s folding energy landscape and

makes this problem easier. However, the weight of an edge connecting two configura-

tions in our roadmaps is still typically overestimated, that is, the estimated transition

probability is normally too low for the MMC method. In order to apply the MMC

method to much larger (relative to RNA) energy landscape of protein folding, we

specialize MMC for protein folding as described in Section V. C. 2. In this way, we

can lower the high edge weights overestimated by our local planner while preserving

the detailed balance for our MMC method (see Section V. C. 2). Our map-based

approximation approach and the specialization of our map-analysis tool enables us

∗Part of the data reported in this chapter is reprinted with permission from “Ki-
netics Analysis Methods For Approximate Folding Landscapes” by L. Tapia, X. Tang,
S. Thomas, N.M. Amato, Bioinformatics, vol. 23, no. 13, pp. 539-548, Copyright
2007 by Oxford University Press.
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to study the kinetics of much larger proteins than can be handled by the traditional

Master Equation solution or Monte Carlo simulation.

We successfully apply both our map-based analysis tools MMC and MME to

several proteins. In this chapter, we first show that our map-based Master Equation

(MME) can accurately compute the relative folding rates of protein G and two of its

mutants by correlating our results to the experimental measurements. Then we use

our map-based Monte Carlo (MMC) simulation to investigate the population kinetics

of the native state for several small proteins.

A. Relative Folding Rates

One interesting protein to study is protein G (streptococcal protein G, B1 immunoglobulin-

binding domain), and two mutated forms of protein G, NuG1 and NuG2, as shown

in Figure 27. All three proteins are composed of an alpha-helix and two beta-hairpin

turns. Nauli et al. [70] show that the two mutants NuG1 and NuG2 fold 100 times

faster than protein G. In previous work [98, 99], we successfully identified the same

secondary structure formation order for proteins G, NuG1 and NuG2 as observed in

experiments.

We use our new MME method to compute the relative folding rates of these

three proteins on roadmaps that reached stable secondary structure formation order.

In the results shown here, the potential values were normalized to fall between 0

and 1 for the fastest computation of the Master Equation solution. Figure 28(a)

shows the magnitudes of the 5 smallest eigenvalues. Recall that the smallest non-zero

eigenvalues represent the rate-limiting barrier in the folding process. Therefore, they

have the largest impact on the global folding rate. As seen in the magnitude of the

second eigenvalue in Figure 28(a), protein G folds much slower than the two mutants,
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(G) (NuG1)

(NuG2)

Fig. 27. Native 3D structures of proteins G, NuG1, and NuG2. Mutated residues in

NuG1 and NuG2 are indicated in wireframe.

NuG1 and NuG1. Also, NuG1 and NuG2 fold at very similar rates. This matches

what has been seen in experiments. While in previous work [98, 99] we were able to

accurately identify the hairpin formation order of protein G and mutants NuG1 and

NuG2, we were unable to study the differences in folding rate.

We also studied the folding rate differences computed using MMC. Figure 28(c–

e) shows the population kinetics for the unfolded states and folded states for protein

G, NuG1, and NuG2. As seen in Figure 28(d,e), the populations of the native states

of NuG1 and NuG2 rise very quickly. For example, the population of the native state

is just under 60% by timestep 100. However, at the same time step, the native state
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of protein G is only 20% populated (Figure 28(c)). This contrast in the population

of the native state between protein G and mutants NuG1 and NuG2 correlates with

the faster folding rate of the mutants compared to the wild-type.

Figure 28(b) shows the performance of MME for roadmaps ranging in size from

2000 to 15000 nodes. The running time of MME scales linearly with roadmap size

(i.e., the size of the landscape model). Thus, MME has an advantage over the tradi-

tional master equation solution. While traditional Master Equation solution is usually

applied to a fully enumerated landscape, MME is only computationally limited by the

size of the approximated landscape model. Here we have shown that this roadmap

can be a representative subset of the entire configuration space. This enables us to

study larger proteins with more detailed models than can be handled by traditional

techniques.

B. Population Kinetics

In this section, we study the folding process by computing the population kinet-

ics of the native state with our new MMC simulation for several different proteins.

Recall that a single roadmap encodes thousands of folding pathways. As described

in Section V. B. 2, by extracting pathways stochastically using MMC, we compute

population kinetics for different states. In this chapter, we compare the population

kinetics of the unfolded state and the folded state.

We computed the population kinetics of several two-state folders (see Table 7).

Here we use MMC to compute the population kinetics of the folded state and the

unfolded state. Table 7 also displays the MMC analysis time. In all cases, the analysis

took less than 1 hour on a 2.4 GHz desktop PC with 512 MB RAM.

Figure 29 displays the results for several proteins studied. MMC was run for 500
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Fig. 28. (a) Eigenvalue comparison between protein G and mutants NuG1 and NuG2

from MME. NuG1 and NuG2 are experimentally known to fold 100 times

faster than protein G [70]. (b) Running time of MME for protein G and

mutants NuG1 and NuG2. (c–e) Population kinetics from MMC for protein

G and mutants NuG1 and NuG2. The MMC results also indicate that the

mutants fold faster than wild-type.
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Table VII. Proteins studied and MMC analysis time. (*tail, residues 1-8, of structure

removed)

PDB MMC MME

Protein ID Length SS Nodes Edges Time (m) Time (s)

RdDv 1rdv 52 2α+3β 4000 206440 20.83 n/a

mEGF 1egf 53 3β 4000 199600 19.94 n/a

RdCp 1smu 54 3α+3β 6000 200072 22.19 n/a

Protein G 1gb1 56 1α+4β 4000 198588 20.71 21.19

NuG1 1mhx* 57 1α+4β 4000 215648 22.53 29.05

NuG2 1mi0* 57 1α+4β 4000 219874 23.46 24.82

Protein A 1bdd 60 3α 6000 276342 23.12 n/a

ACBP 2abd 86 5α 18000 953900 35.94 n/a
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(a) Protein A: Population Kinetics (b) ACBP: Population Kinetics

(c) mEGF: Population Kinetics

(d) RdCp: Population Kinetics (e) RdDv: Population Kinetics

Fig. 29. Population kinetics from MMC simulations for proteins in Table 7 of varying

structure: (a,b) α, (c) β, (d,e), mixed.
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iterations and 50,000 time steps. Our experience shows that this provided population

kinetics with small variance. These proteins are similar in size (ranging from 53 to

86 residues) and varying secondary structure makeup. We study all α proteins, all β

proteins, and mixed α and β proteins.

Notice that the population kinetics of the native state for the all α proteins

(Figure 29(a,b)) show a gradual growth at a constant rate. The all β proteins (Fig-

ure 29(c)) and mixed proteins (Figure 29(d,e)), however, display a steep climb in

their population kinetics and then plateau. We believe this is due to nucleation ef-

fects (e.g., that each native contact does not have the same probability of forming)

present in structures containing β-sheets. For example, a contact near the turn of a

β-hairpin (i.e., with lower effective contact order) has a greater probability to form

early while more non-local native contacts such as those at the end of the hairpin

have a lower probability to form early. Their formation probability increases as the

protein folds/nucleates. This is commonly referred to as a “zipping” process [38].

Conversely, most contacts in an α-helix are local (i.e., have a low effective contact

order) thus their formation probabilities are all similar and constant throughout the

folding process.

In order to contrast the population kinetics of the folded state, we also studied

the population kinetics of the unfolded ensemble (Figure 29). For this study, we

defined the unfolded ensemble as those states with few native contacts (relative to

the number of contacts in the native state). There is a clear relationship between the

kinetics of the unfolded state to that of the folded state. For example, in protein A

(Figure 29(a)) the population of the native state increases slowly as the population

of the unfolded state ensemble decreases slowly. On the other hand, folding processes

that reach folded equilibrium quickly also see a quick decrease in the population of

the unfolded state ensemble.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

In this dissertation, we provide a novel set of computational tools to approximate the

folding energy landscape and extract both global properties and detailed features of

the folding process. We describe two sets of tools: a modeling tool to approximate

the RNA folding energy landscape as a roadmap, and map-based analysis tools to

analyze energy landscapes for both RNA and protein folding.

We first developed a map-based tool to model RNA folding energy landscapes as

roadmaps. Our work is the first to apply this method to RNA folding.

We also developed new map-based analysis tools that can be used to analyze

energy landscapes of different types of molecules. In particular, a map-based Master

Equation (MME) method can be used to analyze the population kinetics of the maps,

while another map analysis tool, map-based Monte Carlo (MMC) simulation, can

extract stochastic folding pathways from the map. These map-based analysis tools

can provide information to study folding kinetics such as population kinetics, folding

rates, and the folding of particular subsequences. The key advantage of our approach

over other computational techniques is that it is fast and efficient while providing

macroscopic folding events and microscopic folding pathways.

We validated our method against both other computational methods and known

experimental data in detail. We first compare our methods on RNA with other

computational methods working on the complete energy landscape and show that

our small roadmap can capture the major features of a much larger complete energy

landscape. Moreover, we show that our method scales well to large molecules, e.g.,

RNA with 200+ nucleotides. Then, we correlate our computational results with

experimental findings. We present comparisons with two experimental cases to show



99

how we can use our method to predict kinetics-based functional rates of ColE1 RNAII

and MS2 phage RNA and their mutants. We also demonstrate that our kinetics

analysis techniques can be applied to proteins by providing results for several proteins

and validate our results against experimental results.

Our techniques are general. They have been applied to study RNA and protein

folding. We believe that our methods will be valuable tools to study other molecules

and other motions than have been described in this dissertation.
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