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ABSTRACT 
 
The main idea of process mining is to extract knowledge or 
information from event logs recorded by an information system. 
Till now, the information in these event logs was rarely used to 
analyze the underlying processes. Process mining aims at 
improving this by providing techniques and tools for discovering 
process, organizational, social, and performance information from 
event logs.  Process mining has become a bright research area. In 
this paper we discuss the challenging process mining domain and 
demonstrate a heuristics driven process mining algorithm; the so 
called Heuristics Miner in detail. Heuristics Miner is a practical 
applicable mining algorithm that can deal with noise, and can be 
used to express the main behavior that is not all details and 
exceptions, registered in an event log. The business process system 
has a complex process system, which deals about many cases or 
audit trail entries and various event logs. This paper deals about the 
role of Heuristics Miner algorithm in the field of Business process 
system, also the Heuristics Miner algorithm is compared with the 
other mining algorithm such as α-algorithm.  Hence, we analyzed 
that, is it possible to develop a control flow process mining 
algorithm such as Heuristics Miner algorithm can discover all the 
common control flow structures and is robust to noisy logs at once? 
This paper attempts to provide an answer to this question. 

Keywords 
Event log, Heuristics Miner, Business process, Process mining, α-
algorithm.  

1. INTRODUCTION 
Nowadays, most organizations use information systems to 

support the execution of their business processes [1]. 
Examples of information systems supporting operational 
processes are Workflow Management Systems (WMS) [2] 
[3], Customer Relationship Management (CRM) systems 
and Enterprise Resource Planning (ERP) systems and so on. 
These information systems may contain an explicit model of 
the processes may support the tasks involved in the process 
without necessarily defining an explicit process model.  All 
these information systems have activities and then these 
activities are converted into the logs. 

These produced logs usually contain data about cases that 
is process instances, which have been executed in the 
organization, the times at which the tasks were executed, the 
persons or systems that performed these tasks, and other 
kinds of data. These logs are the starting point for process 
mining, and are usually called event logs. For instance, 
consider the event log in Table 1. This log contains 
information about four process instances that is cases of a 
process that handles fines. Process mining targets the 
automatic discovery of information from an event log. This 
discovered information can be used to deploy new systems  

 
 
that support the execution of business processes or as a 
feedback tool that helps in auditing, analyzing and 
improving already enacted business processes. 

The main benefit of process mining techniques is that 
information is objectively compiled. In other words, process 
mining techniques are helpful because they gather 
information about what is actually happening according to 
an event log of an organization, and not what people think 
that is happening in this organization. The starting point of 
any process mining technique is an event log. The type of 
data in an event log determines which perspectives of 
process mining can be discovered.  If the log provides the 
tasks that are executed in the process and it is possible to 
infer their order of execution and link these tasks to 
individual cases or process instances then the control flow 
perspective can be mined. The log in Table 1 has this data 
fields such as Case ID, Task Name and Timestamp.  So, for 
this log, mining algorithms could discover the process in 
Figure 1, Basically, the process describes that after a fine is 
entered in the system, the bill is sent to the driver. If the 
driver does not pay the bill within one month, a reminder is 
sent. When the bill is paid, the case is archived. If the log 
provides information about the persons systems that 
executed the tasks, the organizational perspective can be 
discovered. The organizational perspective discovers 
information like the social network in a process, based on 
transfer of work, or allocation rules linked to organizational 
entities like roles and units. For instance, the log in Table 1 
shows that Raja transfers work to both Saran that is case 2 
and John that is cases 3 and 4, and John sometimes transfers 
work to Saran that is case 4. Besides, by inspecting the log, 
the mining algorithm could discover that Saran never has to 
send a reminder more than once, while John does not seem 
to perform as good. The managers could talk to Saran and 
check if he has another approach to send reminders that John 
could benefit from. This can help in making good practices a 
common knowledge in the organization. When the log 
contains more details about the tasks, like the values of data 
fields that the execution of a task modifies, the case 
perspective that is the perspective linking data to cases can 
be discovered. So, for instance, a forecast for executing 
cases can be made based on already completed cases, 
exceptional situations can be discovered etc. In our 
particular example, logging information about the profiles of 
drivers that is like age, gender, car etc. could help in 
assessing the probability that they would pay their fines on 
time. Moreover, logging information about the places where 
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the fines were applied could help in improving the traffic 
measures in these places. From this explanation, the reader 
may have already noticed that the control flow perspective 
relates to the How? Question, the organizational perspective 
to the Who? Question and the case perspective to the What? 
Question. All these three perspectives are complementary 
and relevant for process mining. However, in this thesis we 
focus on the control flow perspective of process mining. 

Table 1.   Example of Event Log-1 

 

 

 
Fig 1:  Petri Net illustrating the control flow perspective that can be 

mined from the event log in Table 1. 

2.   CONTROL FLOW MINING 
 The control flow perspective mines a process model that 
specifies the relations between tasks in an event log.  From 
event logs, one can find out information about which tasks 
belong to which process instances, the time at which tasks 
are executed, the originator of tasks, etc. Therefore, the 
mined process model is an objective picture that depicts 
possible flows that were followed by the cases in the log that 
is assuming that the events were correctly logged. Because 
the flow of tasks is to be depicted, control flow mining 
techniques need to support the correct mining of the 
common control flow constructs that appear in process 
models. These constructs are: sequences, parallelism, 
choices, loops, and non free choice, invisible tasks and 
duplicate tasks [4]. Sequences express situations in which 
tasks are performed in a predefined order, one after the 
other.  For instance, for the model in Figure 2, the tasks 
“Enter Website” and “Browse Products” are in a sequence. 
Parallelism means that the executions of two or more tasks 
are independent or concurrent. For instance, the task “Fill in 
Payment Info” can be executed independently of the tasks 
Login and “Create New Account” in Figure 2. Choices 
model situations in which either one task or another is 

executed. For instance, the tasks “Remove Item from Basket” 
and “Add Item to Basket” are involved in the same choice in 
the model in Figure 2. The same holds for the tasks “Cancel 
Purchase” and “Commit Purchase”. Loops indicate that 
certain parts of a process can be repeatedly executed. In the 
model in Figure 2, the block formed by the tasks “Browse 
Products”, “Remove Item from Basket”, “Add Item to 
Basket” and “Calculate Total” can be executed multiple 
times in a row. Non free choice constructs model a mix of 
synchronization and choice. For instance, have a look at the 
non free choice construct involving the tasks “Calculate 
Total” and “Calculate Total with Bonus”. Note that the 
choice between executing one of these two tasks is not done 
after executing the task “Fill in Delivery Address”, but 
depends on whether the task Login or the task “Create New 
Account” has been executed. In this case, the non free choice 
construct is used to model the constraint that only returning 
customers are entitled to bonuses. Invisible tasks correspond 
to silent steps that are used for routing purposes only and, 
therefore, they are not present in event logs. Note that the 
model in Figure 2 has three invisible tasks, represented in 
the black rectangles. Two of these invisible tasks are used to 
skip parts of the process and the other one is used to loop 
back to “Browse Products”. Duplicate tasks refer to 
situations in which multiple tasks in the process have the 
same label. Duplicates are usually embedded in different 
contexts that are surrounding tasks in a process. The model 
in Figure 2 has two tasks with the same label “Calculate 
Total”. Both duplicates perform the same action of adding 
up the prices of the products in the shopping basket. 
However, the first “Calculate Total”, refer top part of Figure 
2 does so while the client is still selecting products and the 
second one refer bottom part of Figure 2, computes the final 
price of the whole purchase. Control flow process mining 
algorithms should be able to tackle these common 
constructs. In fact, there has been quite a lot of work on 
mining the control flow perspective of process models [5] 
[6] [7] [8] [9] [10]. For instance, the work in [8] can mine 
duplicate tasks, [10] can mine non free choice, [5] proves to 
which classes of models their mining algorithm always 
works, [7] mines common control flow patterns and [9] 
captures partial synchronization in block structured models. 
However, none of the current control flow process mining 
techniques is able to mine all constructs at once. 
Furthermore, many of them have problems while dealing 
with another factor that is common in real-life logs: the 
presence of noise. Noise can appear in two situations: event 
traces were somehow incorrectly logged that is for instance, 
due to temporary system misconfiguration or event traces 
reflects exceptional situations. Either way, most of the 
techniques will try to find a process model that can parse all 
the traces in the log. However, the presence of noise may 
hinder the correct mining of the most frequent behavior in 
the log. The first reason why these techniques have 
problems to handle all the constructs is that they are based 
on local information in the log. In other words, they use the 
information about what tasks directly precede or directly 
follow each other in a log to set the dependencies between 
these tasks. The problem is that some of these dependencies 
are not captured by direct succession or precedence. For 
instance, consider the non free choice construct in Figure 2.  
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Fig 2. Example of a Petri Net that contains all the common 

control flow constructs that may appear in Business process 
(Generated from [11]) 

 Note that the tasks involved in this non free choice 
constructs never directly follow of precede each other. A 
second reason why some of the techniques cannot mine 
certain constructs is because the notation they use to model 
the processes does not support these constructs. For 
instance, the notation used by the α-algorithm [5] and 
extensions [10] does not allow for invisible tasks or 
duplicate tasks. Furthermore, approaches like the ones in [8] 
and [9] only work over block structured processes. Finally, 
for many of these approaches, the number of times a relation 
holds in the log is irrelevant. Thus, these approaches are 
very vulnerable to noise because they are unable to 
distinguish between high frequent and low frequent 
behavior. Given all these reasons, we decided to investigate 
the following research question: Is it possible to develop a 
control flow process mining algorithm that can discover all 
the common control flow structures and is robust to noisy 
logs at once? This paper attempts to provide an answer to 
this question. 

3.   RELATED WORK 
 In process mining there are several techniques to discover 
process model. Each technique has different perspective and 
working strategy. Some algorithms work with local strategy 
to build model step by step and others work with global 

strategy to work based on a one strike search for the optimal 
model. And also there is differentiation between ability to 
extracting models dealing with noisy information, looping, 
duplicate tasks, incompleteness log, and also how much of 
information this model will be aware with. The following 
three different examples of process mining techniques: 

3.1. Alpha Mining 
 This algorithm works based on local strategy technique to 
build model. The alpha algorithm assumes event logs to be 
complete and does not contain any noise. Therefore, the 
alpha algorithm is sensitive to noise and incompleteness of 
event logs. On the other hand it gives us a quick view of 
natural of workflow model we work on. 

3.2. Genetic Mining 
 This algorithm works based on global strategy technique 
to build model. This technique can deal with noisy and 
duplicate tasks and can provide us with detailed model. It 
based on genetic algorithm so we can say the time against 
details. 

3.3. Heuristics mining 
 This technique extend alpha algorithm by consider the 
frequency of traces in the log. Heuristics miner can deal with 
noise, and can be used to express the main behavior. The 
Heuristics Miner Plug-in mines the control flow perspective 
of a process model. To do so, it only considers the order of 
the events within a case. In other words, the order of events 
among cases isn't important. For instance for the log in the 
log file only the fields case id, time stamp and activity are 
considered during the mining. The timestamp of an activity 
is used to calculate these orderings. In Table 2 it is important 
that for case 1 activity A is followed by B within the context 
of case 1 and not that activity A of case 1 is followed by 
activity A of case 2. Therefore, we define an event log as 
follows. Let T be a set of activities. S ϵ T is an event trace, 
i.e., an arbitrary sequence of activity identifiers. W Ɛ T is an 
event log, i.e., a multiset that is bag of event traces. Note that 
since W is a multiset, every event trace can appear more than 
once in a log. In practical mining tools frequencies become 
important. If we use this notation to describe the log shown 
in Table 2 we obtain the multiset W = [ABCD; ABCD; 
ACBD; ACBD; AED]. To find a process model on the basis 
of an event log, the log should be analyzed for causal 
dependencies, e.g., if an activity is always followed by 
another activity it is likely that there is a dependency 
relation between both activities. To analyze these relations 
we introduce the following notations. Let W be an event log 
over T, i.e., W Ɛ T.  Let a; b ϵ T:  [12] 
1.  a >W b if and only if there is a trace S = t1,t2,t3 : : : tn and i 

Ɛ {1; : : : ; n -1} such that  S Ɛ W and ti = a and ti+1 = b,  
2. a →W b if and only if  a >W b and b > not equal  W a,  
3. a ≠ W b if and only if a > not equal W b and b > not equal W 
a, and  
4. a ║ W b if and only if a >W b and b >W a.  
5. a >>W b if and only if there is a trace S = t1,t2,t3 ….. tn and 

i Ɛ {1; : : : ; n - 2} such that  S ϵ W and ti = a and ti+1 = b 
and ti + 2 = a,  
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6.  a >>>W b if and only if there is a trace S = t1,t2,t3….. tn 
and i < j and i, j ϵ {1……n} such that S Ɛ W and ti = a and 
tj = b.  

 Consider the event log W = {ABCD; ABCD; ACBD; 
ACBD; AED}, that is the log shown in Table 1. The first 
relation > W describes which activities appeared in sequence 
that is one directly following the other. Clearly, A >W B, A 
>W C, A >W E, B >W C, B >W D, C >W B, C >W D, and E >W 
D. Relation →W can be computed from >W and is referred to 
as the direct dependency relation derived from event log W. 
A →W B, A→W C, A →W E, B →W D, C →W D, and E →W 
D. Note that B ≠W C because C >W B. Relation ║W suggests 
concurrent behavior, that is potential parallelism. For log W 
activities B and C seem to be in parallel, that is B ║W C and 
C ║W B. If two activities can follow each other directly in 
any order, then all possible inter leavings are present, that is 
if for instance 10 activities are in parallel thus can be a 
practical problem and therefore they are likely to be in 
parallel [12]. Relation ≠W gives pairs of transitions that 
never follow each other directly. This means that there are 
no direct dependency relations and parallelism is unlikely. In 
a formal mining approach that is the Heuristics Miner 
algorithm these three basic relations that is A→W B, A ≠W B, 
or A ║W B are directly used for the construction of a Petri 
net. The formal approach presupposes perfect information:  
• The log must be complete that is, if an activity can 

follow another activity directly, the log should contain 
an example of this behavior and   

• There is no noise in the log that is, everything is 
registered in the log is correct.  Furthermore, the α-
algorithm does not consider the frequency of traces in 
the log. However, in practical situations logs are rarely 
complete and /or noise free. Especially the 
differentiation between errors, low frequent activities, 
low frequent activity sequences, and exceptions is 
problematic. Therefore, in practice, it becomes more 
difficult to decide if between two activities say A and 
B, one of the three derived relations that is, A→W B, A 
≠W B, or A ║W B holds. For instance, the dependency 
relation used in the α-algorithm A→W B only holds if 
and only if in the log there is a trace in which A is 
directly followed by B that is, the relation A >W B 
holds and there is no trace in which B is directly 
followed by A that is  not B >W A. However, in a noisy 
situation one erroneous example can completely these 
up the derivation of a right conclusion.  Even if we 
have thousands of log traces in which A is directly 
followed by B, then one B >W A, this example based 
on an incorrect registration, will prevent a correct 
conclusion. As noted before, frequency information is 
not used in the formal approach. For this reason in the 
Heuristics Miner we use techniques which are less 
sensitive to noise and the incompleteness of logs.   

 The process of mining from original process model to 
mined process model shown in the figure 3.  Hence, 
normally the mining algorithm is used to generate a new fine 
tuned or mined model.  In figure 3, we have used the 
Heuristics Miner algorithm to convert from original process 
model to mined process model. The intermediate work 

between the original and mined model is the main picture of 
process mining.  Therefore the original model has the data in 
the form of data base file format, hence this data file is used 
to convert event logs the these logs are converted into mined 
process model with the help of control flow mining 
algorithm that is Heuristics Miner algorithm. 

Table 2. Example  of Event Log-2 
 

 
 
 

 
 

Fig 3.  Overview of Process Mining using Heuristics Miner 
Algorithm. (Source: www.processmining.org) 

4.   CONCLUSION 
 In this paper, we have focused on the applicability of 
process mining in the field of Business Process System. The 
process mining is the process of generating new process 
model for the benefit of business processing system. 
Therefore the any process mining algorithm can do the 
same.  But a special algorithm, called Heuristics Miner is 
used to generate a new model without noise that is with 
exception, frequent failure or partial failure, life time of the 
model, etc. Hence, Heuristics Miner is a most practical 
applicable mining algorithm that can deal with noise, and 
can be used to express the main behavior that is not all 
details and exceptions, registered in an event logs. Normally 
the business process system has a complex process system, 
which deals about many cases or audit trail entries and 
various event logs. Therefore this paper clearly discussed 
about the role of Heuristics Miner algorithm in the field of 
Business process system with an web page example also the 
Heuristics Miner algorithm is compared with the other 
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mining algorithm such as α-algorithm, etc,.  Hence, we 
conclude that a complex information system can be analyzed 
with the help of control flow process mining algorithm such 
as Heuristics Miner algorithm can able to discover all the 
common control flow structures and is robust to noisy logs 
at once. 
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