
A Role of Heuristics Miner Algorithm in the Business Process
System

Saravanan .M.S
Research Scholar in R & D Centre, Bharathiar

University, Coimbatore, Tamil Nadu, INDIA.
Asst. Prof. in VEL TECH Dr. RR & Dr. SR Technical

University Avadi, Chennai, INDIA.
saranenadu@yahoo.co.in

Rama Sree .R.J

Professor in the Department of Computer Science
Rashtriya Sanskrit University,

Tirupati, Andhra Pradesh, INDIA.
rjramasree@yahoo.com

ABSTRACT

The main idea of process mining is to extract knowledge or
information from event logs recorded by an information system.
Till now, the information in these event logs was rarely used to
analyze the underlying processes. Process mining aims at
improving this by providing techniques and tools for discovering
process, organizational, social, and performance information from
event logs. Process mining has become a bright research area. In
this paper we discuss the challenging process mining domain and
demonstrate a heuristics driven process mining algorithm; the so
called Heuristics Miner in detail. Heuristics Miner is a practical
applicable mining algorithm that can deal with noise, and can be
used to express the main behavior that is not all details and
exceptions, registered in an event log. The business process system
has a complex process system, which deals about many cases or
audit trail entries and various event logs. This paper deals about the
role of Heuristics Miner algorithm in the field of Business process
system, also the Heuristics Miner algorithm is compared with the
other mining algorithm such as α-algorithm. Hence, we analyzed
that, is it possible to develop a control flow process mining
algorithm such as Heuristics Miner algorithm can discover all the
common control flow structures and is robust to noisy logs at once?
This paper attempts to provide an answer to this question.

Keywords
Event log, Heuristics Miner, Business process, Process mining, α-
algorithm.

1. INTRODUCTION
Nowadays, most organizations use information systems to

support the execution of their business processes [1].
Examples of information systems supporting operational
processes are Workflow Management Systems (WMS) [2]
[3], Customer Relationship Management (CRM) systems
and Enterprise Resource Planning (ERP) systems and so on.
These information systems may contain an explicit model of
the processes may support the tasks involved in the process
without necessarily defining an explicit process model. All
these information systems have activities and then these
activities are converted into the logs.

These produced logs usually contain data about cases that
is process instances, which have been executed in the
organization, the times at which the tasks were executed, the
persons or systems that performed these tasks, and other
kinds of data. These logs are the starting point for process
mining, and are usually called event logs. For instance,
consider the event log in Table 1. This log contains
information about four process instances that is cases of a
process that handles fines. Process mining targets the
automatic discovery of information from an event log. This
discovered information can be used to deploy new systems

that support the execution of business processes or as a
feedback tool that helps in auditing, analyzing and
improving already enacted business processes.

The main benefit of process mining techniques is that
information is objectively compiled. In other words, process
mining techniques are helpful because they gather
information about what is actually happening according to
an event log of an organization, and not what people think
that is happening in this organization. The starting point of
any process mining technique is an event log. The type of
data in an event log determines which perspectives of
process mining can be discovered. If the log provides the
tasks that are executed in the process and it is possible to
infer their order of execution and link these tasks to
individual cases or process instances then the control flow
perspective can be mined. The log in Table 1 has this data
fields such as Case ID, Task Name and Timestamp. So, for
this log, mining algorithms could discover the process in
Figure 1, Basically, the process describes that after a fine is
entered in the system, the bill is sent to the driver. If the
driver does not pay the bill within one month, a reminder is
sent. When the bill is paid, the case is archived. If the log
provides information about the persons systems that
executed the tasks, the organizational perspective can be
discovered. The organizational perspective discovers
information like the social network in a process, based on
transfer of work, or allocation rules linked to organizational
entities like roles and units. For instance, the log in Table 1
shows that Raja transfers work to both Saran that is case 2
and John that is cases 3 and 4, and John sometimes transfers
work to Saran that is case 4. Besides, by inspecting the log,
the mining algorithm could discover that Saran never has to
send a reminder more than once, while John does not seem
to perform as good. The managers could talk to Saran and
check if he has another approach to send reminders that John
could benefit from. This can help in making good practices a
common knowledge in the organization. When the log
contains more details about the tasks, like the values of data
fields that the execution of a task modifies, the case
perspective that is the perspective linking data to cases can
be discovered. So, for instance, a forecast for executing
cases can be made based on already completed cases,
exceptional situations can be discovered etc. In our
particular example, logging information about the profiles of
drivers that is like age, gender, car etc. could help in
assessing the probability that they would pay their fines on
time. Moreover, logging information about the places where

Saravavan.M.S,Rama Sree.R.J Int. J. Comp. Tech. Appl., Vol 2 (2), 340-344

340

ISSN:2229-6093
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/24066474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the fines were applied could help in improving the traffic
measures in these places. From this explanation, the reader
may have already noticed that the control flow perspective
relates to the How? Question, the organizational perspective
to the Who? Question and the case perspective to the What?
Question. All these three perspectives are complementary
and relevant for process mining. However, in this thesis we
focus on the control flow perspective of process mining.

Table 1. Example of Event Log-1

Fig 1: Petri Net illustrating the control flow perspective that can be

mined from the event log in Table 1.

2. CONTROL FLOW MINING
 The control flow perspective mines a process model that
specifies the relations between tasks in an event log. From
event logs, one can find out information about which tasks
belong to which process instances, the time at which tasks
are executed, the originator of tasks, etc. Therefore, the
mined process model is an objective picture that depicts
possible flows that were followed by the cases in the log that
is assuming that the events were correctly logged. Because
the flow of tasks is to be depicted, control flow mining
techniques need to support the correct mining of the
common control flow constructs that appear in process
models. These constructs are: sequences, parallelism,
choices, loops, and non free choice, invisible tasks and
duplicate tasks [4]. Sequences express situations in which
tasks are performed in a predefined order, one after the
other. For instance, for the model in Figure 2, the tasks
“Enter Website” and “Browse Products” are in a sequence.
Parallelism means that the executions of two or more tasks
are independent or concurrent. For instance, the task “Fill in
Payment Info” can be executed independently of the tasks
Login and “Create New Account” in Figure 2. Choices
model situations in which either one task or another is

executed. For instance, the tasks “Remove Item from Basket”
and “Add Item to Basket” are involved in the same choice in
the model in Figure 2. The same holds for the tasks “Cancel
Purchase” and “Commit Purchase”. Loops indicate that
certain parts of a process can be repeatedly executed. In the
model in Figure 2, the block formed by the tasks “Browse
Products”, “Remove Item from Basket”, “Add Item to
Basket” and “Calculate Total” can be executed multiple
times in a row. Non free choice constructs model a mix of
synchronization and choice. For instance, have a look at the
non free choice construct involving the tasks “Calculate
Total” and “Calculate Total with Bonus”. Note that the
choice between executing one of these two tasks is not done
after executing the task “Fill in Delivery Address”, but
depends on whether the task Login or the task “Create New
Account” has been executed. In this case, the non free choice
construct is used to model the constraint that only returning
customers are entitled to bonuses. Invisible tasks correspond
to silent steps that are used for routing purposes only and,
therefore, they are not present in event logs. Note that the
model in Figure 2 has three invisible tasks, represented in
the black rectangles. Two of these invisible tasks are used to
skip parts of the process and the other one is used to loop
back to “Browse Products”. Duplicate tasks refer to
situations in which multiple tasks in the process have the
same label. Duplicates are usually embedded in different
contexts that are surrounding tasks in a process. The model
in Figure 2 has two tasks with the same label “Calculate
Total”. Both duplicates perform the same action of adding
up the prices of the products in the shopping basket.
However, the first “Calculate Total”, refer top part of Figure
2 does so while the client is still selecting products and the
second one refer bottom part of Figure 2, computes the final
price of the whole purchase. Control flow process mining
algorithms should be able to tackle these common
constructs. In fact, there has been quite a lot of work on
mining the control flow perspective of process models [5]
[6] [7] [8] [9] [10]. For instance, the work in [8] can mine
duplicate tasks, [10] can mine non free choice, [5] proves to
which classes of models their mining algorithm always
works, [7] mines common control flow patterns and [9]
captures partial synchronization in block structured models.
However, none of the current control flow process mining
techniques is able to mine all constructs at once.
Furthermore, many of them have problems while dealing
with another factor that is common in real-life logs: the
presence of noise. Noise can appear in two situations: event
traces were somehow incorrectly logged that is for instance,
due to temporary system misconfiguration or event traces
reflects exceptional situations. Either way, most of the
techniques will try to find a process model that can parse all
the traces in the log. However, the presence of noise may
hinder the correct mining of the most frequent behavior in
the log. The first reason why these techniques have
problems to handle all the constructs is that they are based
on local information in the log. In other words, they use the
information about what tasks directly precede or directly
follow each other in a log to set the dependencies between
these tasks. The problem is that some of these dependencies
are not captured by direct succession or precedence. For
instance, consider the non free choice construct in Figure 2.

Saravavan.M.S,Rama Sree.R.J Int. J. Comp. Tech. Appl., Vol 2 (2), 340-344

341

ISSN:2229-6093

Fig 2. Example of a Petri Net that contains all the common

control flow constructs that may appear in Business process
(Generated from [11])

 Note that the tasks involved in this non free choice
constructs never directly follow of precede each other. A
second reason why some of the techniques cannot mine
certain constructs is because the notation they use to model
the processes does not support these constructs. For
instance, the notation used by the α-algorithm [5] and
extensions [10] does not allow for invisible tasks or
duplicate tasks. Furthermore, approaches like the ones in [8]
and [9] only work over block structured processes. Finally,
for many of these approaches, the number of times a relation
holds in the log is irrelevant. Thus, these approaches are
very vulnerable to noise because they are unable to
distinguish between high frequent and low frequent
behavior. Given all these reasons, we decided to investigate
the following research question: Is it possible to develop a
control flow process mining algorithm that can discover all
the common control flow structures and is robust to noisy
logs at once? This paper attempts to provide an answer to
this question.

3. RELATED WORK
 In process mining there are several techniques to discover
process model. Each technique has different perspective and
working strategy. Some algorithms work with local strategy
to build model step by step and others work with global

strategy to work based on a one strike search for the optimal
model. And also there is differentiation between ability to
extracting models dealing with noisy information, looping,
duplicate tasks, incompleteness log, and also how much of
information this model will be aware with. The following
three different examples of process mining techniques:

3.1. Alpha Mining
 This algorithm works based on local strategy technique to
build model. The alpha algorithm assumes event logs to be
complete and does not contain any noise. Therefore, the
alpha algorithm is sensitive to noise and incompleteness of
event logs. On the other hand it gives us a quick view of
natural of workflow model we work on.

3.2. Genetic Mining
 This algorithm works based on global strategy technique
to build model. This technique can deal with noisy and
duplicate tasks and can provide us with detailed model. It
based on genetic algorithm so we can say the time against
details.

3.3. Heuristics mining
 This technique extend alpha algorithm by consider the
frequency of traces in the log. Heuristics miner can deal with
noise, and can be used to express the main behavior. The
Heuristics Miner Plug-in mines the control flow perspective
of a process model. To do so, it only considers the order of
the events within a case. In other words, the order of events
among cases isn't important. For instance for the log in the
log file only the fields case id, time stamp and activity are
considered during the mining. The timestamp of an activity
is used to calculate these orderings. In Table 2 it is important
that for case 1 activity A is followed by B within the context
of case 1 and not that activity A of case 1 is followed by
activity A of case 2. Therefore, we define an event log as
follows. Let T be a set of activities. S ϵ T is an event trace,
i.e., an arbitrary sequence of activity identifiers. W Ɛ T is an
event log, i.e., a multiset that is bag of event traces. Note that
since W is a multiset, every event trace can appear more than
once in a log. In practical mining tools frequencies become
important. If we use this notation to describe the log shown
in Table 2 we obtain the multiset W = [ABCD; ABCD;
ACBD; ACBD; AED]. To find a process model on the basis
of an event log, the log should be analyzed for causal
dependencies, e.g., if an activity is always followed by
another activity it is likely that there is a dependency
relation between both activities. To analyze these relations
we introduce the following notations. Let W be an event log
over T, i.e., W Ɛ T. Let a; b ϵ T: [12]
1. a >W b if and only if there is a trace S = t1,t2,t3 : : : tn and i

Ɛ {1; : : : ; n -1} such that S Ɛ W and ti = a and ti+1 = b,
2. a →W b if and only if a >W b and b > not equal W a,
3. a ≠ W b if and only if a > not equal W b and b > not equal W
a, and
4. a ║ W b if and only if a >W b and b >W a.
5. a >>W b if and only if there is a trace S = t1,t2,t3 ….. tn and

i Ɛ {1; : : : ; n - 2} such that S ϵ W and ti = a and ti+1 = b
and ti + 2 = a,

Saravavan.M.S,Rama Sree.R.J Int. J. Comp. Tech. Appl., Vol 2 (2), 340-344

342

ISSN:2229-6093

6. a >>>W b if and only if there is a trace S = t1,t2,t3….. tn
and i < j and i, j ϵ {1……n} such that S Ɛ W and ti = a and
tj = b.

 Consider the event log W = {ABCD; ABCD; ACBD;
ACBD; AED}, that is the log shown in Table 1. The first
relation > W describes which activities appeared in sequence
that is one directly following the other. Clearly, A >W B, A
>W C, A >W E, B >W C, B >W D, C >W B, C >W D, and E >W
D. Relation →W can be computed from >W and is referred to
as the direct dependency relation derived from event log W.
A →W B, A→W C, A →W E, B →W D, C →W D, and E →W
D. Note that B ≠W C because C >W B. Relation ║W suggests
concurrent behavior, that is potential parallelism. For log W
activities B and C seem to be in parallel, that is B ║W C and
C ║W B. If two activities can follow each other directly in
any order, then all possible inter leavings are present, that is
if for instance 10 activities are in parallel thus can be a
practical problem and therefore they are likely to be in
parallel [12]. Relation ≠W gives pairs of transitions that
never follow each other directly. This means that there are
no direct dependency relations and parallelism is unlikely. In
a formal mining approach that is the Heuristics Miner
algorithm these three basic relations that is A→W B, A ≠W B,
or A ║W B are directly used for the construction of a Petri
net. The formal approach presupposes perfect information:
• The log must be complete that is, if an activity can

follow another activity directly, the log should contain
an example of this behavior and

• There is no noise in the log that is, everything is
registered in the log is correct. Furthermore, the α-
algorithm does not consider the frequency of traces in
the log. However, in practical situations logs are rarely
complete and /or noise free. Especially the
differentiation between errors, low frequent activities,
low frequent activity sequences, and exceptions is
problematic. Therefore, in practice, it becomes more
difficult to decide if between two activities say A and
B, one of the three derived relations that is, A→W B, A
≠W B, or A ║W B holds. For instance, the dependency
relation used in the α-algorithm A→W B only holds if
and only if in the log there is a trace in which A is
directly followed by B that is, the relation A >W B
holds and there is no trace in which B is directly
followed by A that is not B >W A. However, in a noisy
situation one erroneous example can completely these
up the derivation of a right conclusion. Even if we
have thousands of log traces in which A is directly
followed by B, then one B >W A, this example based
on an incorrect registration, will prevent a correct
conclusion. As noted before, frequency information is
not used in the formal approach. For this reason in the
Heuristics Miner we use techniques which are less
sensitive to noise and the incompleteness of logs.

 The process of mining from original process model to
mined process model shown in the figure 3. Hence,
normally the mining algorithm is used to generate a new fine
tuned or mined model. In figure 3, we have used the
Heuristics Miner algorithm to convert from original process
model to mined process model. The intermediate work

between the original and mined model is the main picture of
process mining. Therefore the original model has the data in
the form of data base file format, hence this data file is used
to convert event logs the these logs are converted into mined
process model with the help of control flow mining
algorithm that is Heuristics Miner algorithm.

Table 2. Example of Event Log-2

Fig 3. Overview of Process Mining using Heuristics Miner
Algorithm. (Source: www.processmining.org)

4. CONCLUSION
 In this paper, we have focused on the applicability of
process mining in the field of Business Process System. The
process mining is the process of generating new process
model for the benefit of business processing system.
Therefore the any process mining algorithm can do the
same. But a special algorithm, called Heuristics Miner is
used to generate a new model without noise that is with
exception, frequent failure or partial failure, life time of the
model, etc. Hence, Heuristics Miner is a most practical
applicable mining algorithm that can deal with noise, and
can be used to express the main behavior that is not all
details and exceptions, registered in an event logs. Normally
the business process system has a complex process system,
which deals about many cases or audit trail entries and
various event logs. Therefore this paper clearly discussed
about the role of Heuristics Miner algorithm in the field of
Business process system with an web page example also the
Heuristics Miner algorithm is compared with the other

Saravavan.M.S,Rama Sree.R.J Int. J. Comp. Tech. Appl., Vol 2 (2), 340-344

343

ISSN:2229-6093

mining algorithm such as α-algorithm, etc,. Hence, we
conclude that a complex information system can be analyzed
with the help of control flow process mining algorithm such
as Heuristics Miner algorithm can able to discover all the
common control flow structures and is robust to noisy logs
at once.

5. REFERENCES
[1] M. Dumas, W.M.P. van der Aalst, and A.H. ter Hofstede. Process-

Aware Information Systems: Bridging People and Software Through
Process Technology, John Wiley & Sons Inc, 2005.

[2] W.M.P. van der Aalst and K.M. van Hee, Workflow Management:
Models, Methods, and Systems. MIT press, Cambridge, MA, 2002.

[3] Workflow Management Coalition. WFMC Home Page,
http://www.wfmc.org.

[4] W.M.P. van der Aalst and A.J.M.M. Weijters. Process Mining,
Special Issue of Computers in Industry. Elsevier Science Publishers,
Amsterdam, Vol. 53, 2004.

[5] van der Aalst, W., Weijters, A., and Maruster, L. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on
Knowledge and Data Engineering, Vol 16, No. 9, pp. 1128–1142,
2004.

[6] van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm,
G., and Weijters, A. Workflow Mining: A survey of Issues and
Approaches. IEEE Journal of the Data and Knowledge Engineering,
Vol . 47, Issue 2, pp. 237-267, 2003.

[7] J.E. Cook, Z. Du, C. Liu, and A.L.Wolf. Discovering Models of
Behavior for Concurrent Workflows. Computers in Industry, Vol. 53,
Issue 3, pp. 297-319, 2004.

[8] J. Herbst and D. Karagiannis. Workflow Mining with InWoLvE.
Computers in Industry, Vol. 53, No.3, pp. 245-264, 2004.

[9] G. Schimm. Mining Exact Models of Concurrent Workflows.
Computers in Industry, Vol. 53, No. 3, pp. 265-281, 2004.

[10] L. Wen, J. Wang, and J. Sun. Detecting Implicit Dependencies
Between Tasks from Event Logs. In Xiaofang Zhou, Jianzhong Li,
Heng Tao Shen, Masaru Kitsuregawa, and Yanchun Zhang, editors,
APWeb, volume 3841 of Lecture Notes in Computer Science, pages
pp. 591-603, Springer, 2006.

[11] Chengying Mao. Control Flow Complexity Metrics for Petri Net
based Web Service Composition, Nanchang, Published in the
Journal of Software, China, Vol. 5, No.11, November 2010.

[12] van der Aalst, W., van Dongen, B., Gunther,¨ C., Mans, R., de
Medeiros, A. A., Rozinat, A., Rubin, V., Song, M., Verbeek, H., and
Weijters, A. ProM 4.0: Comprehensive Support for Real Process
Analysis. In Kleijn, J. and Yakovlev, A., editors, Application and
Theory of Petri Nets and Other Models of Concurrency (ICATPN
2007), Lecture Notes in Computer Science, Published by Springer-
Verlag, Berlin, Vol 4546, pp. 484-494, 2007.

Saravanan. M.S received B.Sc degree in
computer science from Madras University in
1996, the MCA degree from Bharathidasan
University in 2001, the M.Phil degree from
Madurai Kamaraj University in 2004, M.Tech
degree from IASE University in 2005. And now
pursuing PhD degree in Bharathiar University.
His current research interests include Process
Mining, Business Process modeling, Workflow
management systems and Exception handling etc.
He is an Assistant professor in the Department of
Information Technology in VEL TECH Dr, RR &
Dr. SR Technical University, Avadi, Chennai,
India. M.S. Saravanan has published eight
international publications and presented ten
research papers in international and national
conferences, having 11 years of teaching
experience in various institutions in India.

Rama Sree. R.J received M.S degree in computer
science from BITS Pilani University in 1996 and
PhD degree in S.P. Mahila University, Tirupati.
She is a Reader in Department of Computer
Science in Rashtriya Sanskrit University, Tirupati.
Dr. Rama Sree has published three books and
sixteen international publications and ten national
publications, having 17 years of teaching
experience.

Saravavan.M.S,Rama Sree.R.J Int. J. Comp. Tech. Appl., Vol 2 (2), 340-344

344

ISSN:2229-6093

