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Abstract

Already in the 1960s Grothendieck understood that one could obtain an almost
entirely satisfactory theory of motives over a finite field when one assumes the full Tate
conjecture. In this note we prove a similar result for motivic complexes. In particular
Beilinson’s Q-algebra of “correspondences at the generic point” is then defined for all
connected varieties. We compute it for all smooth projective varieties (hence also for
varieties birational to such a variety).
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Introduction

More than forty years after Grothendieck predicted that the standard cohomology functors
factor through a tannakian category of pure motives, we still do not know how to construct
such a category. However, when the field is finite and one assumes the full Tate conjecture,
there is an almost entirely satisfactory theory of pure motives. According to Deligne (1994,
1.4), this was known to Grothendieck, but it was re-discovered by Langlands and Rapoport
(1987), who used it to state a conjecture, more precise than earlier attempts by Langlands,
on the structure of the points modulo a prime on a Shimura variety. For a detailed descrip-
tion of the category, see Milne 1994.
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It is generally hoped that the standard cohomology functors to triangulated categories
will factor through a triangulated category of motivic complexes with t -structure whose
heart is (defined to be) the category of mixed motives (see, for example, Deligne 1994, �3).
We show that, over a finite field, a triangulated category of motivic complexes exists with
the expected properties if and only if the Tate conjecture holds and homological equivalence
coincides with rational equivalence with Q-coefficients (see Theorems 4.2 and 5.3 for more
precise statements). Moreover, then a category of effective motivic complexes exists with
the properties (A,B,C) of Beilinson 2002, and so there is a well-defined semisimple Q-
algebra of “correspondences at the generic point” attached to every variety over a finite
field. We compute this Q-algebra for smooth projective varieties (hence also for varieties
birational to such a variety). As this requires the generalized Tate conjecture (in the sense
of Grothendieck 1968, �10), we begin by giving an elementary proof that this follows from
the usual Tate conjecture.

Notations

A variety is a geometrically-reduced separated scheme of finite type over a field. For a
variety X over a perfect field k of characteristic p ¤ 0 and algebraic closure Nk, we set

H i
l .X/ D H

i
et.X Nk

;Ql/; if l ¤ p; and

H i
p.X/ D H

i
crys.X=W /˝Q; W D W.k/:

We use .r/ to denote a Tate twist, and we write hom.l/ for the equivalence relation on
the space Z�.X/ of algebraic cycles defined by Hl . Similarly, we write num and rat
for numerical and rational equivalence. For an adequate equivalence relation �, Zi

�.X/ D

Zi .X/=� andZi
�.X/Q D Z

i
�.X/˝Q. For example,Zi

rat.X/ is the Chow groupCH i .X/.
By a functor between additive categories, we mean an additive functor. A functor

F W C ! C0 of triangulated categories together with an isomorphism of functors F ı T �
T 0 ıF is said to be triangulated (formerly, exact; Verdier 1977, p4) if it takes distinguished
triangles to distinguished triangles.

A triangulated category with t -structure (Gelfand and Manin 1996, IV 4.2, p278) will
be referred to simply as a t -category. All t -structures will be assumed to be bounded
(i.e.,

S
n�0D�n D D D

S
n�0D��n) and nondegenerate (i.e.,

T
n�0D��n D 0 DT

n�0D�n).
The symbol F denotes an algebraic closure of Fp, and the algebraic closure of Q in C is

denoted Qal. Reductive groups are not required to be connected. Isomorphisms are denoted
� and canonical isomorphisms'.

1 The generalized Tate conjecture

In this section, k is the subfield Fq of F, and l ¤ p.

1.1 By the full Tate conjecture for a smooth complete variety X over k and an r � 0,
we mean the statement that the order of the pole of the zeta function Z.X; t/ at t D q�r

is equal to the rank of the group of numerical equivalence classes of algebraic cycles of
codimension r on X . If the full Tate conjecture holds for X and r , then, for all l ¤ p,
T r.X; l/: the cycle class map Zr.X/˝Ql ! H 2r

l
.X/.r/Gal.F=k/ is surjective, and

Er.X; l/: the quotient mapZr
hom.l/

.X/Q ! Zr
num.X/Q is injective (i.e., hom.l/ and num

coincide with Q-coefficients).
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Conversely, if T r.X; l/ and Er.X; l/ hold for a single l , then the full Tate conjecture holds
for X and r (Tate 1994, �2). The statement T r.X; l/ is the Tate conjecture for X , r , and l .1

Statement of the generalized Tate conjecture

Define a Tate structure to be a finite-dimensional Ql -vector space with a linear (Frobenius)
map $ whose characteristic polynomial lies in QŒT � and whose eigenvalues are Weil q-
numbers, i.e., algebraic numbers ˛ such that, for some integer m (called the weight of ˛),
j�.˛/j D qm=2 for every homomorphism �WQŒ˛�! C, and, for some integer n, qn˛ is an
algebraic integer. When the eigenvalues are all of weight m (resp. algebraic integers, resp.
semisimple), we say that V is of weight m (resp. effective, resp. semisimple). For example,
for any smooth complete variety X over k, H i

l
.X/ is an effective Tate structure of weight

i=2 (Deligne 1980), which is semisimple if X is an abelian variety (Weil 1948b, no. 70) or
if the full Tate conjecture holds for X �X (Milne 1986b, 8.6).

LetX be a smooth complete variety over k. For each r , let F r
aH

i
l
.X/ � H i

l
.X/ denote

the subspace of classes with support in codimension at least r , i.e.,

F r
aH

i
l .X/ D

[
U

Ker.H i
l .X/! H i

l .U //

where U runs over the open subvarieties of X such that X X U has codimension � r .

EXAMPLE 1.2 If Z is a smooth closed subvariety of X of codimension r , then there is an
exact Gysin sequence

� � � ! H i�2r
l .Z/.�r/! H i

l .X/! H i
l .U /! � � � ; U D X XZ;

(e.g., Milne 1980, VI 5.4), and so the kernel of H i
l
.X/ ! H i

l
.U / is an effective Tate

structure of weight i whose twist by Ql.r/ is still effective.

CONJECTURE 1.3 (Generalized Tate conjecture; cf. Grothendieck 1968, 10.3.). For a
smooth complete variety X over k, every semisimple Tate substructure V � H i

l
.X/ such

that V.r/ is still effective is contained in F r
aH

i
l
.X/.

REMARK 1.4 Let X be a smooth complete variety over k. For any i and r , the set of
eigenvalues ˛ of $X on H i

l
.X/ such that ˛=qr is an algebraic integer is stable under

Galois conjugation. Therefore, there is a subspace F r
b
H i

l
.X/ of H i

l
.X/ that becomes the

sum of the eigenspaces of these ˛ over Qal
l

. It is the largest semisimple Tate substructure of
H i

l
.X/ whose twist by Ql.r/ is still effective, and so the generalized Tate conjecture 1.3 is

the statement:
F r

bH
i
l .X/ � F

r
aH

i
l .X/:

EXAMPLE 1.5 Let Z0 be a closed irreducible subvariety of XF of codimension r . Then

H 2r
Z0 .XF;Ql.r//! H 2r.XF;Ql.r//! H 2r.XF XZ

0;Ql.r// (1)

is exact, and H 2r
Z0 .XF;Ql.r// ' Ql ; moreover, the image of 1 under the first map is the

cohomology class of Z0 (cf. Milne 1980, p269). For any open U � X , the kernel of

H 2r
l .X/.r/! H 2r

l .U /.r/

1More precisely, it is Conjecture 1 of Tate 1965. Statement Er .X; l/ is a variant of the “conjectural state-
ment” (a0) of Tate 1965. Our notation follows that of Tate 1994.
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is spanned by the cohomology classes of the irreducible components of .XXU/F, and some
power of $X acts as 1 on it. On the other hand, F r

b
H 2r

l
.X/.r/ is the largest subspace of

H 2r
l
.X/.r/ on which some power of $ acts as 1. Thus, the generalized Tate conjecture

with i D 2r states that this subspace is spanned by the classes of algebraic cycles of codi-
mension r on XF. This is the Tate conjecture stated over F rather than Fq .

The Tate conjecture implies the generalized Tate conjecture

Recall that, for a proper map � WY ! X of smooth varieties over an algebraically closed
field, the Gysin map

��WH
i .Y;Ql/! H i�2c.X;Ql.�c//; c D dimY � dimX;

is defined to be the Poincaré dual of

��
WH 2d�i

c .X;Ql.d//! H 2d�i
c .Y;Ql.d//; d D dimY

(Milne 1980, VI 11.6). We shall need to know that these maps are compatible with restric-
tion to open subvarieties.

LEMMA 1.6 Let � WY ! X be a proper map of smooth complete varieties over an al-
gebraically closed field, and let j WU ,! X an open immersion. Then the commutative
diagram at left gives rise to the commutative diagram at right:

Y
j 0

 ���� ��1U??y�

??y� 0

X
j

 ���� U

H i .Y;Ql/
j 0�

����! H i .��1U;Ql/??y��

??y� 0
�

H i�2c.X;Ql.�c//
j �

����! H i�2c.U;Ql.�c//

PROOF. Exercise for the reader. 2

PROPOSITION 1.7 Every effective semisimple Tate structure is isomorphic to a Tate sub-
structure of H�

l
.A/ for some abelian variety A over Fq .

PROOF. We may assume that the Tate structure V is simple. Then V has weightm for some
m � 0, and the characteristic polynomial P.T / of $ is a monic irreducible polynomial
with coefficients in Z whose roots all have real absolute value qm=2. According to Honda’s
theorem (Honda 1968; Tate 1968), P.T / is the characteristic polynomial of an abelian
variety A over Fqm . Let B be the abelian variety over Fq obtained from A by restriction
of the base field. The eigenvalues of the Frobenius map on H 1

l
.B/ are the mth-roots of the

eigenvalues of the Frobenius map on H 1
l
.A/, and it follows that V is a Tate substructure of

Hm
l
.B/. 2

LEMMA 1.8 Let z be an algebraic cycle of codimension dimT C r on the product T �X
of two smooth complete varieties over k (i.e., z is an algebraic correspondence of degree r
from T to X ). Assume that the push-forward of z on X is nonzero. Then the image of the
map

z�WH
i�2r
l .T /.�r/! H i

l .X/

defined by z is contained in F r
aH

i
l
.X/.
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PROOF. Let p; q denote the projection maps T � X � T ;X , and let Œz� denote the coho-
mology class of z in H 2dT C2r

l
.T �X/.dT C r/, dT D dimT . Then

z�.a/
def
D q�.Œz� [ p

�.a//; a 2 H i�2r
l .T /.�r/:

As the push-forward q�.z/ of z is nonzero, its support Z has codimension r .2 Let U D
X XZ. Then z has support in T �Z, and so Œz�maps to zero inH 2dT C2r

l
.T �U/.dT Cr/.

According to (1.6), the diagram

H
iC2dT

l
.T �X/.dT / ����! H

iC2dT

l
.T � U/.dT /??yq�

??yq�

H i
l
.X/ ����! H i

l
.U /

commutes, which shows that z�.a/maps to zero inH i
l
.U /, and therefore lies inF r

aH
i
l
.X/.2

LEMMA 1.9 Let X be a smooth complete variety over k and let i; r 2 N. If there exists a
smooth complete variety T such that

– H i�2r
l

.T / is a semisimple Tate structure,
– the Tate conjecture T dim.T /Cr.T �X; l/ holds, and
– F r

b
H i

l
.X/.r/ is isomorphic to a Tate substructure of H i�2r

l
.T /

then F r
b
H i

l
.X/ � F r

aH
i
l
.X/.

PROOF. Let d D dim.T / and let V be a Tate substructure of H i�2r
l

.T / for which there
exists an isomorphism f WV.�r/! F r

b
H i

l
.X/. Then

H 2dC2r
l

.T �X/.d C r/ � H 2dC2r�i
l

.T /.d C r/˝H i
l .X/

' Hom.H i�2r
l .T /.�r/;H i

l .X//

� Hom.V .�r/; F r
bH

i
l .X// 3 f:

(The last inclusion depends on the choice of stable complement for V in H i�2r
l

.T /.) As
f is fixed by Gal.F=k/, it can be approximated by the cohomology class of an algebraic
correspondence z of degree r from T toX . Moreover, z can be chosen so that z� is injective
on V . Obviously z� maps H i�2r

l
.T /.�r/ into F r

b
H i

l
.X/, and so

F r
bH

i
l .X/ � z�V.�r/

1:8
� F r

aH
i
l .X/: 2

THEOREM 1.10 Let X be a smooth complete variety over k. If the Tate conjecture holds
for all varieties of the form A � X with A an abelian variety (and some l), then the gener-
alized Tate conjecture holds for X (and the same l).

PROOF. As we noted above, H�
l
.A/ is a semisimple, and so this follows from (1.7) and

1.9). 2

COROLLARY 1.11 If the Tate conjecture holds for all abelian varieties over k (or for all
smooth complete varieties over k) and some l , then the generalized Tate conjecture holds
for the same class and that l .

2Recall that the push-forward q�.z/ of an irreducible z is defined to be zero if dim.q.z// < dim z.
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REMARK 1.12 As others have noted (Kahn 2002, Theorem 2; André 2004, 8.2), when one
assumes the full Tate conjecture, the generalized Tate conjecture follows directly from the
description of the simple motives in terms of Weil numbers (see Milne 1994, Proposition
2.6).

Complements

1.13 Let X be a smooth projective variety over k, and let V D F r
b
H i

l
.X/. We know that

V.�r/ � H i�2r
l

.A/ for some abelian variety A over k (see 1.7). If dimA D d > i � 2r ,
then, according to the Lefschetz hypersurface-section theorem, for any smooth hypersurface
section Y of A (which exists by Gabber 2001), V.�r/ � H i�2r

l
.Y /. Continuing in this

fashion, we get that V.�r/ � H i�2r
l

.T / for some smooth projective T of dimension i�2r .
Therefore, under the assumption of the Tate conjecture, there exists a smooth projective
variety T of dimension at most i � 2r over k and an algebraic correspondence z from T to
X of degree r such that z�H

i�2r
l

.T /.r/ D F r
b
H i

l
.X/.

1.14 Deligne (1974b, 8.2.8) proves the following:

Let X be a smooth complete variety over C, and let Z be a closed subvariety
of X of codimension r . For any desingularization QZ ! Z of Z, the sequence

H i�2r. QZ;Q.�r//! H i .X;Q/! H i .U;Q/; U D X XZ;

is exact.

A similar argument3 proves the following l-adic analogue:

LetX be a smooth complete variety over a perfect field k, and letZ be a closed
subvariety of X of codimension r . For any smooth alteration QZ ! Z of Z,
the sequence

H i�2r
l . QZ/.�r/! H i

l .X/! H i
l .U /; U D X XZ;

is exact.

Since de Jong (1996, 3.1) shows that smooth alterations always exist, this implies that

F r
aH

i
l .X/ � F

r
bH

i
l .X/:

The generalized Tate conjecture then states that

F r
aH

i
l .X/ D F

r
bH

i
l .X/:

3For any proper surjective morphism f WY ! Z from a smooth projective variety Y , we can find a smooth
projective simplicial scheme Y� with Y0 D Y that is a proper hypercovering of Z. The corresponding spec-
tral sequence (l-adic analogue of the spectral sequence Deligne 1974b, 8.1.19.1) degenerates at E2 with Ql -
coefficients because of weight considerations, and gives an exact sequence

0!
H i

l
.Z/

Wi�1H
i
l
.Z/
! H i

l .Y0/
ı0�ı1
�! H i

l .Y1/:

It follows that the image of H i
l
.Z/ in H i

l
.Y / is the (largest) quotient of pure weight i of H i

l
.Z/. This implies

the l-adic analogue of Deligne 1974b, 8.2.7, (the proof there works as the GrW
� functor is exact) and of ibid.

8.2.8.



2 THE CATEGORY OF PURE MOTIVES 7

1.15 The above statements hold mutatis mutandis for p. For a smooth complete varietyX ,
H i

p.X/ is an F -isocrystal, i.e., a finite-dimensional vector space over B.Fq/
def
D W.Fq/˝Q

equipped with a � -linear bijection F WH i
p.X/ ! H i

p.X/. The full Tate conjecture for X
and r is equivalent to
T r.X; p/: the cycle class map Zr.X/ ˝ Qp ! H 2r

p .X/.r/F D1 is surjective (Tate con-
jecture for p), and

Er.X; p/: the quotient map Zr
hom.p/

.X/Q ! Zr
num.X/Q is injective

(cf. Milne 2007, �1). Define

F r
aH

i
p.X/ D

[
Z

Im.H i�2r
p . QZ/.�r/! H i

p.X//

whereZ runs over the closed subvarieties of X such thatZ is of codimension at least r and
QZ is a smooth alteration of Z. If the Tate conjecture holds for smooth complete varieties

over k and p, then
F r

aH
i
p.X/ D F

r
bH

i
p.X/

where F r
b
H i

p.X/ � H i
p.X/Œr;1/ is the largest semisimple sub-isocrystal of H i

p.X/ with
slopes at least r . The proofs are similar to those in the case l ¤ p — we omit the details.

1.16 Similar arguments show that the generalized Tate conjecture over number fields fol-
lows from the Tate conjecture and an effective version of the Fontaine-Mazur conjecture
(Fontaine and Mazur 1995, Conjecture 1, p44) that specifies which representations arise
from effective motives.

NOTES It was known to Grothendieck that the generalized Hodge conjecture follows from the usual
Hodge conjecture and the following weak analogue of (1.7),

Let V be a simple Hodge substructure of the cohomology of a smooth complex pro-
jective variety; if its Tate twist V.r/ is still effective (i.e., has only nonnegative Hodge
numbers), then V.r/ occurs in the cohomology of a smooth complex projective variety.

presumably by more-or-less the above argument. See Grothendieck 1969, top of p301 (also Schoen
1989, �0).

2 The category of pure motives

In this section k D Fq .
For any adequate equivalence relation �, Grothendieck’s construction gives a rigid

pseudo-abelian tensor Q-category M�.k/ of pure motives (Saavedra Rivano 1972, VI
4.1.3.5, p359) and a map h from the smooth projective varieties over k toM�.k/ which is
natural for algebraic correspondences modulo �. Because rational equivalence is the finest
adequate equivalence relation, h factors through a tensor functor Mrat.k/ ! M�.k/.
Conversely, a tensor functor fromMrat.k/ to an additive tensor category with End.11/ D Q
defines an adequate equivalence relation (cf. Jannsen 2000, 1.7). When � is numerical
equivalence,M�.k/ is a semisimple (Jannsen 1992).

For a smooth projective varietyX over k, there are well-defined polynomialsPX;i .T / 2

QŒT � such that PX;i .T / D det.1�$XT j H
i
l
.X// for all l ; moreover, PX;i has reciprocal

roots of absolute value q
i
2 (Deligne 1974a). The PX;i .T / are relatively prime, and so there

exist P i .T / 2 QŒT �, well-defined up to a multiple of
Q

i PX;i .T /, such that

P i .T / �

�
1 mod PX;i .T /

0 mod PX;j .T / for j ¤ i:
(2)
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Because
Q

i PX;i .$X / acts as zero on H�
l
.X/, the graph pi of P i .$X / is a well-defined

element of Zhom.l/.X � X/Q (or Znum.X � X/Q), and fp0; : : : ; p2d g is a complete set of
orthogonal idempotents. Let hX D

L
i h

iX be the corresponding decomposition. When
we use this decomposition to modify the commutativity constraint in Mnum.k/, the rank
of each object ofMnum.k/ becomes a nonnegative integer, and so Mnum.k/ is a tannakian
category (Deligne 1990, 7.1).

The category Mnum.k/ has a canonical (Frobenius) element $ 2 Aut˝.idMnum.k//

and a canonical (weight) Z-gradation. An objectM ofMnum.k/ is of pure weightm if and
only if its Frobenius element $M has eigenvalues of absolute value qm=2.

Recall (Deligne 1989, �6) that the fundamental group �.T / of a tannakian category is
an affine group scheme in Ind T that acts on each object of T in such a way that these
actions define an isomorphism

!.�.T // ' Aut˝.!/

for each fibre functor !. Any subgroup of the centre of �.T / lies in Ind T 0 where T 0 is the
full subcategory of trivial objects (those isomorphic to a multiple of 11). Since HomT .11;�/
defines an equivalence of T 0 with the finite-dimensional vector spaces over the ground
field, such a subgroup can be identified with an affine group scheme in the usual sense. For
example, the centre of �.T / is Aut˝.idT ) (cf. Saavedra Rivano 1972, II 3.3.3.2).

Recall (e.g., Milne 1994, �2) that the Weil-number group P is the affine group scheme
of multiplicative type over Q whose character group consists of the Weil q-numbers in Qal.
Define the Frobenius element $univ in P.Q/ to be that corresponding to ˛ 7! ˛ under the
bijection

P.Q/ ' Hom.X�.P /;Qal/Gal.Qal=Q/:

Note that, for any smooth projective variety X over Fq , the roots of PX;i .T / in Qal are
Weil q-integers of weight i (i.e., Weil q-numbers of weight i that are algebraic integers).

LEMMA 2.1 The group of Weil q-numbers is generated by the Weil q-numbers of abelian
varieties over k.

PROOF. Let ˛ be a Weil q-number. After multiplying ˛ by a power of q, we may suppose
that it is a Weil q-integer, of weight m say. Then ˛1=m is a Weil q-integer of weight 1, and
hence arises from an abelian variety by Honda 1968. 2

PROPOSITION 2.2 The affine subgroup scheme of �.Mnum.k// generated by $univ is
canonically isomorphic to P . It equals �.Mnum.k// if and only if the full Tate conjec-
ture holds over k.

PROOF. Let Z D Aut˝.id/ be the centre of �.Mnum.k//. Because Mnum.k/ is semisim-
ple, �.Mnum.k// is pro-reductive (cf. Deligne and Milne 1982, 2.23). Therefore Z is of
multiplicative type, which implies that the closed subgroup scheme h$univi generated by
$univ is also of multiplicative type. The homomorphism � 7! �.$univ/WX

�.h$univi/ !

Qal� is injective, and its image consists of the Weil q-numbers that occur as roots of the
characteristic polynomial of $M for some M in Mnum.k/. According to Lemma 2.1, this
consists of all Weil q-numbers, and so X�.h$univi/ ' X

�.P /. Hence h$univi ' P .
If the full Tate conjecture holds, then, for any fibre functor ! over Qal and smooth

projective variety X , the Qal-span of the algebraic cycles in !.h2i .X/.i// consists of the
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tensors fixed by $univ. Therefore, the inclusion h$univi ,! Aut˝.!/ is an isomorphism,
i.e., !.P / ,! !.�.Mnum.k// is an isomorphism, which implies that P ,! �.Mnum.k//

is an isomorphism. The converse can be proved by the same argument as in the proof of
Milne 1999, Proposition 7.4. 2

If num and hom.l/ coincide with Q-coefficients, then Hl defines a fibre functor !l on
Mnum.k/. Without any assumptions, it is known that there exists a polarizable semisimple
tannakian category with fundamental group P and with fibre functors !l for all l . More-
over, any two such systems are equivalent (Langlands and Rapoport 1987; Milne 2003, �6).
However, it has not been shown that there exists a natural functor from Mrat.k/ to such
category. In fact, we have the following:

PROPOSITION 2.3 If there exists a full tensor functor r preserving Frobenius elements
from Mrat.k/ to a tannakian category M with fundamental group P , then the full Tate
conjecture holds over k, and r defines an equivalence of tensor categoriesMnum.k/!M.

PROOF. Such a functor r defines an adequate equivalence relation � (see above) such that
r factors into

Mrat.k/!M�.k/
Nr
�!M

with Nr a fully faithful tensor functor. Because P is a pro-reductive, M is semisimple (cf.
Deligne and Milne 1982, 2.23). It follows that M�.k/ is semisimple (apply the criterion
in Jannsen 1992, Lemma 2), and so � is numerical equivalence (ibid. Theorem 1). The
simple objects of M are classified by the orbits of Gal.Qal=Q/ acting on X�.P /, i.e., by
the conjugacy classes of Weil q-numbers, and so Lemma 2.1 shows thatM is generated as
a tensor category by the images of abelian varieties. Therefore, Nr is a tensor equivalence,
and so defines an isomorphism of P with �.Mnum.k//. We can now apply Proposition
2.2. 2

REMARK 2.4 When we drop the requirement that r is full, then it is possible to work
with hypotheses much weaker than the full Tate conjecture. Let S consist of the smooth
projective varieties over Fq whose Frobenius elements are semisimple. In Milne 2007 a
notion of a “good theory of rational Tate classes on S” is defined, and it is proved that
there exists at most one such theory. Much of this paper could be rewritten with “full
Tate conjecture” replaced by “there exists a good theory rational Tate classes for which
the algebraic classes are rational Tate” provided one removes the requirement that certain
functors are full.

3 The category of motives

The next observation goes back to Grothendieck.

PROPOSITION 3.1 Let MM.Fq/ be a pseudo-abelian category containing Mnum.Fq/ as
a full subcategory. Assume

(a) each object M ofMM.Fq/ has a (weight) filtration

� � � � Wi�1M � WiM � � � �

such that WiM=Wi�1M is a pure motive of weight i ;
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(b) the Frobenius element extends toMM.Fq/ and preserves the weight filtrations.
Then the inclusionMnum.Fq/!MM.Fq/ is an equivalence of tensor categories.

PROOF. For X inMM.Fq/, let Pi .T / be the characteristic polynomial of$Wi M=Wi�1M ,
and define P i .T / to satisfy (2). Let pi D P i .$M /. Then the pi form a complete set of
orthogonal idempotents in End.M/ which decompose M into a direct sum isomorphic toL

i WiM=Wi�1M . 2

4 Triangulated motivic categories

Recall that a tensor triangulated category is a category with both a tensor structure and a
triangulated structure satisfying certain compatibilities (Mazza et al. 2006, Appendix 8A).
It is rigid if it admits an internal Hom or, equivalently, a good theory of duals (Voevodsky
2000, p196). By a triangulated motivic category over a field k, we mean a rigid tensor
triangulated category D together with a covariant functor

RWMrat.k/! D

and isomorphisms for all smooth projective varieties X and all i; j 2 Z

K2j �i .X/
.j /
�! HomD.11;R.hX/.j /Œi �/ (3)

that are natural for the maps defined by algebraic correspondences and reduce to the identity
map when X is a point and i D j D 0 (see Jannsen 2000, �7, p257, which omits the
final condition). Here Ki .X/

.j / is the subspace of Ki .X/ ˝ Q on which each Adams
operator  m acts as mj . According to ibid., p257, over any field k that admits resolution
of singularities, triangulated motivic categories have been constructed (independently) by
Hanamura (1995, 1999, 2004), Levine (1998), and Voevodsky (2000). When k D Fq ,  q

acts as $X (Hiller 1981, �5; Soulé 1985, 8.1), and so4 Ki .X/
.j / is the subspace on which

$X acts as qj .
Let D D D.k/ be a triangulated motivic category. As we noted in the introduction,

for the “true” triangulated motivic category, there should be a t -structure on D.k/ whose
heart MM.k/

def
D D.k/~ is the category of mixed motives. As Jannsen (2000, �7, p257)

explains, there should be the following compatibilities between R and the t -structure:
(a) for each standard Weil cohomology, the composite

Mrat.k/
R
�! D

L
i H i

�! MM.k/

K 7!
L

i H
i .K/

factors throughMhom.k/, and defines a fully faithful functor NRWMhom.k/!MM.k/

(here H i .K/ D ��0��0.KŒ�i �/);
(b) for each smooth projective varietyX ,

L
i H

i .R.hX// is the weight gradation of hX .
When k is finite, condition (b) says that H i .R.hX// D NR.hi .X//.

Evidently, there should also be the following compatibilities between the tensor struc-
tures and the t -structure:

(c) the subcategories D�0 and D�0 are tensor subcategories of D, and M 7!M_ inter-
changes D�0 and D�0, and

4Because the mi -eigenspace of  m is independent of m (Seiler 1988, Theorem 1).
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(d) RWMrat .k/!MM.k/ is a tensor functor.
Note that (c) implies thatMM.k/ is a rigid tensor subcategory of D.

DEFINITION 4.1 A t -structure on a triangulated motivic category is said to be admissible
if it satisfies the conditions (a,b,c,d).

THEOREM 4.2 Let k be a finite field. If there exists a triangulated motivic categoryD over
k and an admissible t -structure on D such that

– the heart of D is a tannakian categoryM with fundamental group P; and
– the functorMrat.k/!M in (a) above preserves Frobenius elements,

then
(a) the full Tate conjecture holds for all smooth projective varieties over k;
(b) for each l , the functor Rl WMhom.l/.k/ ! M defined by R is an equivalence of

abelian categories;
(c) rational equivalence equals numerical equivalence (Q-coefficients);
(d) for all M;N inM.k/ and i ¤ 0, HomD.M;N Œi �/ D 0.

PROOF. Proposition 2.3 shows that the full Tate conjecture holds and that Rl is essentially
surjective (hence an equivalence). Moreover, it allows us to identifyM withMnum.k/.

We next prove (c). When i D 2j , the isomorphism (3) becomes

K0.X/
.j /
' HomD.11;R.hX/.j /Œ2j �/: (4)

As we noted above, $X acts on K0.X/
.j / as qj . The Tate conjecture implies the Lef-

schetz standard conjecture, and so, for any smooth projective variety X , there exists an
isomorphism

R.hX/.j /Œ2j � �
M

s
hs.X/.j /Œ2j � s� (5)

(Deligne 1968, Van den Bergh 2004). The characteristic polynomial PX;s of $X on hsX

has roots of absolute value qs=2, and PX;s.$X / acts as zero on hs.X/ and hence on
HomD.11; hs.X/.j /Œ2j � s�/. But we know from (4) that it acts as PX;s.q

j /. Therefore,
HomD.11; hs.X/.j /Œ2j � s�/ D 0 unless s D 2j , and so (4) becomes

K0.X/
.j /
' HomMnum.k/.11; h

2j .X/.j //:

Under Grothendieck’s isomorphism K0.X/Q ' CH�.X/Q, the factors K0.X/
.j / and

CH j .X/Q correspond (this is obvious over a finite field), and (by definition)

HomMnum.k/.11; h
2j .X/.j // D Zj

num.X/Q:

Moreover, our conditions imply that the isomorphism

CH j .X/Q ' Z
j
num.X/Q (6)

obtained by combining these isomorphisms is the canonical one.5 Hence, we have proved
(c), and we have shown that

HomD.11;R.hX/.j /Œi �/ D 0 (7)
5Let p and q be the projection maps

pt
p
 � X � pt

q
�! X:

Let  2 CH j .X/, and let f be the map CH�.pt/ ! CH�Cj .X/ defined by the correspondence q�./.
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when i D 2j ¤ 0.
Finally, we prove (d). Because M is a rigid subcategory of D, for M;N in M there

exists an object Hom.M;N / inM such that HomD.T˝M;N/ ' HomD.T;Hom.M;N //
for all T in D. In particular,

HomD.M;N Œi �/ ' HomD.11;Hom.M;N /Œi �/:

Therefore, because every object of M is a direct summand of R.hX/.j / for some smooth
projective varietyX and integer j , it suffices to prove (d) withM D 11 andN D R.hX/.j /.
We know it when i D 2j (see (7)), and so, to complete the proof of (d), it remains to
prove (7) when i ¤ 2j . Because of (3), it suffices to show that (a) and (c) imply that
Ki .X/Q D 0 whenever i ¤ 0. This is done in Geisser 1998, 3.3. We recall the proof.
The functors Ki .X/˝Q factor through Mrat.k/ (Soulé 1984), and hence (because of (c))
through Mnum.k/. Therefore, it suffices to prove that Ki .M/ ˝ Q D 0 (i ¤ 0) for M a
simple motive inMnum.k/. IfM D Lj , thenKi .Lj / is a direct factor ofKi .Pj /, which is
torsion (Quillen 1973). If M ¤ Lj , then PM .T / does not have qj as a root (Milne 1994,
2.6). As PM .$X / acts as the nonzero rational number PM .q

j / on Ki .M/.j /, and also as
zero, the group Ki .M/.j / must be zero. 2

COROLLARY 4.3 LetD be as in the theorem, and letM be its heart. If the inclusionM!
D extends to a functor Db.M/ ! D (e.g., if D is endowed with a filtered triangulated
category; see 4.6a below), then that functor is an equivalence.

PROOF. It suffices to show that HomDb.M/.M;N Œi �/ ! HomD.M;N Œi �/ is an isomor-
phism for all M , N in M and all i (see 4.6b below). For i D 0 this is automatic, and for
i ¤ 0, both groups are zero (recall that HomDb.M/.M;N Œi �/ ' Exti

M.M;N /, and that
M is semisimple). 2

REMARK 4.4 The existence of an admissible t -structure on a triangulated motivic cate-
gory D implies the existence of a Bloch-Beilinson filtration on the Chow groups of smooth
projective varieties for which

Grs.CH j .X// ' HomD.11; h2j �s.X/.j /Œs�/ (8)

(Jannsen 2000, p258, 4.3). For a finite field, the existence of a Bloch-Beilinson filtration im-
plies that rational equivalence equals numerical equivalence (Q-coefficients) (ibid., 4.17).

REMARK 4.5 Beilinson has conjectured that, for a smooth projective variety X ,

Grs.CH j .X// D Exts
MMnum.k/.11; h

2j �s.X/.j //:

This is compatible with (8) only if D D Db.MMnum.k// (see the next remark).

Then
f .1pt/

def
D q�.q

�./ [ p�.1pt// D  [ q�p
�.1pt/ D  [ 1X D :

As (6) is functorial for correspondences, and the bottom row in

CH j .X/ �����! Z
j
num.X/x??f

x??f

CH0.pt/ �����! Z0
num.pt/

sends 1 to 1 (by assumption), it follows that the top row sends  to  .
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REMARK 4.6 (a) LetD be a t -category with heart C. ThenDb.C/ is also a t -category with
heart C, but in general there is no obvious relation between Db.C/ and D (cf. Gelfand and
Manin 1996, IV 4.13, p285). In particular, there will be no obvious functor r WDb.C/ !
D extending the inclusion of C into D unless D is endowed with an additional structure.
Beilinson (1987) defines the notion of a filtered triangulated category, and states6 that such
a category over a t -category D gives rise to a well-defined t -exact functor r WDb.C/ !
D inducing the identity functor on C (ibid. A.6). The usual triangulated categories are
endowed with filtered triangulated categories over them (ibid. A.2; Beilinson et al. 1982,
3.1).

(b) Let D be a t -category with heart C. A t -exact functor r WDb.C/ ! D inducing the
identity functor on C need not be an equivalence even when C is semisimple (Deligne 1994,
3.1). We need the following well-known criterion:

Let r WDb.C/! D be a t -exact functor inducing the identity functor on C; then
r is an equivalence of t -categories if and only if the maps HomDb.C/.M;N Œi �/!

HomDb
C
.M;N Œi �/ it defines are isomorphisms for all M;N in C and all i .

For M;N in C, let Exti
C.M;N / denote the Yoneda Ext-group, and for M;N in the heart of

D, let
Exti

D.M;N / D HomD.M;N Œi �/:

Since Exti
C.M;N / ' HomDb.C/.M;N Œi �/ (Verdier 1996, III.3.2.12), the criterion states

that r WDb.C/! D is an equivalence of t -categories if and only if the maps Exti
C.M;N /!

Exti
D.M;N / it defines are isomorphisms for all M , N , and i .

5 The motivic t -category

Throughout this section, k D Fq .
If we want the category of motives to have the Weil-number group P as its fundamen-

tal group, then Corollary 4.3 shows that Db.Mnum.k// is essentially the only candidate
for a triangulated motivic category, and that it will have an admissible t -structure only if
the Tate conjecture holds over k and rational equivalence equals numerical equivalence
(Q-coefficients). In this section, we prove that, when we assume these two conjectures,
Db.Mnum.k// does have the hoped for properties.

PROPOSITION 5.1 LetD D Db.Mnum.k//. ThenD is a rigid tensor triangulated category
with t -structure, and there exists a tensor functor

RWMrat.k/! D;

unique up to a unique isomorphism, such that H i .RX/ D hi .X/Œ�i � for all i .

PROOF. Let C b.Mnum.k// be the category of bounded complexes of objects inMnum.k/,
and letC b

0 .Mnum.k// be the full subcategory of bounded complexes whose differentials are
zero. Because Mnum.k/ is semisimple, the functor Db.M.k//! C b

0 .Mnum.k// sending
A to M

r
H r.A/Œ�r� D � � � ! H r�1.A/

0
�! H r.A/! � � �

6Without proof; cf. the discussion Beilinson et al. 1982, 3.1, which, however, states that (at that time) the
situation had not been axiomatised.
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is an equivalence of categories which is quasi-inverse to the inclusion functor (Gelfand and
Manin 1996, III 2.4, p146). Since C b

0 .Mnum.k// is a direct sum of copies of Mnum.k/,
andMnum.k/ is tannakian, it follows that D is a rigid tensor category. Define R to be

X 7! .� � � ! hr�1.X/
0
�! hr.X/! � � � /: (9)

The uniqueness is obvious. 2

REMARK 5.2 Deligne (1968, 1.11, 1.13)7 proves the following:

Let A be an abelian category, and suppose that an object C of Db.A/ admits
endomorphisms pi WC ! C such that H j .pi / D ıij and the pi are orthog-
onal idempotents; then there is a unique isomorphism C '

L
i H

i .C /Œ�i �

inducing the identity map on cohomology and such that pi is the i th projection
map.

LetR0 be a tensor functorMrat.k/! Db.Mnum.k// and letR be as in (9). Then Deligne’s
result shows that, for any smooth projective varietyX over k, there is a unique isomorphism
R0.X/ ' R.X/ inducing the identity on cohomology and such that P i .$X / is the projec-
tion from R0.X/ onto hi .X/Œ�i �. Here P i is as in (1).

THEOREM 5.3 Assume that the Tate conjecture holds over k and that numerical equiva-
lence coincides with rational equivalence (with Q-coefficients).

(a) Db.Mnum.k// has a natural structure of a triangulated motivic category.
(b) The standard t -structure on Db.Mnum.k// is admissible (in the sense of �4), and it

is the unique t -structure on Db.Mnum.k// with heartMnum.k/.
(c) The functor X 7! RX sending a smooth projective variety over k to its motivic

complex (see 5.1) has a unique extension to all varieties over k.
(d) For each l (including p) there is a t -exact functor Rl from Db.Mnum.k// to a t -

category Dl such that X 7! Rl.RX/ is the functor giving rise to the absolute l-adic
cohomology.

In the remainder of this section, we explain these statements in more detail and prove them.

Statement (a). We have to construct isomorphisms (3). In computing the right hand
side of (3), we can replace Db.Mnum.k// with the equivalent category C b

0 .Mnum.k// 'L
r Mnum.k/Œr�. Therefore,

HomD.11;R.X/.j /Œi �/ D
M

s
HomD.11; hs.X/.j /Œi � s�/;

and
HomD.11; hs.X/.j /Œi � s�/ D Exti�s

Mnum.k/.11; h
s.X/.j //:

This group is zero for i ¤ s because Mnum.k/ is semisimple, and it is zero for i D s,
s ¤ 2j , because 11 and hs.X/.j / will then have different weights. It is immediate from the
definition ofMnum.k/, that

Hom.11; h2j .X/.j // ' Zj
num.X/Q:

7This also applies to t -categories. To check this, one only has to check that the spectral sequence in
Deligne’s proof exists for t -categories (for which there exist references).
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On the other hand,Ki .X/Q D 0 for i ¤ 0 (see the proof 4.2), andK0.X/
.j / ' CH j .X/Q.

Therefore, we can define (3) to be the natural map

CH j .X/Q ! Zj
num.X/Q

when i D 2j and zero otherwise.

Statement (b). By hypothesis, rational, l-homological, and numerical equivalence co-
incide (Q-coefficients), and so the standard t -structure is obviously admissible. It is the
unique t -structure with heartMnum.k/ because the heart determines the t -structure (Beilin-
son et al. 1982, 1.2, 1.3).

Statement (c). We only sketch the argument, leaving the details as an exercise for the
reader. The key point is that de Jong 1996, Theorem 3.1, allows one to define a simplicial
resolution

V
f
 � U�

j
�! X�

of any variety V over k in which j is a simplicial strict compactification and f is a proper
hypercovering of V by a split simplicial smooth variety (cf. Berthelot 1997, 6.3). One first
extends R to the category of strict compactifications, and then to the simplicial objects in
the category of strict compactifications. Then one defines RV D R.U� ! X�/ for any

simplicial resolution V
f
 � U�

j
�! X� of V . One verifies that RV is independent of

the choice of the simplicial resolution (up to a well-defined isomorphism), and the map
V 7! RV is contravariant for morphisms of varieties.

Statement (d), l ¤ p. For l ¤ p, let Db
c .k;Zl/ be the category defined in Deligne

1980, 1.1.2. It is a t -category whose heart is the category R.k;Zl/ of finitely generated
Zl -modules endowed with a continuous action of Gal.F=k/. Each variety V over k defines
an object R� V in Db

c .k;Zl/ such that H i .R� V / ' H i
et.V;Zl/ (as objects of R.k;Zl/).

It is known that Db
c .k;Zl/ ' Db.R.k;Zl//. Now quotient out by the torsion objects to

obtain an equivalence Db
c .k;Ql/ ' D

b.R.k;Ql// of Ql -linear categories. We define

Rl WD
b.Mnum.k//! Db.R.k;Ql// ' D

b
c .k;Ql/

to be the derived functor of the fibre functor Mnum.k/ ! R.k;Ql/. Applying Deligne
1968, 1.11, 1.13 (cf. 5.2), we see that, for each smooth projective variety V over k, there is
a unique isomorphism Rl.V / '

L
i H

i
l
.V /Œ�i � inducing the identity map on cohomology

and such that P i .$V / is the i th projection map. Here P i is the polynomial in (2). This
shows that

R� .V / ' Rl.RV / (10)

when V is projective and smooth. For an arbitrary V , we choose a simplicial resolution

V
f
 � U�

j
�! X� of V . Because (10) holds for smooth projective varieties,

R� .U�

j
�! X�/ ' Rl.R.U�

j
�! X�//:

Moreover,

R.U�

j
�! X�/ ' R.V / (definition of R.V /)

R� .U�

j
�! X�/ ' R� .V / (Saint-Donat 1973, 4.3.2; also Huber 1995, 1.1.3),



6 THE Q-ALGEBRA OF CORRESPONDENCES AT THE GENERIC POINT 16

and so (10) holds for all varieties.

Statement (d), l D p. Let R be the Raynaud ring, and D.R/ the derived category of the
category of graded R-modules (Illusie 1983, 2.1). For a smooth projective variety X over
k, let W˝�

X be the de Rham-Witt complex on X , and let R� .W˝�
X / be its image under

the derived functor of � D � .X;�/. Then R� .W˝�
X / lies in the full subcategory Db

c .R/

of D.R/ consisting of bounded R-complexes whose cohomology modules are coherent
(Illusie and Raynaud 1983, II 2.2), and H i .R� .W˝�

X / ' H
i
crys.X=W /. When we endow

Db
c .R/ with Ekedahl’s t -structure (Illusie 1983, 2.4.8) and quotient out by torsion objects,

we obtain a Qp-linear t -category Db
c .R/Q whose heart is the category R.k;Qp/ of F -

isocrystals over k. It is known that Db
c .R/Q ' Db

R.B� ŒF �/ (derived category of bounded
complexes of B� ŒF �-modules whose cohomology groups are F -isocrystals over k; recall
B D W ˝Q and that B� ŒF � is the twisted polynomial ring). Define

RpWD
b.Mnum.k//! Db.R.k;Qp//! Db

R.B� ŒF �/ ' D
b
c .R/Q

to be the composite of the derived functor of the fibre functor Mnum.k/! R.k;Qp/ with
the natural functors. The proof can now be completed as in the case l ¤ p except that the
reference to Saint-Donat 1973 must be replaced by a reference to Tsuzuki 2003.

REMARK 5.4 Statement (c) and (d) of the theorem are very strong. Consider, for example,
a closed subvariety Z of codimension r in a smooth projective variety X and a smooth
alteration QZ ! Z. Then the theorem says that there is an exact sequence

hi�2r. QZ/.r/! hi .X/! hi .U /; U D X XZ;

whose l-adic realization is the sequence in (1.14) for l ¤ p.

Application.

5.5 Using (c) and (d), we can extend the definition of Qp cohomology (Milne 1986a,
p309) from smooth projective varieties to all varieties, namely, for any variety X over k,
define

H i .X;Qp.r// D HomD.kIQp/.11;Rp.RX/.r/Œi �/:

The main theorem of Milne and Ramachandran 2005 shows that this agrees with the original
definition when X is smooth and projective.

6 The Q-algebra of correspondences at the generic point

In this section, k D Fq and we assume that the Tate conjecture holds over k and that
numerical equivalence equals rational equivalence (Q-coefficients). We allow l D p.

Effective motives

Let Meff.k/ be the category of effective motives given by Grothendieck’s construction us-
ing algebraic classes modulo numerical equivalence as correspondences. It is an abelian
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nonrigid tensor category, and we let Deff.k/ D Db.Meff.k//. Much of Theorem 5.3 con-
tinues to hold. In particular, attached to a smooth projective variety X and an open subva-
riety U , there is a well-defined restriction map hi .X/! hi .U / whose l-adic realization is
H i

l
.X/! H i

l
.U / (cf. 5.4, 5.5). We define

F r
a h

i .X/ D
[

U
Ker.hi .X/! hi .U //

where U runs over the open subvarieties of X such that X XU is of codimension at least r .

PROPOSITION 6.1 For all l (including l D p)

Rl.F
r
a h

i .X// D F r
bH

i
l .X/:

PROOF. The functor Rl is exact, and so

Rl.F
r
a h

i .X// D F r
aH

i
l .X/:

Therefore, the statement follows from the generalized Tate conjecture (1.10, 1.14, 1.16). 2

COROLLARY 6.2 For any smooth projective variety X over k, F r
a h

i .X/ is the largest ef-
fective submotive of hi .X/ of the form M.�r/ for some effective motive M .

PROOF. Obvious. 2

Definition of the Q-algebra of correspondences at the generic point

In this subsection, we translate some definitions and results of Beilinson 2002 into our
context. Let X be a connected algebraic variety of dimension n over a finite field k, and let
� be its generic point. Define

CHn.� � �/ D lim
�!

CHn.U � U/;

where U runs over the open subvarieties of X . Following Beilinson 2002, 1.4, we define

A.X/ D CHn.� � �/˝Q:

Composition of correspondences makes A.X/ into an associative Q-algebra, called the Q-
algebra of correspondences at the generic point.

Denote by Nhn.X/ the image of the canonical map hn.X/ ! hn.�/ (ind object of
Meff.k/).

THEOREM 6.3 For any connected smooth projective varieties X;X 0 of dimension n over
k, the map

CHn.�0
� �/˝Q! Hom. Nhn.�/; Nhn.�0//

is an isomorphism.

PROOF. Beilinson’s proof (2002, 4.9) applies in our context. 2

COROLLARY 6.4 For any connected smooth projective variety X of dimension n over k,
there is a canonical isomorphism of Q-algebras

A.X/ ' End. Nhn.X//:
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PROOF. It is only necessary to observe that composition of correspondences corresponds
to composition of endomorphisms (Beilinson 2002, 4.10). 2

COROLLARY 6.5 The Q-algebra A.X/ is finite-dimensional and semisimple.

PROOF. Immediate from (6.4) because Meff.k/ is a semisimple category over Q with
finite-dimensional Homs. 2

Calculation of the Q-algebra of correspondences at the generic point

PROPOSITION 6.6 For a connected curve X over k,

A.X/ ' End.J /˝Q

where J is the Jacobian of a smooth complete model of X .

PROOF. As X is geometrically reduced, its smooth locus X 0 can be embedded in a smooth
projective curve Y , and X 0 ,! Y is uniquely determined up to a unique isomorphism. As

A.X/ ' A.X 0/ ' A.Y /

we may as well assume that X itself is smooth and projective. For any nonempty open
U , the map h1.X/ ! h1.U / is injective because H 1

l
.X/ ! H 1

l
.U / is injective, and so

Nh1.X/ D h1.X/. Therefore, A.X/ ' End.h1.X//, and it follows from the isomorphism

CH 1.X �X/ ' CH 1.X/˚ CH 1.X/˚ End.J /

(Weil 1948a), that
End.h1.X// ' End.J /˝Q: 2

For a connected smooth projective variety X of dimension n over k, define8

NHn
l .X/ D H

n
l .X/=F

0
bH

n
l .X/:

For l ¤ p, the quotient map Hn
l
.X/ ! NHn

l
.X/ defines an isomorphism of NHn

l
.X/ with

the Tate substructure of Hn
l
.X/ whose Frobenius eigenvalues ˛ are such that a=q is not an

algebraic integer. The quotient map Hn
p .X/!

NHn
p .X/ can be identified with the map

Hn.X;W˝�/Q ! Hn.X;WOX /Q ' H
n
p .X/Œ0;1Œ

(Illusie 1979, II 3.5.3, p616).

PROPOSITION 6.7 For all primes l (including l D p),

Rl. Nh
n.X// ' NHn

l .X/:

PROOF. Clearly,
0! F 0

a h
n.X/! hn.X/! Nhn.X/! 0

is exact. On applying the exact functor Rl , this gives an exact sequence

0! F 0
bH

n
l .X/! Hn

l .X/!
NHn

l .X/! 0

by (6.4). 2

8For l ¤ p, this is Gr0Hn
l
.X/, the “composante pure de niveau n” of Hn

l
.X/; of Grothendieck (1968,

p162).



6 THE Q-ALGEBRA OF CORRESPONDENCES AT THE GENERIC POINT 19

THEOREM 6.8 For all primes l (including l D p),

A.X/˝Ql ' End. NHn
l .X//

(endomorphisms of NHn
l
.X/ as a Tate structure when l ¤ p; endomorphisms of NHn

p .X/ as
an F -isocrystal when l D p).

PROOF. Follows from Proposition 6.7 and the fact that Rl defines isomorphisms

Hom.M;N /˝Q Ql ' Hom.RlM;RlN/: 2

EXAMPLE 6.9 If Hn.X;WOX / is torsion, then A.X/ D 0. This is the case, for example,
if X is a supersingular abelian surface, a supersingular K3 surface, or an Enriques surface
(Illusie 1979, 7.1, 7.2, 7.3).

REMARK 6.10 It is possible to recover the rank of a motive M from its endomorphism
algebra End.M/. According to the Wedderburn theorems,

End.M/ D
Y

j
Mrj

.Dj /

with each Dj a division algebra over Q. If Zj is the centre of Dj , then

rank.M/ D
X

j
rj � ŒZj WQ� � ŒDj WZj �

1=2:

REMARK 6.11 Since A.X/ is a birational invariant, (6.4) and (6.10) show that the rank
of Nhn.X/ (n D dimX ) is a birational invariant of connected smooth projective varieties.
Hence the same is true of its p-adic realization, i.e.,

rankHn.X;WOX / D rankH 0.X;W˝n
X /

is a birational invariant of connected smooth projective varieties over a finite field. Of
course, it is classical that

dimHn.X;OX / D dimH 0.X;˝n
X /

is a birational invariant (Hartshorne 1977, II Ex 8.8), but

rankHn.X;WOX / ¤ dimHn.X;OX /;

for example, when n D 2 and X is a supersingular abelian surface. Illusie (1979, II 2.18,
p614) proves that H 0.X;W˝n

X / is of finite-type over W with F acting as an automor-
phism. The formal p-divisible group G with Cartier module H 0.X;W˝n

X /=torsion has

dim.G/ D rank.G/ D rankH 0.X;W˝n
X /

(cf. ibid. II 4.4, p621) and so dim.G/ and rank.G/ are also birational invariants.
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Explicit description of A.X/

6.12 Let X be a smooth projective variety over k, and let .˛i /1�i�ˇn
be the family of

eigenvalues of$X onHn
l
.X/. Then the family S.X/ of eigenvalues of$ Nhn.X/

consists of
the ˛i for which ˛i=q is not an algebraic integer. Therefore, by Milne 1994, 2.14–2.15, the
semisimple Q-algebra A.X/ D End. Nh.X// has the following description. Let o1; : : : ; os

be the distinct orbits for the action of Gal.Qal=Q/ on S.X/ and let rj be the multiplicity of
oj :

F.X/ D
a

j
rj oj :

Then
Nhn.X/ D

X
j
rjNj

where Nj is a simple motive with Frobenius eigenvalues the elements of oj , and

A.X/ '
Y

j
Mrj

.End.Nj //:

Let ˛ 2 oj . Then End.Nj / is isomorphic to a central simple algebra Dj over Zj D QŒ˛�
with invariants (at the primes v of QŒ˛�)

invv.Dj / D

8̂<̂
:

1
2

if v is real and n is odd
ordv.˛/
ordv.q/

� ŒQŒ˛�v W Qp� if vjp
0 otherwise.

Therefore, the degree ŒQŒ˛�WQ� is the order of oi , and the degree ŒDj WQŒ˛�� D e2 where e
is the least common denominator of the numbers invv.Dj /.

Following Beilinson (2002, p37), the pessimists will be tempted to look for counter-
examples to the above calculations in order to ruin the conjectures.

7 Base fields algebraic over a finite field

Let k be a subfield of F, and assume that the Tate conjecture holds and numerical equiva-
lence equals rational equivalence (Q-coefficients) for finite subfields of k. When we define
the various categories for k to be the 2-category direct limits of the categories for k0 with
k0 running over the finite subfields of k, then these categories for k inherit the properties of
the corresponding categories for k0.
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