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Abstract. Mathematical constructions of abstract entities are nor-
mally done disregarding their actual physical realizability. The def-
inition and limits of the physical realizability of these constructions
are controversial issues at the moment and the subject of intense de-
bate.

In this paper, we consider a simple and particular case, namely,
the physical realizability of the enumeration of rational numbers by
Cantor’s diagonalization by means of an Ising system.

We contend that uncertainty in determining a particular state in an
Ising system renders impossible to have a reliable implementation of
Cantor’s diagonal method and therefore a stronger physicalsystem is
required. We also point out what are the particular limitations of this
system from the perspective physical realizability.

1 Introduction

“There is no quantum world. There is only an abstract quantumde-
scription. It is wrong to think physics’ task is to discover how Nature
is. Physics deals with what is possible to say about Nature.”

This quote is attributed to Niels Bohr, when he was asked whether
the quantum formalism reflected the underlying physical reality.
Bohr’s, other philosophers’ and scientists’ opinions aside, a good
deal of paper has been used to analyse the possibility of describing
and understanding reality by means of formal mathematical tools.
Barrow, Chaitin, Hawking and Penrose (among others) have ad-
vanced some ideas with varying degrees of formality.

Here we address a reciprocal question: given a mathematicalcon-
struction and a particular physical system, is the latter adequate to
“implement” the former? By implementation we mean an actual
physical device that (a) has structural properties that correspond to
components of the mathematical entity (some have talked about an
isomorphism between physical and mathematical structures[3], but
a weaker notion may also do); (b) a physical procedure that can
produce experimental results which reflect accurately corresponding
properties of the mathematical construction.

These are very intricate and hard questions to be answered defi-
nitely in a general case. Our aim is more modest, namely to explore
a specific instance of this problem: we take the classical Cantor’s
diagonalization for the enumeration of the rational numbers [2] and
how it can be implemented by an Ising system. We provide a specific
implementation and show its limitations deriving from properties of
the physical system itself.

This leads us to think that some clearly defined mathematicalques-
tions cannot always be posed and answered within the contextof a
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particular physical system. Of course, the more general question of
the existence of a physical system realizing a particular mathemat-
ical construction is beyond the limits of this work but we hope our
example helps to stimulate discussions on this line of thought. The
standard interpretation of quantum mechanics regarding physically
meaningful questions is that it should be possible to pose them in
such a way that they can be answered experimentally.

The reciprocal question is also interesting: to what extentmathe-
matical constructions should be considered valid? One possible ap-
proach, would imply that only those mathematical constructions that
can actually be implemented by means of a physical system canin
fact be used, at least in terms of computation.

In the next section we present—as a reminder—Cantor’s diago-
nalization method for enumerating the rational numbers. The third
section deals with Ising systems and its properties.The fourth section
presents our implementation of Cantor’s method and how to find a
specific rational number. In the final section, which is the central part
of this paper, we show how our system is unable to perform the task
for which it was designed due to intrinsic limitations of Ising systems
and other physical principles, and we also discuss some implications.

2 Cantor’s diagonalization

In 1878 Cantor defined rigorously when two sets have the same car-
dinality. Let A andB be two sets. They have the same number of
elements if and only if there exists a bijection between them, i.e., a
functionf : A → B which is both injective and surjective.

He also proved that the set of natural numbers and the set of ratio-
nal numbers are equinumerous, even though the former is a proper
subset of the latter. His argument introduced an ingenious device to
construct a one-to-one correspondence between the two sets. The
idea is that rational numbers are not arranged according to the tra-
ditional< relation, but rather, by taking advantage of the fact that a
rational number (in accordance with the etimology of the name) can
be regarded as the ratio of two integers. For example, the number 0.5
is also represented by the fraction1/2.

The fractional representation of a number, let us saym/n, can be
transformed into the convention that the pair(m,n) represents this
very number. Now consider the list

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), . . .

where pairs are arranged so that the sum of the two componentsis
increasing; pairs whose sum produces the same value are ordered by
the traditional< order applied to the first coordinate of the pairs. By
omitting pairs representing the same number (which can always be
calculated in a finite number of steps as the list is being produced),
this is a bijection between natural and rational numbers, and thus
both sets have the same cardinality.
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If we set aside the traditional objections posed by mathematical
constructivists to the idea of actual infinite sets, Cantor’s argument
seems very straightforward and has been regarded as such ever since.
However we could take a mathematical constructive perspective and
reject Cantor’s device (and his whole set theory, for that matter).

But we can also take a different constructive perspective, which
we may namephysical constructivism: What requirements should
a particular physical system meet in order to serve as a basisfor
implementing Cantor’s device? At first sight there must be physical
systems on which this may not be possible (although the symmetrical
question does not seem easy to answer). Specifically, we willanalyse
the feasibility of Ising models for this task in the next section.

3 Ising models

In the last decades, some models in physics have played a central
role in understanding specific connections between mathematical as-
pects of the theory and experiments. One of such is preciselythe
Ising model. We use it here for different purposes. We suggest that it
can be taken as a real system in which Cantor’s diagonal procedure
could be implemented and therefore as a starting point from which
conclusions can be drawn regarding the limitations that mathemati-
cal constructions could have in the physical world. This is due to the
fact that, in principle, the physical configurations of the system can
be put in correspondence with rational numbers. Moreover, for the
Ising model a direct relationship between the physical entropy and
the informational entropy can be established, allowing a quantitative
comparison .

We briefly recall what the Ising model is about and later on we
make a few remarks on the entropy of a discrete physical system.
What follows is basically adapted from [5].

We consider a magnetic material in which the electrons determin-
ing the magnetic behaviour are localized near the atoms of a lattice
and can have only two magnetization states (spin up or down).The
spin for a given site in this lattice will be identified with the of the0’s
or 1’s used in the mathematical construction of the previous section
to write down the binary expansion of the rational numbers. Notice
that we need only a finite number or 0’s or 1’s since these expan-
sions will be either finite or periodic. For instance, we might put in
a row all numbers(m,n) of a fixed height one after the other with
a conventional sequence to denote beginning and end of a number.
As mentioned before, the magnetizationSi can take only two values
±1 that we identify with0 and1 respectively. There is a Hamiltonian
associated in the presence of an external magnetic force depending
on the site,hi which is given by:

H = −J
∑
i,k

SiSj −

∑
i

hiSi,

where the sum overi andk runs over all possible nearest-neighbour
pairs of the lattice andJ is the so called exchange constant.

The fact that is important to stress is that a possible enumeration
of the rationals correspond to a particular physical configuration. No-
tice that we are desregarding the obvious limitation of size. That is, in
Cantor’s procedure we need an infinite number of rows and columns,
that is an ideal lattice, whereas a physical material will necessarily
have finite size. Nevertheless, we will see that even then, there are
physical constraints that are imposed by the quantum natureof the
system to the entropy, which can be interpreted as informational re-
strictions on the physical realizability of the mathematical construc-
tion.

For a continuous system whose configuration is denoted byC,
where the configuration space is assumed to be endowed with a mea-
sureµ (for simplicity one may think ofRd, the entropy associated
with a specific probability distributionP is given by

S[P ] = −

∫
dµ(C)P (C)lnP (C),

that is, the expected value of−lnP (C) with respect toµ.
By dividing the space into cells of sizeεd the entropy of the contin-

uous system can be well approximated by the entropy of the discrete
system resulting from the partition:

Sdisc = Scont − dln(ε).

As a matter of fact, theε can be taken to be the Planck constant for a
quantum system. This observation will be important later on.

4 Implementing Cantor’s method

As we mentioned before, we can in principle use the Ising system to
physically array and enumerate the rational numbers and locate any
of them in this array. In fact the question: “How to find a rational
number in the list?” is well defined and would only need a finite
number of steps.

In the section devoted to the Ising model, we recalled equation 3
for the entropy of a quantum system. Notice that the second term
is positive and independent of the details of the system, only due to
the quantum nature of the same. This has an important implication
in terms of the possibility of actually determining the state in which
the Ising model is. If we relate the information content withthe en-
tropy of the system we see that, in order for the state of the system
to be completely determined, we would need zero entropy [4].This
is physically impossible. Moreover, a lower bound for the entropy is
related not only to the discrete (quantum) nature of the system, but it
also depends on the temperature and other parameters. The conclu-
sion is that even when the counting and locating procedure iswell
defined, there is always an intrinsic error. Of course one might argue
that this is probably due to the chosen system, but the reasoning is
general enough as to suggest that no matter what physical implemen-
tation we choose, there will always exist this limitation.

5 Conclusion: Uncertainty comes in the way or
how real is reality?

We have argued that uncertainty in determining a particularstate in
an Ising system renders impossible to have a reliable implementa-
tion of Cantor’s diagonal method. There are also other related math-
ematical constructions that could be analysed in a similar way. For
instance, Cantor’s proof of the uncountability of the real numbers re-
lies on similar ideas. As a matter of fact, in the usual argument, a
contradiction is obtained by producing a real number that cannot be
included in a proposed enumeration. This is done by considering the
diagonal sequence and taking its negation. Once this is done, it can
be shown that ift is the truth value of the element of this sequence
intersecting the diagonal, then it would have to satisfy therelation

t = 1− t,

which leads to a contradictionif one assumes the only possible truth
values are 0 or 1(see for instance chapter 2 on diagonalization in[1]).
However, this equation does not pose any problem ift is interpreted
in a probabilistic way and assigned a value of1/2. This opens up a



series of even subtler questions such as whether we can actually have
a physical model of the real numbers and many others, that from our
perspective, are worth addressing.

Many other people have previously addressed this questionsei-
ther in general terms or for particular mathematical concepts. A pi-
oneering work is [6], which posed the question of realizing an ab-
stract mapping process within the constraints of a physicalversion
of Church’s thesis. A very recent case study in the field of control
and quantum systems can be found in [7].
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