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Some constraints on the physical realizability of a
mathematical construction
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Abstract.
mally done disregarding their actual physical realiz&pilThe def-
inition and limits of the physical realizability of thesensiructions
are controversial issues at the moment and the subjectesfdatde-
bate.

In this paper, we consider a simple and particular case, lyame

the physical realizability of the enumeration of rationahbers by
Cantor’s diagonalization by means of an Ising system.

We contend that uncertainty in determining a particulaestaan
Ising system renders impossible to have a reliable impléatien of
Cantor’s diagonal method and therefore a stronger physysaém is
required. We also point out what are the particular limitasi of this
system from the perspective physical realizability.

1 Introduction

“There is no quantum world. There is only an abstract quardem
scription. It is wrong to think physics’ task is to discovavhNature
is. Physics deals with what is possible to say about Nature.”

This quote is attributed to Niels Bohr, when he was asked et
the quantum formalism reflected the underlying physicalitsea

Bohr’s, other philosophers’ and scientists’ opinions asid good
deal of paper has been used to analyse the possibility ofidiegr
and understanding reality by means of formal mathematwmalst

Barrow, Chaitin, Hawking and Penrose (among others) have a

vanced some ideas with varying degrees of formality.
Here we address a reciprocal question: given a mathematioal
struction and a particular physical system, is the lattegadte to

“implement” the former? By implementation we mean an actual

physical device that (a) has structural properties thatespond to
components of the mathematical entity (some have talkedtabo
isomorphism between physical and mathematical struc{Blebut

a weaker notion may also do); (b) a physical procedure that c

produce experimental results which reflect accuratelyesponding
properties of the mathematical construction.

These are very intricate and hard questions to be answefed de
nitely in a general case. Our aim is more modest, namely ttoexp

a specific instance of this problem: we take the classicatdan
diagonalization for the enumeration of the rational nurej&t and

how it can be implemented by an Ising system. We provide afspec

implementation and show its limitations deriving from peojies of
the physical system itself.
This leads us to think that some clearly defined mathemagiczd-

tions cannot always be posed and answered within the cooftext

1 School of Science, UNAM, email: fhg@ciencias.unam.mx
2 Institute for Applied Mathematics, 1IMAS, UNAM,
pablo@mym.iimas.unam.mx

d

email:

Mathematical constructions of abstract entities are nor-particular physical system. Of course, the more generadtipre of

the existence of a physical system realizing a particulahemaat-
ical construction is beyond the limits of this work but we bapur
example helps to stimulate discussions on this line of thaubhe
standard interpretation of quantum mechanics regardiygigdly
meaningful questions is that it should be possible to posentm
such a way that they can be answered experimentally.

The reciprocal question is also interesting: to what exteathe-
matical constructions should be considered valid? Oneilgessp-
proach, would imply that only those mathematical constomet that
can actually be implemented by means of a physical systenincan
fact be used, at least in terms of computation.

In the next section we present—as a reminder—Cantor’s diago
nalization method for enumerating the rational numbers fird
section deals with Ising systems and its properties.Thet@ection
presents our implementation of Cantor’s method and how tbdin
specific rational number. In the final section, which is thetiad part
of this paper, we show how our system is unable to performasie t
for which it was designed due to intrinsic limitations offlgisystems
and other physical principles, and we also discuss somedatjans.

2 Cantor’'s diagonalization

In 1878 Cantor defined rigorously when two sets have the same ¢
dinality. Let A and B be two sets. They have the same number of
elements if and only if there exists a bijection between thieen, a
function f : A — B which is both injective and surjective.

He also proved that the set of natural numbers and the sei@f ra
nal numbers are equinumerous, even though the former ispeipro
subset of the latter. His argument introduced an ingenievscd to
construct a one-to-one correspondence between the twoTdets
idea is that rational numbers are not arranged accordingetdra-
ditional < relation, but rather, by taking advantage of the fact that a
rational number (in accordance with the etimology of the epoan
be regarded as the ratio of two integers. For example, thdaum5
is also represented by the fractiby®.

The fractional representation of a number, let usisay:, can be
transformed into the convention that the pfir,n) represents this
very number. Now consider the list

(1,1),(1,2),(2,1),(1,3),(2

where pairs are arranged so that the sum of the two compoizents
increasing; pairs whose sum produces the same value aredfe
the traditionalk< order applied to the first coordinate of the pairs. By
omitting pairs representing the same number (which canyawa
calculated in a finite number of steps as the list is being yred),
this is a bijection between natural and rational numberd, tans
both sets have the same cardinality.

,2),(3,1),(1,4),...
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If we set aside the traditional objections posed by mathieadat
constructivists to the idea of actual infinite sets, Castargument
seems very straightforward and has been regarded as sudiree
However we could take a mathematical constructive persjgeand
reject Cantor’s device (and his whole set theory, for thatenp

But we can also take a different constructive perspectiv@chv
we may namephysical constructivismWhat requirements should
a particular physical system meet in order to serve as a ffasis
implementing Cantor’s device? At first sight there must bgspdal
systems on which this may not be possible (although the syrizae
guestion does not seem easy to answer). Specifically, wandllyse
the feasibility of Ising models for this task in the next sext

3 Ising models

In the last decades, some models in physics have played ealkcent
role in understanding specific connections between mattiesthas-
pects of the theory and experiments. One of such is prectbely
Ising model. We use it here for different purposes. We sugbes it
can be taken as a real system in which Cantor’s diagonal guoee
could be implemented and therefore as a starting point frdmictw
conclusions can be drawn regarding the limitations thaheraati-
cal constructions could have in the physical world. Thisus tb the
fact that, in principle, the physical configurations of tlystem can
be put in correspondence with rational numbers. MoreowertHe
Ising model a direct relationship between the physicalogytrand
the informational entropy can be established, allowingantjtative
comparison .

For a continuous system whose configuration is denoted’ by
where the configuration space is assumed to be endowed widlaa m
surey (for simplicity one may think ofR?, the entropy associated
with a specific probability distributio® is given by

S[P] = f/d,u(C’)P(C’)lnP(C),

that is, the expected value eflnP(C') with respect tqs.

By dividing the space into cells of siz& the entropy of the contin-
uous system can be well approximated by the entropy of tleeatis
system resulting from the partition:

Sdise = Scont — dln(f)

As a matter of fact, the can be taken to be the Planck constant for a
guantum system. This observation will be important later on
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As we mentioned before, we can in principle use the Isingesysb
physically array and enumerate the rational numbers aratdamny

of them in this array. In fact the question: “How to find a ratid
number in the list?” is well defined and would only need a finite
number of steps.

In the section devoted to the Ising model, we recalled eqoai
for the entropy of a quantum system. Notice that the secomd te
is positive and independent of the details of the systeny, dné to
the quantum nature of the same. This has an important intiglica
in terms of the possibility of actually determining the stat which

Implementing Cantor’'s method

We briefly recall what the Ising model is about and later on wethe Ising model is. If we relate the information content viitie en-

make a few remarks on the entropy of a discrete physical myste
What follows is basically adapted from [5].

We consider a magnetic material in which the electrons deter
ing the magnetic behaviour are localized near the atoms attiad
and can have only two magnetization states (spin up or doWre.
spin for a given site in this lattice will be identified withetof the0’s
or 1's used in the mathematical construction of the previous@ec
to write down the binary expansion of the rational numberstidé

tropy of the system we see that, in order for the state of thtegy
to be completely determined, we would need zero entropyTHis
is physically impossible. Moreover, a lower bound for therepy is
related not only to the discrete (quantum) nature of theesysbut it
also depends on the temperature and other parameters. fitle-co
sion is that even when the counting and locating proceduveels
defined, there is always an intrinsic error. Of course onehtraggue
that this is probably due to the chosen system, but the reasis

that we need only a finite number or O's or 1's since these expangeneral enough as to suggest that no matter what physicdrimep-

sions will be either finite or periodic. For instance, we ntight in

a row all numbergm, n) of a fixed height one after the other with
a conventional sequence to denote beginning and end of agrumb
As mentioned before, the magnetizati8ncan take only two values
+1 that we identify with0 and1 respectively. There is a Hamiltonian
associated in the presence of an external magnetic forandey

on the siteh; which is given by:

H=-J> 88— hS,

where the sum overandk runs over all possible nearest-neighbour
pairs of the lattice and is the so called exchange constant.

The fact that is important to stress is that a possible enatioer
of the rationals correspond to a particular physical coméitjon. No-
tice that we are desregarding the obvious limitation of.stiheat is, in
Cantor’s procedure we need an infinite number of rows andhomdy
that is an ideal lattice, whereas a physical material wilessarily
have finite size. Nevertheless, we will see that even themetare
physical constraints that are imposed by the quantum nafuttee
system to the entropy, which can be interpreted as infoonatire-
strictions on the physical realizability of the mathemalticonstruc-
tion.

tation we choose, there will always exist this limitation.

5 Conclusion: Uncertainty comes in the way or
how real is reality?

We have argued that uncertainty in determining a particstiae in
an Ising system renders impossible to have a reliable imghém
tion of Cantor’s diagonal method. There are also otheredlatath-
ematical constructions that could be analysed in a simiky. \Wor
instance, Cantor’s proof of the uncountability of the raainiers re-
lies on similar ideas. As a matter of fact, in the usual arguine
contradiction is obtained by producing a real number thahoabe
included in a proposed enumeration. This is done by corigigi¢he
diagonal sequence and taking its negation. Once this is, docen
be shown that it is the truth value of the element of this sequence
intersecting the diagonal, then it would have to satisfyrtiation

t=1-—t,

which leads to a contradictiahone assumes the only possible truth
values are 0 or Isee for instance chapter 2 on diagonalization in[1]).
However, this equation does not pose any probletrisfinterpreted
in a probabilistic way and assigned a valuel@®. This opens up a



series of even subtler questions such as whether we carlpttaze
a physical model of the real numbers and many others, that énar
perspective, are worth addressing.

Many other people have previously addressed this queséibns
ther in general terms or for particular mathematical cots:ef pi-
oneering work is [6], which posed the question of realizingad-
stract mapping process within the constraints of a physiession
of Church’s thesis. A very recent case study in the field oftrmdn
and quantum systems can be found in [7].
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