
Distributed Learning of Gaussian Graphical Models via Marginal
Likelihoods

Zhaoshi Meng∗ Dennis Wei∗ Ami Wiesel† Alfred O. Hero III∗

∗University of Michigan
{mengzs,dlwei,hero}@eecs.umich.edu

†The Hebrew University of Jerusalem
ami.wiesel@huji.ac.il

Abstract

We consider distributed estimation of the
inverse covariance matrix, also called the
concentration matrix, in Gaussian graphical
models. Traditional centralized estimation
often requires iterative and expensive global
inference and is therefore difficult in large dis-
tributed networks. In this paper, we propose
a general framework for distributed estima-
tion based on a maximum marginal likeli-
hood (MML) approach. Each node indepen-
dently computes a local estimate by maximiz-
ing a marginal likelihood defined with respect
to data collected from its local neighbor-
hood. Due to the non-convexity of the MML
problem, we derive and consider solving a
convex relaxation. The local estimates are
then combined into a global estimate with-
out the need for iterative message-passing be-
tween neighborhoods. We prove that this re-
laxed MML estimator is asymptotically con-
sistent. Through numerical experiments on
several synthetic and real-world data sets,
we demonstrate that the two-hop version of
the proposed estimator is significantly better
than the one-hop version, and nearly closes
the gap to the centralized maximum likeli-
hood estimator in many situations.

1 Introduction

Graphical models provide a principled framework for
compactly representing dependencies among random
variables (Lauritzen, 1996; Wainwright & Jordan,
2008). The ability to perform distributed and effi-
cient inference makes them especially well-suited to
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large networks, e.g., sensor networks, social networks,
gene regulatory networks, and smart grids (Liu & Ih-
ler, 2012; Meng et al., 2012; Wiesel & Hero, 2012).
Estimating graphical model parameters is therefore an
important first step in enabling these applications.

For Gaussian graphical models (GGM), parameter es-
timation essentially reduces to covariance estimation
and is further simplified by the graph structure: the
pattern of edges in the graph corresponds to the spar-
sity pattern of the inverse covariance matrix, also
known as the concentration or precision matrix. When
the sparsity pattern is known a priori, the traditional
technique for inverse covariance estimation is maxi-
mum likelihood (ML), resulting in a convex optimiza-
tion that can be solved either by generic solvers or spe-
cialized algorithms (Banerjee et al., 2006; Dahl et al.,
2008; Friedman et al., 2008). However, solving the
exact ML estimation problem requires either expen-
sive data communication (e.g., to a fusion center) and
centralized computation/storage, or in a distributed
setting, iterative message-passing in loopy graphs to
compute global derivatives (Koller & Friedman, 2009).
Neither of those strategies are feasible in large, gener-
ally structured and distributed networks, such as a sen-
sor network where the corresponding graph could be
very loopy and the computational resources are highly
decentralized.

Given the limitations of centralized solutions, re-
searchers have begun proposing distributed methods
for graphical model learning, where agents in the net-
work estimate local parameters by processing local
data with limited communication between agents (Liu
& Ihler, 2012; Wiesel & Hero, 2012). In addition to
decentralizing computation and communication across
the network, distributed solutions are naturally robust
against localized attacks or failures, and are also more
protective of data privacy. These advantages make dis-
tributed algorithms particularly appealing for network
applications.

This paper proposes a general framework for dis-
tributed estimation based on marginal likelihoods.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CiteSeerX

https://core.ac.uk/display/24066359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Distributed Learning of Gaussian Graphical Models via Marginal Likelihoods

Each node collects data within its neighborhood and
independently forms a local estimate by maximizing
a marginal likelihood. We show that this marginal
likelihood approach is sufficient in principle to deter-
mine the global parameter. Notably, the formation of
our global estimate from local estimates does not re-
quire iterative consensus or message-passing as in Liu
& Ihler (2012); Wiesel & Hero (2012). Due to the non-
convexity of maximum marginal likelihood (MML) es-
timation, we derive and consider solving a convex re-
laxation of the problem. We prove that the relaxed
MML estimator is asymptotically consistent. We then
focus on two specific cases in which the local neigh-
borhoods correspond to either one or two communica-
tion hops through the network. Extensive experiments
show that the two-hop version of the proposed estima-
tor is significantly better than the one-hop version and
nearly closes the gap to the centralized ML estimator
in many situations.

The outline of the paper is as follows. In Section 2, we
give a brief review of graphical models and centralized
ML estimation. In Section 3, we propose a general
approach to distributed estimation based on marginal
likelihoods, show asymptotic consistency, and discuss
two important specific cases. Numerical experiments
are presented in Section 4 and the paper concludes in
Section 5.

1.1 Related work

Recent works by Liu & Ihler (2012); Wiesel & Hero
(2012) have discussed a similar but less general
framework for distributed estimation in which sev-
eral pseudo-likelihood-based estimators for GGMs and
general exponential families are proposed. In Section
3.4, we show that the estimators in Wiesel & Hero
(2012) can be seen as a special case of the proposed
relaxed MML estimator, and a significant performance
improvement can be obtained through a reasonable in-
crease in the computation and communication cost.

Our distributed estimator is formed through solving
multiple relaxed MML estimation problems by local
agents. The structure of each local MML problem
is related to the latent graphical model considered
in Chandrasekaran et al. (2012). However, the as-
sumption in Chandrasekaran et al. (2012) is that the
number of latent variables is relatively small, thus con-
tributing a low-rank term, whereas in our case, all vari-
ables outside the local neighborhood can be seen as
latent variables.

Another line of work (Friedman et al., 2008; Johnson
et al., 2011; Ravikumar et al., 2011; Rothman et al.,
2008) focuses on the problem of covariance selection,
where the graph topology is not known a priori and

must be estimated in addition to the parameters. This
appears to be a harder problem than ours since we as-
sume the structure is known, but some insights regard-
ing distributed algorithms in particular can perhaps be
shared.

Notation. Boldface upper case letters denote ma-
trices and boldface lower case letters denote column
vectors. Sets of single indices are denoted by calli-
graphic upper case letters. The cardinality of a set A
is denoted by |A| and the difference of two sets is de-
noted as A\B. Following common notation, AM,N
represents a submatrix of A with rows indexed by
M and columns indexed by N . We also make ref-
erence to irregular sets of index pairs such as the edge
set E of a graph, for which we use standard upper
case letters. AE then refers to the vector of entries
of A indexed by E. The standard inner product be-
tween two symmetric matrices is denoted as 〈A,B〉,
i.e., 〈A,B〉 = trace(AB) =

∑
i,j Ai,jBi,j .

2 Background

2.1 Graphical models

We refer the reader to Lauritzen (1996) for a de-
tailed treatment of graphical models. We consider a
p-dimensional random vector x following a graphical
model with respect to an undirected graph G = (V,E),
where V = {1, . . . , p} is a set of nodes corresponding
to elements of x and E is a set of edges connecting
nodes. The vector x satisfies the Markov property
with respect to G if for any pair of nonadjacent nodes
in G, the corresponding pair of variables in x are con-
ditionally independent given the remaining variables.

For Gaussian graphical models (GGM), the vector x
follows a multivariate Gaussian distribution. We as-
sume without loss of generality that x has zero mean.
Then the probability density function can be written
in canonical form in terms of the concentration matrix
J as follows:

p(x; J) = (2π)−p/2(det J)1/2 exp

(
−1

2
xTJx

)
. (1)

The Markov property manifests itself in a simple way
through the sparsity pattern of J:

Ji,j = 0 for all (i, j) /∈ E. (2)

This property leads to efficient inference algorithms for
GGMs, and as we will show, it can also be exploited
for distributed parameter learning.

2.2 Centralized estimation in GGMs

Maximum likelihood estimation (MLE) is a classical
approach to estimating model parameters from data.
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For Gaussian graphical models, the problem reduces
to estimating the non-zero elements of the concentra-
tion matrix J. These elements are indexed by Ẽ, the
union of the edges and pairs corresponding to diagonal
elements,

Ẽ := E ∪ {(i, i)}pi=1. (3)

When all the data are accessible, the centralized global
maximum likelihood (GML) estimation problem can
be formulated as Lauritzen (1996)

ĴGML = arg min
J

〈Σ̂,J〉 − log det J

s.t. Jj,k = 0 ∀ (j, k) /∈ Ẽ,
J � 0.

(4)

where Σ̂ = 1
T

∑T
t=1 x(t)x(t)T is the sample covari-

ance matrix and x(1), . . . ,x(T ) are i.i.d. samples of
x. Since the GML problem (4) is convex in JẼ , effi-
cient gradient-based algorithms can be applied, many
of which have specialized implementations on graphs,
e.g. iterative proportional fitting (IPF) (Wainwright &
Jordan, 2008), chordally-embedded Newton’s method
(Dahl et al., 2008), and an iterative regression method
introduced in Friedman et al. (2009). However, as
mentioned before, the main drawback of these methods
is the computational and communication complexity
when implemented in networks.

3 Distributed Estimation in GGMs

We now consider a general approach to distributed
parameter estimation motivated by network applica-
tions. Each random variable xi is associated with a
node in the network. The topology of the graph G,
which encodes statistical dependences, is assumed to
coincide with the topology of internode communica-
tion. Each node collects all the data samples from
within a neighborhood and computes a local parame-
ter estimate. A global estimate of J is then formed by
combining these local estimates. The key components
in this framework are the choice of neighborhood, the
local estimation method, and the method for combin-
ing estimates.

3.1 Marginal Likelihood Maximization

In this paper, we propose to estimate local parameters
by maximizing marginal likelihood functions. For each
node i, define the index set for its immediate neighbors
as

Ii := {j | (i, j) ∈ E}, (5)

and consider a neighborhood indexed by a set Ni con-
taining the nodes within a certain number of communi-
cation hops from node i in the network. By definition,

the set Ni includes at least the node i itself and its
immediate neighbors Ii. Let K denote the concentra-
tion matrix corresponding to the marginal distribution
over the variables {xj , j ∈ Ni} in the neighborhood,
and let

Si := Σ̂Ni,Ni =
1

T

T∑
t=1

xNi
(t)xNi

(t)T

be the local sample covariance matrix. Then the max-
imum marginal likelihood (MML) estimation problem
in neighborhood Ni can be formulated as a joint opti-
mization of K and J:

K̂i,MML = arg min
K,J

〈Si,K〉 − log det K

s.t. K =
[(

J−1
)
Ni,Ni

]−1
,

Jj,k = 0 ∀ (j, k) /∈ Ẽ,
J � 0,

(6)

where the first constraint represents the marginaliza-
tion relationship between K and J and the second line
of constraints reflects the sparsity of the global param-
eter.

A global estimate of J can be formed by combining
optimal solutions to problem (6) for each node i. We
consider a simple concatenation approach whose justi-
fication will be given in Section 3.2 below. Denote by
Li the set of index pairs corresponding to the non-zero
entries in the ith row of J, i.e.,

Li := {(j, k) ∈ Ẽ | j = i}. (7)

Note that the self-edge pair (i, i) is included in Li given

the definition of Ẽ in (3). We refer to the parameters
indexed by Li as the row parameters for node i. The
global estimate is constructed by extracting the row
parameters from each local estimate and concatenat-
ing them:

ĴMML
Li

= K̂i,MML
Li

, for i = 1, . . . , p. (8)

Note that this construction of the global estimate
JMML (and also the other surrogate estimator pro-
posed below) does not guarantee symmetry, since it
is not a major concern of this work. However, as will
shown in Section 3.3, the symmetry is naturally recov-
ered in the asymptotic limit; also it can be imposed
in the non-asymptotic case through a simple strategy
(see Section 3.6).

The difficulty with the MML approach is that prob-
lem (6) is in general a non-convex optimization. The
non-convexity arises from the coupling of the nonlinear
marginalization constraint linking K to J and the spar-
sity constraints on J. In the next subsection, we derive
a convex relaxation of the MML estimation problem
as a surrogate.
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i

(a) 2D lattice and two-hop neighbor-
hood

i

(b) A general graph and two-hop
neighborhood

i i

(c) Local relaxations (one-hop (left)
and two-hop (right))

Figure 1: Illustration of defined sets and local relaxation. In (a) and (b) we show two different graphs, in which
the two-hop neighborhood N for node i is indicated with dashed contours. The buffer set variables xB and the
protected set variables xP (excluding node i itself) are colored blue and red, respectively. For the graph in (b),
we illustrate the one-hop and two-hop local relaxation problems in (c). The dashed red lines in (c) denote the
fill-in edges due to relaxation.

3.2 Convex Relaxation of Marginal
Likelihood Maximization

In the remainder of the section, we suppress the node
index i whenever possible for clarity. To derive a con-
vex relaxation of the MML estimation problem (6), we
apply the Schur complement identity to the marginal-
ization constraint in (6), yielding

K = JN ,N − JN ,NC ·
[
JNC ,NC

]−1 · JNC ,N , (9)

where NC is the complementary set to N . Define the
buffer set B ⊂ N as the set of all variables in N that
have immediate neighbors in the complement NC ,

B := {j | j ∈ N and Ij ∩NC 6= ∅}. (10)

The difference set between N and B is referred to as
the protected set P := N\B. The buffer and protected
sets are illustrated in Figure 1(a) and 1(b). Due to the
Markov property, we have JP,NC = 0. Decomposing
N into B and P then reveals the sparsity pattern of
K from (9):

K = JN ,N −
[

0
JB,NC

] [
JNC ,NC

]−1 [
0, JNC ,B

]
= JN ,N −

[
0 0

0 JB,NC

[
JNC ,NC

]−1
JNC ,B

]
and hence

KP,P = JP,P , KP,B = JP,B, (11)

KB,B = JB,B − JB,NC

[
JNC ,NC

]−1
JNC ,B. (12)

An important observation from (11) is that the spar-
sity pattern of JN ,N is entirely preserved in the rows

and columns indexed by the protected set P. In par-
ticular, because node i itself is always protected, the
marginal and global concentration matrices share the
same values of the row parameters indexed by L, which
motivates our strategy for fusing local estimates in (8).
On the other hand, the sparsity pattern in the “buffer
submatrix” KB,B is in general modified due to the fill-
in term, i.e., the second term in (12).

Based on these observations, we now specify a relaxed
set of constraints on the marginal concentration matrix
K. First denote the set of all local edges that are not
affected by the fill-in term in (12) as

EProt := Ẽ ∩ {{P × P} ∪ {P × B} ∪ {B × P}} ,

where the superscript stands for “protected”. We then
add to EProt all index pairs B×B that could potentially
be affected by fill-in in (12), resulting in a relaxed edge
set R (see Figure 1(c) for illustrations):

R = EProt ∪ {B × B}. (13)

In light of (11) and (12), any feasible marginal con-
centration matrix K for the MML estimation problem
(6) is guaranteed to be supported only on the set R.
Therefore the following constraints specify a set that
contains the feasible set of the MML problem (6):

K � 0 and Kj,k = 0 ∀ (j, k) /∈ R. (14)

Using the constraints in (14), we formulate the follow-
ing relaxation of the original MML estimation problem
(6) at each node i:

K̂i,Relax = arg min
K

〈Si,K〉 − log det K

s.t. Kj,k = 0 ∀ (j, k) /∈ R,
K � 0.

(15)
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The above relaxed MML problem is a convex opti-
mization with respect to KR and has the same form
as the global MLE problem (4) but with much lower
dimensions in general.

Since the original MML estimation problem (6) is dif-
ficult to solve, we propose to solve the relaxed MML
estimation problem (15) as a surrogate to estimate the
local parameters. Then a global estimate of the con-
centration matrix can be similarly obtained by extract-
ing and concatenating row parameters as in (8):

ĴRelax
Li

= K̂i,Relax
Li

, for i = 1, . . . , p. (16)

3.3 Asymptotic Consistency

In this section, we suppress the index i for matrices S
and KRelax for clarity. We prove that the relaxed MML
estimator defined in (15) and (16) is asymptotically
consistent. To do so, we first establish the following
lemma by making use of the continuity of the mapping
from sample covariance S to local estimate K̂Relax in
(15) (proof omitted).

Lemma 1. The mapping from the sample covariance
S to the concentration matrix K̂Relax through solving
the relaxed MML problem (15) is a continuous map-
ping provided that S is positive definite.

Theorem 1. The relaxed MML estimator ĴRelax is
asymptotically consistent.

Proof of Theorem 1. In the asymptotic limit, the lo-
cal sample covariance matrix S converges to the cor-
responding sub-matrix of the true covariance matrix,
Σ∗N ,N , with probability one and is therefore positive

definite. Let K∗ = (Σ∗N ,N )−1 be the corresponding
true marginal concentration matrix. We first show
that K∗ is the optimal solution to the relaxed MML
estimation problem (15) when S = Σ∗N ,N . To see this,
note that the true global concentration matrix J∗ con-
forms to the sparsity pattern specified by Ẽ, and there-
fore the marginal concentration matrix K∗ is feasible
for (6). Furthermore, from relations (11)-(12) and our
construction of the edge set R, K∗ also satisfies the
sparsity constraints of the relaxed problem (15). It
is straightforward to show that K∗ satisfies the opti-
mality conditions when S = Σ∗N ,N . Then by strict
convexity, K∗ is the unique optimum of the relaxed
MML problem when S = Σ∗N ,N .

It now follows from Lemma 1 and the continuous
mapping theorem (Van der Vaart, 2000) that the re-

laxed MML estimates K̂Relax converge asymptotically
to K∗ with probability one. Lastly, due to the ab-
sence of fill-in in (11), the construction of the global

estimate ĴRelax in (16) also yields a consistent estimate
of J∗.

It is interesting to note that the true marginal concen-
tration matrix K∗ is also the optimal solution to the
MML estimation problem (6) when S = Σ∗N ,N . This
follows because the feasible region for the unrelaxed
MML problem (with respect to K) is contained in the
feasible region for the relaxed problem (15). However,

convergence of the MML estimates K̂MML to K∗ is
less clear because the feasible region in the unrelaxed
problem is not known to be convex.

Theorem 1 implies that an asymptotically consistent
estimate of the global concentration matrix can be con-
structed by solving p local and convex estimation prob-
lems without any message-passing between neighbor-
hoods. The highly localized nature of the proposed
approach stands in sharp contrast to the centralized
MLE, which requires either iterative global message-
passing in triangulated graphs with potentially large
tree-width, or tree-like approximations to avoid non-
convergence in loopy graphs (Wainwright et al., 2003,
2005). Even in the case of chordal or decomposable
GGMs, previous methods for estimating the concen-
tration matrix require non-trivial message-passing be-
tween cliques, with cost that is quadratic in the dimen-
sions of the separators, see e.g., (Wiesel et al., 2010).

While Theorem 1 claims asymptotic consistency for
all choices of local neighborhoods containing {i, Ii},
different choices will yield estimators with different
properties in the finite sample case, and each chosen
local neighborhood might result in different conver-
gence rates. In principle, larger neighborhoods would
allow each node to access more data and hence in-
crease its information for estimating its local parame-
ters. In the extreme case, if each node has access to all
the data in the network, the local estimate is equal to
the global MLE. On the other hand, larger neighbor-
hoods require more parameters to be estimated, thus
tending to result in slower convergence rate towards
the true parameters. Also the convex relaxation we
propose removes the sparsity constraints on the buffer
sub-matrix of the local concentration matrix. This
relaxation would be expected to propagate and influ-
ence the parameter estimates in the protected edge set
EProt, and in particular the row parameters that we
extract. Larger local neighborhoods would result in
larger protected edge sets, which might be expected
to decrease the effect of the relaxation on the row pa-
rameters of interest.

In sum, the optimal choice of local neighborhoods is
unclear due to the above trade-off. In the next subsec-
tions, we focus on two cases of the relaxed MML esti-
mator with local neighborhood diameters correspond-
ing to one and two communication hops through the
network. The non-asymptotic behavior of the two es-
timators is studied through numerical experiments in
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Section 4.

3.4 Case I: One-hop Estimator

We first consider a one-hop neighborhood consist-
ing of node i and its immediate neighbors Ii, i.e.,
Ni = {i, Ii}. Generically in the worst case where
all its immediate neighbors are in buffer set, we have
Bi = Ii, and Pi = {i}. The fill-in term in (12) affects
the submatrix KIi,Ii , leaving only the first row and
column untouched. In this case, since i is by defini-
tion connected to all elements in Ii, the relaxed edge
set Ri defined in (13) includes all possible pairs (see

Figure 1(c) for an illustration): R1hop
i = Ni ×Ni.

The solution to the relaxed MML problem (15), where
no sparsity is imposed, is simply the inverse of the
local sample covariance (assuming enough samples for
invertibility),

K̂i,1hop =
(
Σ̂Ni,Ni

)−1
. (17)

The global estimate is obtained by combining the local
one-hop estimates as in (16).

In the one-hop case, the proposed relaxed MML es-
timator reduces to the LOC estimator proposed in
Wiesel & Hero (2012).

3.5 Case II: Two-hop Estimator

We now consider the two-hop version of the estima-
tor, where Ni now includes nodes that are reachable
from node i within two routing hops. In this setting,
the worst-case protected set is given by Pi = {i, Ii}
and the buffer set Bi = Ni\Pi consists of all nodes
that are exactly two hops away from the ith node.
Hence Bi can be thought of as the set of second-hop
nodes. In the two-hop case, the protected edge set
EProt includes not only edges between node i and its
immediate first-hop neighbors, but also edges between
first-hop neighbors and between first- and second-hop
neighbors (see Figure 1(c) for an illustration).

Unlike in the one-hop case, the two-hop problem does
not admit a closed-form solution in general. A global
estimate is obtained as before by combining row pa-
rameter estimates (16).

As the problem dimension p increases, if the numbers
of non-zero variables in the relaxed local problems,
|Ri|, are bounded by a constant or a lower-order term

compared to |Ẽ|, the number of non-zero variables in
the global problem, then the cost of solving the two-
hop relaxed MML problem is only marginally higher
than the cost of the one-hop problem, while both grow
more slowly or not at all compared to the cost of the
global MLE. In this large-scale setting, as will be seen

in Section 4, the two-hop estimator achieves signifi-
cantly improved performance relative to the one-hop
estimator with a modest increase in cost.

3.6 Local Averaging

In practice with finite samples, the local estimates
from the relaxed MML problems are not perfectly con-
sistent with each other. For example, ĴRelax

i,j , which
comes from node i’s local estimate, may not agree
with ĴRelax

j,i , which comes from node j’s local estimate.

Therefore the resulting global estimate ĴRelax in (16)
is not guaranteed to be symmetric.

A common way of addressing these discrepancies is
to use iterative consensus methods as in Liu & Ihler
(2012); Wiesel & Hero (2012). In this work however,
we find that a single round of naive local averaging
along edges is sufficient to yield a good approximation
to the global MLE. Specifically, the local average is
given by

ĴRelax
i,j ← 1

2
(ĴRelax

i,j + ĴRelax
j,i ), (i, j) ∈ E, (18)

an inexpensive operation in terms of computation and
communication. In the one-hop case, the resulting
symmetric estimator coincides with the AVE estimator
proposed in Wiesel & Hero (2012).

4 Experiments

In this section, we evaluate and compare the two-hop
version of the relaxed MML estimator with local aver-
aging (denoted as RelaxedMML 2 hops) with the fol-
lowing estimators:

• The global ML estimator, denoted as MLE in the leg-
end;

• The LOCAL and AVE estimators from Wiesel &
Hero (2012), denoted as LOC and AVE. They coin-
cide with the asymmetric and symmetric versions
respectively of the one-hop relaxed MML estimator;

• The weighted maximum pseudo-likelihood estima-
tor using Alternating Direction Method of Multi-
pliers (ADMM) consensus, proposed in Wiesel &
Hero (2012) and Liu & Ihler (2012) and denoted

as PML-ADMM. We use the weights
[
ĴLOC
i,i

]2
, which

are found to be successful in Wiesel & Hero (2012).

We evaluate these estimators on both synthetic data
and a real-world sensor network data set.

4.1 Synthetic data

In our experiments, we consider three classes of graphs
that are motivated by real-world applications. For
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(a) Normalized MSE for K-NN graphs (p = 500,K = 4)
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(b) Normalized MSE for lattice graphs (p = 20 × 20 = 400,
µ = 0.5, σ2 = 0.2)
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(c) Normalized MSE for small-world graphs (p = 100, K =
20, β = 0.5)
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Figure 2: Normalized MSE in the concentration matrix estimates for different networks. The legend in Figure 2(d)
applies to all plots.

each class we follow similar experiment settings as
in Wiesel & Hero (2012). Specifically, we randomly
generate 20 topologies and concentration matrices J,
and for each J, we perform 10 experiments in which
random samples are drawn from the distribution and
the concentration matrix is estimated from the sam-
ples. The normalized mean squared errors (MSE),

defined as
‖Ĵ−J‖2F
‖J‖2F

, and averaged over all 200 exper-

iments, are reported in Figure 2. An illustration of
the graph topology is shown in the top-right corner of
each plot. In Figure 2(a) and 2(b), the nodes are posi-
tioned according to the physical layout of the network,
while in Figure 2(c), we show a common rendering for

a small-world graph. The classes of graphs we consider
are:

• K-NN graphs (Figure 2(a)): A K-nearest neighbor
graph is a straightforward model for real-world net-
works whose measurements have correlations that
depend on pairwise Euclidean distances, e.g., sensor
networks. For these experiments, we randomly gen-
erate p = 500 nodes uniformly over the unit square.
Each node is then connected to its K-nearest neigh-
bors, where K = 4. The concentration matrix is
initialized as Ji,j = ± exp(−0.5 · di,j) with random
sign, where di,j is the distance between the ith and
jth nodes. Finally we add a small value to the di-



Distributed Learning of Gaussian Graphical Models via Marginal Likelihoods

agonal to ensure positive definiteness.

• Lattice graphs (Figure 2(b)): A lattice graph is
appropriate for networks with regular spatial cor-
relations. We generate a square lattice graph with
p = 20 × 20 = 400 nodes and edge weights gen-
erated as Ji.j = min{w, 1}, where w is a normally
distributed random variable with mean 0.5 and vari-
ance 0.2. A small value is added to the diagonal to
ensure positive definiteness.

• Small-world graphs (Figure 2(c)): A small-
world graph is a useful model for social networks,
where most nodes have few immediate neighbors
but can be reached from any other node through
a small number of hops. We use the Watts-
Strogatz model (Watts & Strogatz, 1998) to gen-
erate random small-world networks, with p = 100,
K(mean degree) = 20, and parameter β = 0.5. Un-
der this particular setting, a large fraction of nodes
have large second-hop neighborhoods with dimen-
sion close to p. In general we expect the second-hop
neighborhood to scale linearly with respect to p. We
choose the edge weights to be uniformly distributed
and also add a small diagonal loading.

From the experiment results in Figure 2, we can make
the following comments. For the graphs that have rel-
atively small two-hop neighborhoods, such as the K-
NN graphs and the lattice grids, the proposed two-
hop relaxed MML estimator almost coincides with the
global MLE and outperforms other distributed estima-
tors significantly. On the other hand, for graphs such
as the small-world networks, the dimensions of the
two-hop neighborhoods grow as fast as p. In this case,
a noticeable gap emerges between the global MLE and
the two-hop relaxed MML estimator. However, these
graphs are known to be harder to learn through dis-
tributed algorithms (Liu & Ihler, 2011) and therefore
the competing estimators’ performance also degrades.
The two-hop relaxed MML estimator still outperforms
by a large margin.

Computational complexity. In the relaxed MML
approach, each local problem has the same structure as
the centralized ML problem for which there are many
efficient algorithms. Furthermore, the local problems
can all be solved in parallel before the final one-step
averaging. In our experiments, we used the graph-
ical LASSO with known structure (Friedman et al.,
2009) for solving both the centralized ML problem and
the local problems in the distributed algorithm. For
moderate p (number of variables) as in the examples
presented here, the total run time of the distributed
algorithm with no parallelization is comparable to the
centralized one. As p grows however, we would ex-
pect the complexity of the distributed algorithm to

scale at most linearly with p (assuming that the lo-
cal neighborhood dimension scales more slowly, such
as with K-NN graphs and lattice). The growth is even
slower if the algorithm can be parallelized. For the cen-
tralized algorithm, the dependence of complexity on p
is expected to be at least linear (the growth is much
faster when generic solvers are used), and centralized
storage/communication is required.

4.2 Real-world data

Finally we apply the estimators to a real-world data
set to evaluate their performance and robustness. The
Lab dataset (Guestrin et al., 2004) contains temper-
ature information from a sensor network of 54 nodes
deployed in the Intel Berkeley Research lab between
February 28 and April 5, 2004. This dataset is known
to be very difficult with many missing data, noise and
failed sensors. We select 50 sensors with relatively
stable and regular measurements. To obtain a target
concentration matrix, we use 1800 consecutive sam-
ples per sensor, interpolate the missing or failed read-
ings and de-trend the data using a local rectangular
window of 10 samples. Next, we compute the sample
covariance and invert it to obtain a sample concentra-
tion matrix. This concentration matrix is then thresh-
olded to yield a ground truth graphical model with a
sparsity level of 70% zeros. Using knowledge of the
sparsity and sampling from the original 1800 samples,
we estimate the concentration matrix using the same
estimators as before. As shown in Figure 2(d), the
proposed two-hop relaxed MML estimator still gives
a very tight approximation to the global MLE and its
advantage over other distributed estimators is obvious.

5 Conclusion

We have proposed a distributed MML framework
for estimating the concentration matrix of Gaussian
graphical models. The proposed method indepen-
dently solves convex relaxations of marginal likelihood
maximization problems in local neighborhoods. A
global estimate is then obtained by combining the lo-
cal estimates via a single round of local averaging.
The proposed estimator is shown to be asymptotically
consistent and computationally efficient. Its improved
performance relative to existing distributed estimators
is illustrated through extensive experiments.
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