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Abstract— This work shows how successive grasp attempts
can be re-planned to make use of tactile information acquired
during previous grasp attempts. Our main contributions are
to enable planning of dexterous grasping for high degree of
freedom manipulators, and belief updating from tactile sensors
in 6 dimensional space. The method is demonstrated in trials
with simulated robots. Sequential re-planning is shown to
achieve a greater success rate than single grasp attempts, and
trajectories that maximise information gain require less re-
planning iterations than conventional trajectories before a grasp
is achieved.

I. INTRODUCTION

In robot grasping, there is typically uncertainty associated
with the location of the object to be grasped. However, if the
object is not in its expected location, then a robot equipped
with tactile sensors, or torque sensors at finger joints, may
gain information to help refine localisation knowledge from
tactile contacts (or lack of such contacts) during the ex-
ecution of a reach to grasp trajectory. This work, firstly,
describes how to iteratively update localisation knowledge
using tactile observations from a previous grasp attempt;
secondly, shows how successive grasp trajectories can be
planned with respect to these iteratively refined object poses;
and, thirdly, shows how each reach-to-grasp trajectory can
be deliberately planned to maximise new tactile information
gain, while also reaching towards the expected grasp location
derived from previous information. This work is an extension
of our early work which was published as a two page
workshop abstract [4]. Further details are available in [3].

We make several assumptions. First we assume that the
object is of known shape, in the sense that a high density
point cloud model or mesh model is available. Second
we assume that a pre-computed grasp (i.e. a set of finger
contacts) is known a priori for this object. Third we assume
the availability of an unreliable estimate of the object’s pose.
In our scenario we employ a depth image obtained from an
Asus Xtion Pro depth camera. This gives an incomplete point
cloud of the object surface. Using a model fitting procedure
similar to the sampling from surflet pairs method presented
in [1], a probability density over the object pose is estimated,
represented as a particle set. Given this distribution, a reach-
to-grasp trajectory is planned. This trajectory has as its goal
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configuration the pre-computed grasp under the assumption
that the object is at a pose corresponding to the mean position
of the particle set. The path to this goal configuration is found
using a stochastic motion planner. This planner works with
a cost function that allows deviations from the shortest path
that maximise the chance of gathering tactile observations
that will reduce pose uncertainty in the object location. When
a contact is made, then the observations (both tactile contact
and no-contact signals) collected at poses along the reach-to-
grasp trajectory are used to perform a particle filter update.
Replanning then occurs with the new pose distribution, and
a new reach-to-grasp trajectory can be constructed. This
process is then iterated until a successful grasp is achieved.

The benefit of planning with beliefs is the ability to reason
about the informational effects of sequences of actions. In
typical belief space planning this means performing a kind
of pre-posterior analysis, in which planned actions (here
trajectories) cause imagined observations that are in turn used
to perform a Bayes’ update of the belief state. Because the
belief space grows exponentially in the length of the planned
action-observation sequence these methods are exact but
inefficient. Our work instead builds on the approach of Platt
et al. [2]. That work plans a sequence of actions that will gen-
erate observations that distinguish a hypothesised state from
competing hypotheses while also reaching a goal position.
The informational value of a trajectory is the difference in
the expected observations between the hypothesised position
and each alternative. Platt et al. applied this to planning for a
two degree of freedom manipulator using a laser range finder
for observations, and employed an optimisation framework
for planning. Here we show how this approach can be
extended to planning the motion of a manipulator performing
multi-finger grasping. Our innovations are i) embedding an
informational measure in the trajectory segments considered
by a randomised path planner, here a PRM planner, and ii)
creating an observation model for contact sensing by a multi-
finger hand that palpates the object to be grasped.
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