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Abstract

We study a weighted online bipartite matching problem: G(V1, V2, E) is a weighted bipartite
graph where V1 is known beforehand and the vertices of V2 arrive online. The goal is to match
vertices of V2 as they arrive to vertices in V1, so as to maximize the sum of weights of edges in the
matching. If assignments to V1 cannot be changed, no bounded competitive ratio is achievable.
We study the weighted online matching problem with free disposal, where vertices in V1 can
be assigned multiple times, but only get credit for the maximum weight edge assigned to them
over the course of the algorithm. For this problem, the greedy algorithm is 0.5-competitive and
determining whether a better competitive ratio is achievable is a well known open problem.

We identify an interesting special case where the edge weights are decomposable as the prod-
uct of two factors, one corresponding to each end point of the edge. This is analogous to the
well studied related machines model in the scheduling literature, although the objective func-
tions are different. For this case of decomposable edge weights, we design a 0.5664 competitive
randomized algorithm in complete bipartite graphs. We show that such instances with decom-
posable weights are non-trivial by establishing upper bounds of 0.618 for deterministic and 0.8
for randomized algorithms.

A tight competitive ratio of 1 − 1/e ≈ 0.632 was known previously for both the 0-1 case
as well as the case where edge weights depend on the offline vertices only, but for these cases,
reassignments cannot change the quality of the solution. Beating 0.5 for weighted matching
where reassignments are necessary has been a significant challenge. We thus give the first online
algorithm with competitive ratio strictly better than 0.5 for a non-trivial case of weighted
matching with free disposal.

1 Introduction
In recent years, online bipartite matching problems have been intensely studied. Matching itself is
a fundamental optimization problem with several applications, such as matching medical students
to residency programs, matching men and women, matching packets to outgoing links in a router
and so on. There is a rich body of work on matching problems, yet there are basic problems we
don’t understand and we study one such question in this work. The study of the online setting
goes back to the seminal work of Karp, Vazirani and Vazirani [26] who gave an optimal 1 − 1/e
competitive algorithm for the unweighted case. Here G(V1, V2, E) is a bipartite graph where V1
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is known beforehand and the vertices of V2 arrive online. The goal of the algorithm is to match
vertices of V2 as they arrive to vertices in V1, so as to maximize the size of the matching.

In the weighted case, edges have weights and the goal is to maximize the sum of weights
of edges in the matching. In the application of assigning ad impressions to advertisers in display
advertisement, the weights could represent the (expected) value of an ad impression to an advertiser
and the objective function for the maximum matching problem encodes the goal of assigning ad
impressions to advertisers to as to maximize total value. If assignments to V1 cannot be changed
and if edge weights depend on the online node to which they are adjacent, it is easy to see that no
competitive ratio bounded away from 0 is achievable.

Feldman et al [18] introduced the free disposal setting for weighted matching, where vertices in
V1 can be assigned multiple times, but only get credit for the maximum weight edge assigned to
them over the course of the algorithm. (On the other hand, a vertex in V2 can only be assigned at the
time that it arrives with no later reassignments permitted). [18] argues that this is a realistic model
for assigning ad impressions to advertisers. The greedy algorithm is 0.5 competitive for the online
weighted matching problem with free disposal. They study the weighted matching problem with
capacities – here each vertex v ∈ V1 is associated with a capacity n(v) and gets credit for the largest
n(v) edge weights from vertices in V2 assigned to v. They designed an algorithm with competitive
ratio approaching 1 − 1/e as the capacities approach infinity. Specifically, if all capacities are at
least k, their algorithm gets competitive ratio 1− 1/ek where ek = (1 + 1/k)k. If all capacities are
1, their algorithm is 1/2-competitive.

Aggarwal et al [1] considered the online weighted bipartite matching problem where edge weights
are only dependent on the end point in V1, i.e. each vertex v ∈ V1 has a weight w(v) and the weight
of all edges incident on v is w(v). This is called the vertex weighted setting. They designed a 1−1/e
competitive algorithm. Their algorithm can be viewed as a generalization of the Ranking algorithm
of [26].

It is remarkable that some basic questions about a fundamental problem such as matching are
still open in the online setting. Our work is motivated by the following tantalizing open problem; Is
it possible to achieve a competitive ratio better than 0.5 for weighted online matching ? Currently
no upper bound better than 1− 1/e is known for the setting of general weights – in fact this bound
holds even for the setting of 0-1 weights. On the other hand, no algorithm with competitive ratio
better than 0.5 (achieved by the greedy algorithm) is known for this problem. By the results of
[18], the case where the capacities are all 1 seems to be the hardest case and this is what we focus
on.

1.1 Our results

We identify an interesting special case of this problem where we have a complete graph between
V1 and V2 and the edge weights are decomposable as the product of two factors, one corresponding
to each end point of the edge. This is analogous to the well studied related machines model in the
scheduling literature [5, 6, 9, 17] where the load of a job of size p on a machine of speed s is p/s
although the objective functions are different. Scheduling problems typically involving minimizing
the maximum machine load (makespan) or minimizing the `p norm of machine loads, where the load
on a machine is the sum of loads of all jobs placed on the machine. By contrast, in the problem we
study, the objective (phrased in machine scheduling terminology) is to maximize the sum of machine
loads where the load of a machine is the load of the largest job placed on the machine. For this case
of decomposable edge weights, we design a 0.5664 competitive algorithm (Section 3). For display
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advertisement using a complete graph models the setting of a specific market segment (such as
impressions for males between 20 and 30), where every advertiser is interested in every impression.
The weight factor of the offline node u can model the value that a click has for advertiser u, the
weight factor of the online node v can model the clickthrough probability of the user to which
impression v is shown. Thus, the maximum weight matching in the setting we study corresponds
to maximizing the sum of the expected values of all advertisers.

Our algorithm uses a now standard randomized doubling technique [8, 20, 12, 23]; however the
analysis is novel and non-trivial. We perform a recursive analysis where each step proceeds as
follows: We lower bound the profit that the algorithm derives from the fastest machine (i.e. the
load of the largest job placed on it) relative to the difference between two optimum solutions - one
corresponding to the original instance and the other corresponding to a modified instance obtained
by removing this machine and all the jobs assigned to it. This is somewhat reminiscent of, but
different from the local ratio technique used to design approximation algorithms. Finally, to exploit
the randomness used by the algorithm we need to establish several structural properties of the worst
case sequence of jobs – this is a departure from previous applications of this randomized doubling
technique. While all previous online matching algorithms were analyzed using a local, step-by-step
analysis, we use a global technique, i.e. we reason about the entire sequence of jobs at once. This
might be useful for solving the case of online weighted matching for general weights. The algorithm
and analysis is presented in Section 3 and an outline of the analysis is presented in Section 3.1.

A priori, it may seem that the setting of decomposable weights ought to be a much easier
case of weighted online matching since it does not capture the well studied setting of 0-1 weights.
We show that such instances with decomposable weights are non-trivial by establishing an upper
bound of (

√
5 − 1)/2 ≈ 0.618 on the competitive ratios of deterministic algorithms (Section 4)

and an upper bound of 0.8 on the competitive ratio of randomized algorithms (Section 5). The
deterministic upper bound constructs a sequence of jobs that is the solution to a certain recurrence
relation. Crucial to the success of this approach is a delicate choice of parameters to ensure that the
solution of the recurrence is oscillatory (i.e. the roots are complex). In contrast to the setting with
capacities, for which a deterministic algorithm with competitive ratio approaching 1− 1/e ≈ 0.632
exists [18], our upper bound of (

√
5 − 1)/2 < 1 − 1/e for deterministic algorithms shows that no

such competitive ratio can be achieved for the decomposable case with unit capacities. Note that
the upper bound of 1− 1/e for the unweighted case [26] is for randomized algorithms and does not
apply to the setting of decomposable weights that we study here.

In contrast to the vertex weighted setting (and the special case of 0-1 weights) where reassign-
ments to vertices in V1 cannot improve the quality of the solution, any algorithm for the decompos-
able weight setting must necessarily exploit reassignments in order to achieve a competitive ratio
bounded away from 0. For this class of instances, we give an upper bound approaching 0.5 for
the competitive ratio of the greedy algorithm. This shows that for decomposable weights greedy’s
performance cannot be better than for general weights, where it is 0.5-competitive (Section 2).

1.2 Related work

Goel and Mehta [21] and Birnbaum and Mathieu [10] simplified the analysis of the Ranking algo-
rithm considerably. Devanur et al [15] recently gave an elegant randomized primal-dual interpreta-
tion of [26]; their framework also applies to the generalization to the vertex weighted setting by [1].
Haeupler et al [24] studied online weighted matching in the stochastic setting where vertices from
V2 are drawn from a known distribution. The stochastic setting had been previously studied in the
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context of unweighted bipartite matching in a sequence of papers [19, 28]. Recent work has also
studied the random arrival model (for unweighted matching) where the order of arrival of vertices
in V2 is assumed to be a random permutation: In this setting, Karande, at al [25] and Mahdian
and Yan [27] showed that the Ranking algorithm of [26] achieves a competitive ratio better than
1− 1/e. A couple of recent papers analyze the performance of a randomized greedy algorithm and
an analog of the Ranking algorithm for matching in general graphs [32, 22]. Another recent paper
introduces a stochastic model for online matching where the goal is to maximize the number of
successful assignments (where success is governed by a stochastic process) [30].

A related model allowing cancellation of previously accepted online nodes was studied in [13, 7, 4]
and optimal deterministic and randomized algorithms were given. In their setting the weight of an
edge depends only on the online node. Additionally in their model they decide in an online fashion
only which online nodes to accept, not how to match these nodes to offline nodes. If a previously
accepted node is later rejected, a non-negative cost is incurred. Since the actual matching is only
determined after all online nodes have been seen, their model is very different from ours: Even if
the cost of rejection of a previously accepted node is set to 0, the key difference is that they do not
commit to a matching at every step and the intended matching can change dramatically from step
to step. Thus, it does not solve the problem that we are studying.

A related problem that has been studied is online matching with preemption [29, 3, 16]. Here,
the edges of a graph arrive online and the algorithm is required to maintain a subset of edges
that form a matching. Previously selected edges can be rejected (preempted) in favor of newly
arrived edges. This problem differs from the problem we study in two ways: (1) the graph is not
necessarily bipartite, and (2) edges arrive one by one. In our (classic) case, vertices arrives online
and all incident edges to a newly arrived vertex v are revealed when v arrives.

Another generalization of online bipartite matching is the Adwords problem [31, 14]. In addition,
several online packing problems have been studied with applications to the Adwords and Display
Advertisement problem [11, 21, 2].

1.3 Notation and preliminaries

We consider the following variant of the online bipartite matching problem. The input is a complete
bipartite graphG = (V1∪V2, V1×V2) along with two weight functions s : V1 → R+ and w : V2 → R+.
The weight of each edge e = (u, v) is the product s(u) · w(v). At the beginning, only s is given
to the algorithm. Then, the vertices of V2 arrive one by one. When a new vertex v arrives, w(v)
is revealed and the algorithm has to match it to a vertex in V1. At the end, the reward of each
vertex u ∈ V1 is the maximum weight assigned to u times s(u). The goal of the algorithm is to
maximize the sum of the rewards. To simplify the presentation we will call vertices of V1 machines
and vertices of V2 jobs. The s-value of a machine u will be called the speed of the machines and the
w-value of a job v is called the size of the job. Thus, the goal of the online algorithm is to assign
jobs to machines. However, we are not studying the “classic” variant of the problem since we are
using a different optimization function, motivated by display advertisements.

2 Upper bound for the greedy algorithm
We begin by addressing an obvious question, which is how well a greedy approach would solve our
problem, and using the proof to provide some intuition for our algorithm in the next section. We
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analyze here the following simple greedy algorithm: When a job v arrives, the algorithm computes
for every machine u the difference between the weight of (u, v) and the weight (u, v′), where v′ is
the job currently assigned to u. If this difference is positive for at least one machine, the job is
assigned to a machine with maximum difference.

Theorem 1. The competitive ratio of the greedy algorithm is at most 1
2−ε for any ε > 0.

Proof. Consider the following instance. V1 consists of a vertex a with s(a) = 1 and t = 1/ε2
vertices b1, . . . , bt with s(bi) = ε/2 ∀i. V2 consists of the following vertices arriving in the same order
d1, . . . , d1+t where w(di) = (1− ε/2)−i. We will prove by induction that all vertices di are assigned
to a. When d1 arrives, nothing is assigned so it is assigned to a. Assume that all the first t vertices
are assigned to a when dt+1 arrives. The gain by assigning di+1 to a is (w(di+1) − w(di))s(a) =
ε(1− ε/2)−i−1/2. The gain by assigning di+1 to some bj is w(di+1)s(bj) = ε(1− ε/2)−i−1/2. Thus,
the algorithm can assign di+1 to a. The total reward of the algorithm is (1 − ε/2)−1−t. The
optimal solution is to assign d1+t to a and the rest to bi’s, getting (1− ε/2)−1−t + (1− ε/2)−t− 1 ≥
(2− ε)(1− ε/2)−1−t. Thus, the competitive ratio is at most 1

2−ε .

The instance used in the proof above suggests some of the complications an algorithm has to
deal with in the setting of decomposable weights: in order to have competitive ratio bounded away
from 0.5, an online algorithm must necessarily place some jobs on the slow machines. In fact it
is possible to design an algorithm with competitive ratio bounded away from 0.5 for the specific
set of machines used in this proof (for any sequence of jobs). The idea is to ensure that a job is
placed on the fast machine only if its size is larger than (1 + γ) times the size of the largest job
currently on the fast machine (for an appropriately chosen parameter γ). Such a strategy works for
any set of machines consisting of one fast machine and several slow machines of the same speed.
However, we do not know how to generalize this approach to an arbitrary set of machines. Still,
this strategy (i.e. ensuring that jobs placed on a machine increase in size geometrically) was one
of the motivations behind the design of the randomized online algorithm to be presented next.

3 Randomized algorithm
We now describe our randomized algorithm which uses a parameter c we will specify later: The
algorithm picks values xi ∈ (0, 1] uniformly and at random, independently for each machine i. Each
job of weight w considered by machine i is placed in the unique interval w ∈ (ck+xi , ck+1+xi ] where
k ranges over all integers. When a new job w arrives, the algorithm checks the machines in the
order of decreasing speed (with ties broken in an arbitrary but fixed way). For machine i it first
determines the unique interval into which w falls, which depends on its choice of xi. If the machine
currently does not have a job in this or a bigger interval (with larger k), w is assigned to i and the
algorithm stops, otherwise the algorithm checks the next machine.

The following function arises in our analysis:

Definition 2. Define h(c) = 1− 1
β
W

(
βeβ

c

)
where β = c ln(c)

c−1 − 1 and W () is the Lambert W function (i.e. inverse of f(x) = xex).

We will prove the following theorem:
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Theorem 3. For c ≥ e, the randomized algorithm has competitive ratio min
(

c−1
c ln(c) , h(c)

)
. In

particular, for c = 3.55829, the randomized algorithm has a competitive ratio 0.5664.

3.1 Analysis Outline

We briefly outline the analysis strategy before describing the details. An instance of the problem
consists of a set of jobs and a set of machines. The (offline) optimal solution to an instance is
obtained by ordering machines from fastest to slowest, ordering jobs from largest to smallest and
assigning the ith largest job to the ith fastest machine. Say the machines are numbered 1, 2, . . . n,
from fastest to slowest. Let OPTi denote the value of the optimal solution for the instance seen by
the machines from i onwards, i.e. the instance consisting of machines i, i+1, . . . n, and the set of jobs
passed by the (i − 1)st machine to the ith machine in the online algorithm. Then OPT1 = OPT ,
the value of the optimal solution for the original instance. Even though we defined OPTi to be
the value of the optimal solution, we will sometimes use OPTi to denote the optimal assignment,
although the meaning will be clear from context. Define OPTn+1 to be 0. For 2 ≤ i ≤ n, OPTi
is a random variable that depends on the random values xi′ picked by the algorithm for i′ < i. In
the analysis, we will define random variables ∆i such that ∆i ≥ OPTi − OPTi+1 (see Lemma 4
later). Let Ai denote the profit of the online algorithm derived from machine i (i.e. the size of the
largest job assigned to machine i times the speed of machine i). Let A =

∑n
i=1Ai be the value of

the solution produced by the online algorithm. We will prove that for 1 ≤ i ≤ n,

E[Ai] ≥ αE[∆i] ≥ α(E[OPTi]− E[OPTi+1]) (1)

for a suitable choice of α > 0.5. The expectations in (1) are taken over the random choices of
machine 1, . . . i. Note that OPTi − OPTi+1 is a random variable, but the sum of these quantities
for 1 ≤ i ≤ n is OPT1−OPTn+1 = OPT , a deterministic quantity. Summing up (1) over i = 1, . . . n,
we get E[A] ≥ α ·OPT , proving that the algorithm gives an α approximation.

Inequality (1) applies to a recursive application of the algorithm to the subinstance consisting
of machines i, . . . n and the jobs passed from machine i − 1 to machine i. The subinstance is a
function of the random choices made by the first i−1 machines. We will prove that for any instance
of the random choices made by the first i− 1 machines,

E[Ai] ≥ αE[∆i]. (2)

Here, the expectation is taken over the random choice of machine i. (2) immediately implies (1)
by taking expectation over the random choices made by the first i− 1 machines.

We need to establish (2). In fact, it suffices to do this for i = 1 and the proof applies to all values
of i since (2) is a statement about a recursive application of the algorithm. Wlog, we normalize
so that the fastest machine has speed 1 and the largest job is c. Note that this is done by simply
multiplying all machine speeds by a suitable factor and all job sizes by a suitable factor – both the
LHS and the RHS of (2) are scaled by the same quantity.

In order to compare ∆1 with the profit of the algorithm, we decompose the instance into a
convex combination of simpler threshold instances in Lemma 4. Here, the speeds are either all the
same or take only two different values, 0 and 1. It suffices to compare the profit of the algorithm
to OPT on such threshold instances.

Intuitively, if there are so few fast machines that even a relatively large job (job of weight at
least 1) got assigned to a slow machine in OPT, then the original instance is mostly comparable to
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the threshold instance where only a few machines have speed 1 and the rest have speed 0. Even
if the fastest machine gets jobs assigned to machines of speed 0 in OPT, this does not affect the
profit of the algorithm relative to OPT because OPT does not profit from these jobs either. Thus
we only care about jobs of weight at least 1. Because a single machine can get at most two jobs of
value in the range [1, c], handling this case only requires analyzing at most two jobs. The proof for
this case is contained in Lemma 7.

On the other hand, if there are a lot of fast machines so that all large jobs are assigned to
fast machines in OPT, then the original instance is comparable to the threshold instance where
all machines have speed 1. In this case, the fastest machine can get assigned many jobs that all
contribute to OPT. However, because all speeds are the same, we can deduce the worst possible
sequence of jobs: after the first few jobs, all other jobs have weights forming a geometric sequence.
The rest of the proof is to analyze the algorithm on this specific sequence. The detailed proof is
contained in Lemma 9.

The proofs of both Lemmata 7 and 9 use the decomposable structure of the edge weights.

3.2 Analysis Details

Recall that OPT1 is the value of the optimal solution for the instance, and OPT2 is the value of the
optimal solution for the subinstance seen by machine 2 onwards. Assume wlog that all job sizes are
distinct (by perturbing job sizes infinitesimally). For y ≤ c, let j(y) be the size of the largest job
≤ y or 0, if no such job exists. Let s(y) be the speed of the machine in the optimal solution that
j(y) is assigned to or 0 if j(y) = 0. If there is a job of size y then s(y) is the speed of the machine in
the optimal solution that this job is assigned to. Note that s(y) ∈ [0, 1] is monotone increasing with
s(c) = 1. We refer to the function s as the speed profile. Note that s is not a random variable. Let
the assignment sequence w = (w,w1, w2, . . .) denote the set of jobs assigned to the fastest machine
by the algorithm where w > w1 > w2 > . . .. Let max(w) denote the maximum element in the
sequence w, i.e. max(w) = w. In Lemma 3, we bound OPT1 − OPT2 by a function that depends
only on w, s, and c. Such a bound is possible because of the fact that any job can be assigned to
any machine, i.e. the graph is a complete graph. The value we take for the aforementioned random
variable ∆1 turns out to be exactly this bound.

Lemma 4. OPT1 −OPT2 ≤ c− (c− w)s(w) +
∑
k≥1wk · s(wk)

Proof. Let I1, I2 be the instances corresponding to OPT1 and OPT2. I2 is obtained from I1 by
removing the fastest machine and the set of jobs that are assigned to the fastest machine by the
algorithm. Let us consider changing I1 to I2 in two steps: (1) Remove the fastest machine and the
largest job w assigned by the algorithm to the fastest machine. (2) Remove the jobs w1, w2, . . ..
For each step, we will bound the change in the value of the optimal solution resulting in a feasible
solution for I2 and computing its value – this will be a lower bound for OPT2.

First we analyze Step 1: OPT1 assigns the largest job c to the fastest machine, contributing c
to its value. The algorithm assigns w to the fastest machine instead of c. In OPT1, w was assigned
to a machine of speed s(w). When we remove w and the fastest machine from I1, one possible
assignment to the resulting instance is obtained by placing c on the machine of speed s(w). The
value of the resulting solution is lower by exactly (c+ w · s(w))− c · s(w) = c− (c− w)s(w).

Next, we analyze Step 2: Jobs w1, w2, . . . were assigned to machines of speeds s(w1), s(w2), . . .
in OPT1. When we remove jobs w1, w2, . . ., one feasible assignment for the resulting instance is
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simply not to assign any jobs to the machines s(w1), s(w2), . . ., and keep all other assignments
unchanged. The value of the solution drops by exactly

∑
k≥1wk · s(wk).

Thus we exhibited a feasible solution to instance I2 of value V where

OPT1 − V = c− (c− w)s(w) +
∑
k≥1

wk · s(wk).

But OPT2 ≥ V . Hence, the lemma follows.

We define the random variable ∆1, a function of the assignment sequence w and the speed
profile s, to be

∆1(w, s) = c− (c− w)s(w) +
∑
k≥1

wk · s(wk).

As defined, ∆1(w, s) ≥ OPT1−OPT2. We note that even though OPT1 and OPT2 are functions of
all the jobs in the instance, ∆1 only depends on the subset of jobs assigned to the fastest machine
by the algorithm. Our goal is to show E[A1] = E[max(w)] ≥ αE[∆1].

First, we argue that it suffices to restrict our analysis to a simple set of step function speed
profiles st, 0 ≤ t ≤ 1: For t ∈ (0, 1], st(y) = 1 for y ∈ [ct, c] and st(y) = 0 for y < ct. For t = 0,
s0(y) = 1 for all y ≤ c.

Lemma 5. Suppose that for t = 0 and for all t ∈ (0, 1] such that there exists a job of weight ct, we
have

E[max(w)] ≥ αE[∆1(w, st)] (3)

Then, E[max(w)] ≥ α(E[OPT1]− E[OPT2]).

Proof. Consider function s′(y) defined as follows: s′(y) = s(y) for y ∈ [1, c] and s′(y) = s(1) for
y < 1. Note that s′ is not a random variable. We claim that ∆1(w, s′) ≥ ∆1(w, s). Since the largest
job assigned to the fastest machine is w ∈ [1, c], the s(w) term is unchanged in going from ∆1(w, s)
to ∆1(w, s′). Further, the s(wk) terms in (w, s′) are ≥ the corresponding terms in ∆1(w, s).

It is easy to see that s′ is a convex combination of the step functions st, 0 ≤ t ≤ 1. More
specifically, s′ =

∑
t ptst for suitably chosen coefficients pt such that (a)

∑
t pt = 1 and (b) pt = 0

if t > 0 and no job with weight ct exists.
For a fixed assignment sequence w, note that ∆1(w, s′) = ∆1(w,

∑
t ptst) =

∑
t pt ·∆1(w, st).

Hence, for a distribution over assignment sequences w,

E[∆1(w, s′)] = E[OPT1(w,
∑
t

ptst)] =
∑
t

pt · E[∆1(w, st)]

Now, suppose that for all 0 < t ≤ 1 such that there exists a job of weight ct and for t = 0

E[max(w)] ≥ αE[∆1(w, st)].

This implies that

E[max(w)] ≥ α
∑
t

pt · E[∆1(w, st)] = αE[∆1(w, s′)]

≥ αE[∆1(w, s)] ≥ α(E[OPT1]− E[OPT2])
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Note that since we scaled job sizes, the thresholds (i.e interval boundaries) ck+x1 should also
be scaled by the same quantity (say γ). After scaling, let x ∈ (0, 1] be such that cx is the unique
threshold from the set {γck+x1 , k integer} in (1, c]. Since x1 is uniformly distributed in (0, 1], x is
also uniformly distributed in (0, 1]. Having defined x thus, the interval boundaries picked by the
algorithm for the fastest machine are cx+k for integers k.

We prove (3) for α = min
(

c−1
c ln(c) , h(c)

)
in two separate lemmata, one for the case t > 0

(Lemma 7) and the other for the case t = 0 (Lemma 9). Recall that the expression for ∆1 only
depends on the subset of jobs assigned to the fastest machine. We call a job a local maximum if it
is larger than all jobs preceding it. Since the algorithm assigns a new job to the fastest machine if
and only if it falls in a larger interval than the current largest job, it follows that any job assigned
to the fastest machine must be a local maximum.

Define mS(y) to be the minimum job in the sequence of all local maxima in the range (y, cy],
i.e., the first job larger than y and at most cy, if such a job exists and 0 otherwise. We use mS(y)
in two ways. (1) We define u0 = mS(1). Note that u0 is not a random variable. We use u0 in
Lemma 7 to prove the desired statement for t > 0. Specifically, we use u0 to compute (i) a lower
bound for E[w] as a function of u0 (and not of any other jobs) and (ii) an upper bound for E[∆1]
as a function of u0. Combining (i) and (ii) we prove that the desired inequality holds for all u0. (2)
In Lemma 9 we bound E[

∑
k≥1wk] by a sum of mS(y) over suitable values of y. This simplifies the

analysis since the elements in the subsequence of all local maxima are not random variables, while
the values in w are random variables.

We first prove some simple properties of u0 that we will use:

Claim 6. (1) u0 ≤ w and (2) u0 ≥ w1.

Proof. u0 ≤ w as u0 is the minimum element in the sequence of all local maxima in (1, c] and w is
the element from the interval (1, c] picked by the algorithm.

w1 is the minimum element in the sequence of local maxima in the range (cx−k−1, cx−k] for
x ∈ (0, 1] and k a non-negative integer. Either u0 ≥ cx−k ≥ w1, or u0 also falls into (cx−k−1, cx−k]
and u0 ≥ w1 follows from the fact that w1 is the smallest local maximum in this range, while u0 is
an arbitrary local maximum in this range.

The next lemmata conclude our algorithm analysis.

Lemma 7. For c ≥ e, t ∈ (0, 1] such that there exists a job of weight ct, and α = min
(

c−1
c ln(c) , h(c)

)
,

we have
αE[∆1(w, st)] ≤ E[max(w)]

Proof. Because there is a job with weight ct, it must be the case that u0 ≤ ct. As w is the job
placed by the algorithm on the fastest machine, w is in the same interval as c for any choice of
the random value x ∈ (0, 1]. Thus, w ≥ cx. As c ≥ w > cw2 it follows that wk < 1 ≤ ct for all
k > 1 and, thus, st(wk) = 0 for all k > 1. Hence

∑
k>1wk · st(wk) = 0. To analyze E[∆1] we have

to consider two cases, depending on whether u0 = ct (and hence w1 might contribute to E[∆1]) or
whether u0 < ct (and, thus, s(w1) = 0 and w1 does not contribute to E[∆1]).

Case 1: u0 = ct. Since w ≥ u0 it holds that st(w) = 1 for all choices of x. Thus we have

E[c− (c− w)st(w)] = E[w]

9



As discussed above,
∑
k>1wk ·st(wk) = 0 and, thus, the only contribution to E[

∑
k≥1wk ·st(wk)]

is from w1. Additionally st(w1) = 1 only if w1 = u0 = ct, and this only happens when x is chosen
such that x ≥ t. Thus,

E[
∑
k≥1

wk · st(wk)] ≤ (1− t)ct

Note that w ≥ max(cx, ct). Thus we have

E[w] ≥
∫ 1

t
cxdx+

∫ t

0
ctdx ≥ c− ct

ln c + tct

In this case, we want to show
αE[∆1] ≤ E[w].

This holds if
α

(
ct + c− ct

ln c

)
≤ c− ct

ln c + tct

Since u0 = ct, this inequality follows for all α ≤ h(c) from Inequality 5 below.
Case 2: u0 < ct. As wk ≤ u0 for k ≥ 1, in this case, for all choices of x, all speeds st(w1) =

st(w2) = . . . = 0 so E[
∑
k≥1wk · st(wk)] = 0. Thus, it suffices to show that E[α(c− (c−w)st(w))] ≤

E[w], or equivalently that αE[c(1− st(w))] ≤ E[w − αwst(w)].
Let cz be the greatest local maximum that is smaller than ct. If x > z, then w ≥ ct and, thus,

st(w) = 1. If x ≤ z, then w is the first local maximum greater than cx, while cz is a local maximum
greater than cx. Thus, it is either equal to w or a later local maximum, which by the definition of
local maximum implies that it is larger than w. Hence, w ≤ cz < ct and thus, st(w) = 0. Therefore,

E[c(1− st(w))] ≤ c
∫ z

0
1dx = cz

We also have

E[(1− αst(w))w] ≥ (1− α)
∫ 1

t
cxdx+ (1− α)

∫ t

z
ctdx+

∫ z

logc u0
cxdx+

∫ logc u0

0
u0dx

= (1− α)c− c
t

ln c + (1− α)c
t(t− z)

ln c + cz − u0
ln c + u0 logc u0

=: V (t, u0)

Thus it suffices to show that αE[c(1 − st(w))] ≤ V (t, u0) ∀z ∈ [0, 1], t ∈ [z, 1], u0 ∈ [1, cz]. For
any fixed t and z, the value of u0 minimizing V (t, u0) is u0 = 1. After fixing u0 = 1, we have

V (t, 1) = (1− α)c− c
t

ln c + (1− α)c
t(t− z)

ln c + cz − 1
ln c

Therefore,
∂V (t, 1)
∂t

= (1− α)c
t + tct/ ln c− ct/ ln c− zct/ ln c

ln c
Notice that ∂V (t, 1)/∂t is non-negative for all t ∈ [z, 1] if c ≥ e. Therefore, for any c ≥ e, it suffices
to consider only u0 = 1, t = z and prove that

α

(
ct+ c− ct

ln c

)
≤ c− 1

ln c

for α as large as possible. The following claim shows that this inequality holds for α ≤ c−1
c ln c .
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Claim 8. For c ≥ e,
c−1
ln c

ct+ c−ct
ln c
≥ c− 1
c ln c ∀t ∈ [0, 1]

Proof. Consider f(t) = ct + c−ct
ln c . We have f ′(t) = c − ct

ln2 c
≥ 0 ∀t ∈ [0, 1]. Thus, the maximum

f(t) is achieved when t = 1 and f(1) = c. Therefore,

c−1
ln c

ct+ c−ct
ln c
≥ c− 1
c ln c ∀t ∈ [0, 1]

Thus, altogether the lemma holds for α = min
(

c−1
c ln(c) , h(c)

)
.

Lemma 9. For s0(x) ≡ 1 and α = h(c), we have E[max(w)] ≥ αE[∆1(w, s0)].

Proof. Since s0(w) = 1 for all choices of x, it holds that E[c− (c−w)st(w)] = E[w]. Thus we need
to show αE[

∑
k≥1wk] ≤ (1 − α)E[w]. As w ≥ max(u0, c

x) we have the following lower bound for
E[w]:

E[w] ≥
∫ 1

logc u0
cxdx+

∫ logc u0

0
u0dx = c− u0

ln c + u0 logc u0

Now, to prove the inequality, we only need to bound from above E[
∑
k≥1wk] for a fixed u0 ∈

[1, c]. We can write E[
∑
k≥1wk] in terms of mS(x) as follows.

E[
∑
k≥1

wk] ≤
∞∑
i=1

∫ 1

0
mS(c−i+x)dx =

∫ 0

−∞
mS(cx)dx =: BS

The following claims analyze the structure of the jobs smaller than u0 in the worst case, i.e., if
S maximizes BS .

Claim 10. For any sequence S of all local maxima where there are 2 consecutive local maxima
u0 ≥ w′u ≥ w′u+1 with w′u > cw′u+1 there is a sequence S′ with BS at least as large and no such pair
of consecutive local maxima.

Proof. Add a new local maximum of weight w′u/c to S to form S′. Notice that mS(x) ≤ mS′(x) ∀x.
This argument can be repeated until there is no pair of consecutive local maxima with ratio greater
than c.

Claim 11. Consider a sequence of all local maxima S with 3 consecutive local maxima u0 ≥ w′u ≥
w′u+1 ≥ w′u+2 where w′u ≤ cw′u+2. After removing w′u+1, the resulting sequence S′ has BS′ ≥ BS.

Proof. For all y 6∈ [w′u+2, w
′
u], we have mS′(y) = mS(y). For all y ∈ [w′u+2, w

′
u], we have mS′(y) ≥

mS(y). Thus, BS′ ≥ BS .
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Claim 12. Consider a sequence of all local maxima S containing w′u > w′u+1 > · · · > w′v satisfying
(1) u0 ≥ w′u
(2) w′u+i = c1−iw′u+1 ∀1 ≤ i < v − u
(3) w′u/w′u+1 ≤ c, and
(4) w′v−1/w

′
v ≤ c

Then either one of the following conditions applies
(1) w′u/w′u+1 = c, or
(2) w′v−1/w

′
v = c, or

there is a sequence S′ with at most the same number of local maxima and BS′ > BS.

Proof. Assume that none of the conditions applies. We will show it is possible to move the jobs to
form a sequence S′ with BS′ ≥ BS .

We consider the effect of moving z = w′u+1 while maintaining the relation w′u+j = c1−jw′u+1 ∀1 ≤
j < v − u. We have

BS =
∫ logc w′v

−∞
mS(x)dx+

∫ 1

logc w′u
mS(x)dx

+
∫ logc w′u

logc w′v
mS(x)dx

= T +
∫ logc w′u

logc z
w′udx+

v−u−3∑
j=0

∫ logc c−jz

logc c−j−1z
c−jzdx

+
∫ logc cu+2−vz

logc w′v
cu+2−vzdx

where T is a function that does not depend on z. Furthermore, we have

∂BS
∂z

= −w′u
1

z ln c + (1− cu+2−v)
1− c−1

+ cu+2−v(u+ 2− v + 1 + ln z
ln c − lnw′v

ln c )

Notice that ∂BS/∂z is monotonically increasing so the maximum of BS is achieved at an extreme
point, which is either w′u, cv−u−2w′v, w

′
u/c, c

v−u−1w′v. When z = w′u or z = cv−u−2w′v, there are 2
jobs of the same weight and we can remove one without changing BS . If z = w′u/c, the first
condition in the lemma holds. If z = cv−u−1w′v, then the second condition (wv−1/wv = c) holds as
z = cv−uwv−1 by the assumptions of the lemma. Thus, the conclusion follows from an inductive
argument on the number of jobs.

By the above claims, the only sequences we need to consider to prove Lemma 9 are of the form

u0, u0/c, . . . , u0/c
m, v/cm+1, v/cm+2, . . .

where u0 ≤ v, i.e., all pairs of consecutive jobs have ratio exactly c except for possibly one pair.
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Thus it holds that

BS =
∫ 1

logc u0
u0dx+

m∑
i=1

∫ 1

0
u0c
−idx

+
∫ logc u0

logc v
u0c
−mdx+

∞∑
i=m+1

∫ 1

0
vc−idx

= (1− logc u0)u0 + (1− c−m)u0
c− 1

+ u0c
−m logc(u0/v) + vc−m

c− 1

Notice that ∂BS
∂v = −u0c−m

v ln c + c−m

c−1 is monotonically increasing so the choice of v maximizing BS is
either v = u0 or v = c. The following lemma proves that the value of BS when v = u0 is larger
than the value of BS when v = c. Thus BS is maximized when v = u0, i.e., all pairs of consecutive
jobs less than u0 have ratio exactly c.

Claim 13.
u0
c− 1 ≥ u0 logc(u0/c) + c

c− 1 ∀u0 ∈ [1, c]

Proof. Let f(x) = x
c−1 − x logc(x/c) + c

c−1 . We have f(1) ≥ 0 and f(c) ≥ 0. Also notice that

f ′(x) = 1
c− 1 −

ln x+ 1
ln c

is monotonically decreasing in x so the minimum of f(x) is achieved at the extreme points. In
other words, f(x) ≥ 0 ∀x ∈ [1, c].

It follows that BS = (1− logc u0)u0 + u0
c−1 . Thus, we need to show for α = h(c)

α

(
(1− logc u0)u0 + u0

c− 1

)
≤ (1− α)

(
c− u0

ln c + u0 logc u0

)
(4)

or equivalently
α

(
u0c

c− 1 + c− u0
ln c

)
≤ c− u0 + u0 ln u0

ln c (5)

Let β = c ln c
c−1 − 1. We can rewrite the above inequality as

α(βu0 + c) ≤ c− u0 + u0 ln u0

Claim 14. For α = h(c),
α(βu0 + c) ≤ c− u0 + u0 ln u0

Proof. Let f(u0) = c− u0 + u0 ln u0 and g(u0) = βu0 + c. We need to show that f(u0)/g(u0) ≥ α.
Note that (f(u0)/g(u0))′ = 0 if and only if

0 = f ′(u0)g(u0)− g′(u0)f(u0)
= ln u0(βu0 + c)− β(c− u0 + u0 ln u0)
= c ln u0 − βc+ βu0
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The above expression is monotonically increasing in u0. We show next that it has a root. Thus,
f(u0)/g(u0) is minimized at this root. Let y = u0β/c. The above equation is equivalent to

β + ln(β/c) = ln y + y

The solution of this equation is y = W
(
βeβ

c

)
, where W is the Lambert W function. Thus, u0 =

c
βW

(
βeβ

c

)
. Substituting the identity ln u0 = β − βu0/c into f(u0)/g(u0), we get

f(u0)
g(u0) = c− u0 + u0(β − βu0/c)

βu0 + c
= 1− u0

c

= 1− 1
β
W

(
βeβ

c

)
= h(c)

Thus, inequality (5) holds for α = h(c). This completes the proof of Lemma 9.

4 Upper bound for deterministic algorithms
To prove an upper bound of a, we construct an instance such that any deterministic algorithm
has competitive ratio at most a for some prefix of the request sequence. The instance has one fast
machine of speed r > 1 and n slow machines of speed 1. The request sequence has non-decreasing
job sizes satisfying a certain oscillatory recurrence relation.

Theorem 15. The competitive ratio of any deterministic algorithm is at most (
√

5 − 1)/2 + ε ≈
0.618034 + ε for any ε > 0.

Proof. Our construction to establish this bound uses parameters r > 1 and a < 1 that we will
fix later. We construct an instance such that any deterministic algorithm has competitive ratio at
most a for some prefix of the request sequence. The instance has one fast machine of speed r > 1
and n slow machines of speed 1. The request sequence has non-decreasing job sizes: 1 = w0 ≤
w1 ≤ . . . ≤ wn−1 ≤ wn.

The instance will satisfy the following properties:

a · r ≥ 1 (6)

∀k = 1 . . . n, a · (r · wk +
i−1∑
j=0

wj) ≥ r · wk−1 + wk (7)

a · (r · wn +
n−1∑
j=0

wj) ≥ r · wn (8)

Lemma 16. Properties (6) - (8) imply that any deterministic algorithm has competitive ratio at
most a.

Proof. Consider the action of a deterministic algorithm A on the instance we construct. If w0 is
placed on a slow machine, (6) implies that the competitive ratio is at most a. For k = 1, . . . n, note
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that the optimum value for the prefix of the request sequence ending at wk is r ·wk +
∑i−1
j=0wj . We

consider two cases:
Case 1: Suppose A places some job on a slow machine. Let k be the first job placed on a slow
machine. The the value of A for the prefix ending at wi is r ·wk−1 +wk. Now (7) implies that the
competitive ratio is at most a.
Case 2: All jobs are placed on the fast machine. Then, once the entire sequence is processed upto
wn, (8) implies that the competitive ratio is at most a.

In order to produce the instance, we focus on satisfying the following properties instead, which
imply the previous properties (6) - (8).

a · r ≥ 1 (9)
a · (r · w1 + w0) = r · w0 + w1 (10)

∀i = 2 . . . n, a · (r · wk − r · wk−1+wk−1)
= r · wk−1 + wk − (r · wk−2 + wk−1) (11)

r · wn−1 + wn ≥ r · wn (12)
Note that (10) and (11) together imply (7) with equality. Further, (12) and (11) for k = n

implies (8).
Next, we rewrite (11) as a recurrence relation for the sequence {wk}.

(a · r − 1)wk − (a+ 1)(r − 1)wk−1 + r · wk−2 = 0 (13)
Note that the initial conditions are w0 = 1 and from (10), w1 = (r − a)/(a · r − 1).

Let δ > 0 be a sufficiently small constant.

Lemma 17.

For a = 1 +
√

5 + 12δ + 4δ2

3 +
√

5 + 2δ
and r = 1 +

√
5 + 12δ + 4δ2

3−
√

5 + 2δ
,

the roots of the characteristic equation of recurrence relation (13) are 1 +
√

5
2 ± i

√
δ

Proof. We will choose parameters a, r such that the roots of the characteristic equation of the
recurrence relation (13) are of the form z ± i

√
δ for some small δ. Note that i here is the complex

square root of −1. The reason for this choice of roots will become clear later.
First, we derive relationships between a, r and z, δ. Using the standard formula for the roots of

a quadratic equation, we get
(a+ 1)(r − 1)

2(r · a− 1) = z (14)((a+ 1)(r − 1)
2(r · a− 1)

)2
− r

r · a− 1 = −δ (15)

(15)⇒ r

r · a− 1 = z2 + δ (16)

(14)⇒ r − a
r · a− 1 = 2z − 1 (17)

(16)− (17)⇒ a

r · a− 1 = (z − 1)2 + δ (18)
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An easy calculation shows that the system of equations
r

r · a− 1 = x,
a

r · a− 1 = y

has the solution a = 1 +
√

1 + 4xy
2x , r = 1 +

√
1 + 4xy
2y . Substituting x = z2+δ and y = (z−1)2+δ,

we get

a = 1 +
√

1 + 4(z2 + δ)((z − 1)2 + δ)
2(z2 + δ)

r = 1 +
√

1 + 4(z2 + δ)((z − 1)2 + δ)
2((z − 1)2 + δ)

Recall that a is the upper bound on the competitive ratio that we establish and we would like to
minimize a to get the best bound possible. In fact, a is minimized for z = (1 +

√
5)/2 and δ = 0 for

which we get a = (
√

5− 1)/2. In fact, our construction will need δ > 0, but we fix z = (1 +
√

5)/2
to minimize the upper bound a we obtain from this argument. For this value of z we get

a = 1 +
√

5 + 12δ + 4δ2

3 +
√

5 + 2δ
r = 1 +

√
5 + 12δ + 4δ2

3−
√

5 + 2δ
.

Note that the upper bound a on the competitive ratio is of the form (
√

5 − 1)/2 + ε with ε a
suitable function of δ (and ε→ 0 as δ → 0).

Claim 18. For a and r chosen as in Lemma 17, the term wk of the solution to the recurrence
relation is given by

wk =
(

1
2 −
√

5− 1
4
√
δ
· i
)(

1 +
√

5
2 + i

√
δ

)k

+
(

1
2 +
√

5− 1
4
√
δ
· i
)(

1 +
√

5
2 − i

√
δ

)k
(19)

Proof. A general term wk of the sequence is given by the following expression:

(b+ c · i)
(

1 +
√

5
2 + i

√
δ

)k
+ (d+ e · i)

(
1 +
√

5
2 − i

√
δ

)k
where b, c, d, e are real numbers to be determined. Recall the initial conditions w0 = 1 and w1 =
(r − a)/(r · a− 1) = 2z − 1 =

√
5. This gives the following equations:

(b+ c · i) · 1 + (d+ e · i) · 1 = 1

(b+ c · i)
(

1 +
√

5
2 + i

√
δ

)

+(d+ e · i)
(

1 +
√

5
2 − i

√
δ

)
=
√

5

Solving these, we get b = d = 1/2, c = −(
√

5− 1)/4
√
δ and e = (

√
5− 1)/4

√
δ. Hence the term wk

of the sequence is given by
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(
1
2 −
√

5− 1
4
√
δ
· i
)(

1 +
√

5
2 + i

√
δ

)k

+
(

1
2 +
√

5− 1
4
√
δ
· i
)(

1 +
√

5
2 − i

√
δ

)k
Lemma 19. For a and r chosen as in Lemma 17 and δ > 0 sufficiently small, the solution wk of
the recurrence relation satisfies the conditions (9)-(12).

Proof. The choice of recurrence relation (13) ensures that (11) is satisfied, and the initial condition
for w1 ensures that (10) is satisfied. For δ = 0, a · r = (6 + 2

√
5)/4. Hence for δ sufficiently small,

a · r ≥ 1 and hence (9) is satisfied.
Rewriting condition (12) , we need to show that wn/wn−1 ≤ r/(r−1). Note that r = 1+

√
5

3−
√

5 +O(δ)
and r/(r − 1) ≥ (3 +

√
5)/4−O(δ) ≥ 1.309. Examining the solution (19) of the recurrence, we see

that wk is twice the real part of the first term in (19). In other words, wk is of the form

wk = 2<
(
(r1e

iΦ1)(r2e
iΦ2)k

)
(20)

where Φ1 = tan−1
(
−
√

5− 1
2
√
δ

)
, Φ2 = tan−1

(
2
√
δ

1 +
√

5

)
, and r2 = 1+

√
5

2 +O(δ). As δ → 0,

Φ1 = −π2 + 2
√
δ√

5− 1
−O(δ3/2)

and Φ2 = 2
√
δ

1 +
√

5
− E for E = O(δ3/2). Note that

wk = 2r1(r2)kcos(Φ1 + kΦ2) (21)

= 2r1

(
1 +
√

5
2 +O(δ)

)k

cos
(
−π2 + 2

√
δ√

5− 1
+ k

2
√
δ

1 +
√

5
−O(δ3/2)− kE

)
(22)

wn
wn−1

=
(

1 +
√

5
2 +O(δ)

)
cos

(
−π

2 + 2
√
δ√

5−1 + n 2
√
δ

1+
√

5 −O(δ3/2)− nE
)

cos
(
−π

2 + 2
√
δ√

5−1 + (n− 1) 2
√
δ

1+
√

5 −O(δ3/2)− (n− 1)E
) (23)

Note that we hope to show wn/wn−1 ≤ 1.309 ≤ (3 +
√

5)/4−O(δ). The term (1 +
√

5)/2 +O(δ) <
1.619, so it is critical that the ratio of cosines be small enough to give us the condition we want
(but not too small to ensure that wn/wn−1 ≥ 1).

First we show that the smallest ratio of consecutive terms is wn/wn−1. Consider
f(x) = cos(x+Φ2)

cos(x) = cos(Φ2)− tan(x) sin(Φ2).
We have f ′(x) = − sin(Φ2)

cos2(x) < 0 so the ratio gets smaller as n increases, as long as Φ1+(n−1)Φ2 < π/2.
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Next we show there exists n such that
13/20 ≤ cos(Φ1+nΦ2)

cos(Φ1+(n−1)Φ2) ≤ 3/4. For n = 1, the ratio is greater than 1 for sufficiently small
δ. For the smallest n such that Φ1 + nΦ2 ≥ π/2, the ratio is smaller than 0. Furthermore, if

cos(Φ1+nΦ2)
cos(Φ1+(n−1)Φ2) > 3/4 then

cos(Φ1 + (n+ 1)Φ2)
cos(Φ1 + nΦ2)

= 2 cos(Φ1 + nΦ2) cos(Φ2)− cos(Φ1 + (n− 1)Φ2)
cos(Φ1 + nΦ2)

≥ 2 cos(Φ2)− 4
3 ≥ 13/20 if cos(Φ2) ≥ 119

120

This is true for sufficiently small δ.

5 Upper bound for randomized algorithms
To establish the bound for randomized algorithms, we use Yao’s principle and show an upper bound
on the expected competitive ratio of any deterministic algorithm on a distribution of instances.
The construction uses one fast machine of speed 1 and n slow machines of speed 1/4. The request
sequence has non-decreasing sizes 2i. The prefix of this sequence ending with size 2i is presented
to the algorithm with probability c/2i, where c is a normalizing constant. We show that the best
algorithm for this sequence achieves at most cn + 1 while the optimal algorithm achieves roughly
5nc/4.

Theorem 20. The competitive ratio of any randomized algorithm against an oblivious adversary
is at most 0.8 + ε for any ε > 0.

Proof. In order to establish the bound for randomized algorithms, we use Yao’s principle and show
an upper bound on the expected competitive ratio of any deterministic algorithm on a distribution
of instances. The construction uses a set of machines with one fast machine of speed 1 and n slow
machines of speed 1/4. The request sequence has non-decreasing sizes wi = 2i for i = 1, . . . , n.
Our construction uses a probability distribution over prefixes of this sequence: the prefix ending
at wi is presented to the algorithm with probability pi = c/2i, where the normalizing constant
c = 1/(1− 1/2n).

Let OPTi denote the optimal solution for the length i prefix of the input. It is easy to see
that OPTi places wi on the fastest machine and jobs w1, . . . , wi−1 on the slow machines. Hence
OPTi = 2i+(2i−1)/4 = (5/4)2i−1/4. We will compute the expected value of the optimal solution
for the distribution on inputs specified above.

n∑
i=1

c

2iOPTi = c
n∑
i=1

(5/4)2i − 1/4
2i = c

n∑
i=1

5
4 −

1
4 · 2i

=
(

1− 1
2n
)−1 (5n

4 −
1
4(1− 1/2n)

)
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Next we compute the expected value of the best deterministic algorithm on this distribution.
Notice that for the setting we specified, a deterministic algorithm is completely specified by n
choices of whether to put wi on the fast machine or to put it on an unoccupied slow machine. Let
ci be the indicator variable of whether the algorithm puts wi on the fast machine. Let a1 ≤ · · · ≤ ak
be the indices of the jobs the algorithm puts on the fast machine. Let mi be the maximum al such
that al ≤ i. In other words, mi is the index of the largest job on the fastest machine if the sequence
of jobs ends at the ith job. For notational convenience, assume that we already put a job of size
w0 = 0 on the fast machine and a0 = 0. The expected value of the algorithm is

n∑
i=1

pi

wmi +
∑

j:j 6∈{a1,··· ,ak}∧j≤i

wj
4


=

n∑
i=1

pi

 ∑
j:aj≤i

(waj − waj−1) +
∑

j: c̄j∧j≤i

wj
4


=

n∑
j=1

(
cj(wj − wmj−1) + (1− cj)

wj
4

)∑
i≥j

pi

=
n∑
j=1

xj

where xj =
(
cj(wj − wmj−1) + (1− cj)wj4

)∑
i≥j pi. Let f(t, j) be the maximum value of

∑t
l=1 xl

over all choices of c1, · · · , ct with the restriction that mt = j. First, if j < t then cj+1 = · · · = ct = 0
and we have

f(t, j) = f(t− 1, j) + wt
4
∑
i≥t

pi ≤ f(t− 1, j) + c

2 (24)

Next, if j = t then

f(t, t) = max
mt−1

f(t− 1,mt−1) + (wt − wmt−1)
∑
i≥t

pi


≤ max

mt−1

(
f(mt−1,mt−1) + (wt − wmt−1)2c

2t

+(t− 1−mt−1)c
2

)
(25)

The above inequality follows from
∑
i≥j pi ≤ 2c

2j and Equation 24.
We now prove by induction that f(i, i) ≤ ci + 1. The base cases f(0, 0) = 0, f(1, 1) = 2 and

f(2, 2) = 4− c are obvious. Assume that the claim holds up to i = t−1 and we want to prove it for
i = t. Consider 3 cases for mt−1. First, if mt−1 = t−1 then f(t, t) = f(t−1, t−1)+(2t−2t−1)2c

2t ≤
c(t−1)+1+c = ct+1. Next, ifmt−1 = t−2 then f(t, t) = f(t−2, t−2)+(2t−2t−2)2c

2t +c/2 ≤ ct+1.
Lastly, if mt−1 ≤ t− 3 then

f(t, t) ≤ f(mt−1,mt−1) + wt
2c
2t + (t− 1−mt−1)c/2

≤ mt−1c+ 1 + 2c+ (t− 1−mt−1)c/2 ≤ tc+ 1
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Thus, we have proved the inductive case. By Equation 24 and the fact that f(i, i) ≤ ci+1, we have
f(n, j) ≤ cn+1 ∀j. However, maxj f(n, j) is exactly the expected value of the best algorithm so the
competitive ratio of any randomized algorithm on the specified instance is at most cn+1

5nc/4−1/4 → 4/5
as n goes to infinity.
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