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Analytic functions are I-density continuous

Krzysztof Ciesielski, Lee Larson

Abstract. A real function is I-density continuous if it is continuous with the I-density
topology on both the domain and the range. If f is analytic, then f is I-density con-
tinuous. There exists a function which is both C∞ and convex which is not I-density
continuous.
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Let T N stand for the density topology on the real line, R. A function f :R → R

is density continuous at the point x if it is continuous at x when T N is used on
both the domain and the range. The class of all everywhere density continuous
functions is written as CNN . It is known that all locally convex functions are
density continuous, and it follows quite easily from this that all analytic functions
are in CNN . But, there are C∞ functions which are not in CNN [2].
W. Wilczyński [4] introduced the I-density topology on R, which has many

properties in common with the density topology, except that it is based upon
category instead of measure. (For its definition see [4] or [3].) The I-density
topology is denoted here by T I . The I-density continuous functions, CII , are
those functions f :R → R which are continuous when the domain and range are
both given the topology T I .
It is natural to ask if the known properties of the density continuous functions

can be proved in the case of the I-density continuous functions. It turns out that
some properties can and some cannot be proved. Theorem 7, given below, estab-
lishes that analytic functions are I-density continuous, but the proof is necessarily
different from the case of the density continuous functions because we also exhibit
in Example 10, a convex and C∞ function which is not I-density continuous.
The notation used here is fairly standard. The set of subsets of R with the

Baire property is written as B. I stands for the ideal of first category subsets
of R. C∞ is the set of all functions f :R → R which are infinitely differentiable at
every point and A stands for the collection of all real analytic functions. A set E
is a right interval set at a point a ∈ R, if E =

⋃

n∈N
[an, bn] or E =

⋃

n∈N
(an, bn)

where an → a and an > bn+1 > an+1 for all n ∈ N. The definition of a left
interval set at a is similar. The set E is an interval set at a, if it is the union of
a right and left interval set at a. Any interval set at 0 is just called an interval
set.
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An open set S is said to be regular, if S = int (cl (S)). In particular, it can

be shown that for any B ∈ B, there is a unique regular open set, B̃ such that
B△B̃ ∈ I. This observation is important below because it often enables us to
replace an arbitrary B ∈ T I by B̃ without losing any generality in a proof.
We begin by stating several known results which are needed below. The first

is essentially the same as [5, Theorem 2].

Lemma 1. Let {cn}n∈N be a decreasing sequence of positive numbers converging

to zero and, for each n ∈ N, let (an, bn) be an open interval centered at cn. If

lim
n→∞

cn+1

cn
= 0 and lim

n→∞

bn − an

cn
= 0,

then 0 is an I-dispersion point of
⋃

n∈N

[an, bn].

Theorem 2. Let B be a regular open set. The following statements are equiva-
lent:

(i) 0 is an I-dispersion point of B.
(ii) For every increasing sequence {tk} of positive numbers diverging to infinity
there exists a subsequence {tki

} such that

(1) lim sup
i→∞

tki
B ∩ (−1, 1) ∈ I.

(iii) For every increasing sequence {tk} of positive numbers diverging to infinity
and every nonempty interval (a, b) ⊂ (−1, 1) there exists a nonempty
subinterval (c, d) ⊂ (a, b) and a subsequence {tki

} such that for every
i ∈ N

(c, d) ∩ tki
B = ∅.

Proof: The fact that (i) and (ii) are equivalent is known [3, Theorem 1].
Assume that (ii) is true, but that there exists an interval (a, b) ⊂ (−1, 1) for

which (iii) fails. Then every subinterval (c, d) ⊂ (a, b) has the property that
{k : (c, d) ∩ tkB = ∅} is finite. From this it is apparent that lim supi tki

B is
a dense Gδ subset of (a, b) ⊂ (−1, 1) for every subsequence {tki

} of {tk}. This
contradicts (1), so (iii) must be true.
Finally, suppose that (iii) is true. Let dn be a countable dense subset of (−1, 1)

and suppose In is a sequential representation of the set {(dn, dm) : n, m ∈ N, dn <
dm}. Applying (iii), there must exist an interval J1 ⊂ I1 and a subsequence {tk1m}

of {tk} so that tk1mB ∩ J1 = ∅ for all m. Proceeding inductively, for each i ∈ N

there must exist an interval Ji+1 ⊂ Ii+1 and a subsequence t
ki+1

m
of tki

m
such that

t
ki+1

m
B ∩ Ji+1 = ∅ for each m. Since {dn : n ∈ N} is dense in (−1, 1) it is clear

that lim supi tki
i
B ∩ (−1, 1) ∈ I, and (ii) follows. �

The following theorem is a consequence of [1, Corollary 1].
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Theorem 3. If f :R → R is monotone and satisfies the Lipschitz condition

0 < α|b − a| < |f(b)− f(a)| < β|b − a| < ∞

for all distinct a and b in some interval I, then f is I-density continuous on I.

The first order of business is to prove that A ⊂ CII . The following two
technical lemmas are needed for the proof.

Lemma 4. Let f, h: [0,+∞)→ [0,+∞) be homeomorphisms such that

lim
x→0+

h−1(x)

f−1(x)
= 1.

Then for every 0 < c < c′ < d′ < d there exists ε0 > 0 such that for every
ε ∈ (0, ε0),

f
(

(εc′, εd′)
)

⊂ h ((εc, εd)) .

Proof: Since c/c′ < 1 and d/d′ > 1 we can find δ0 > 0 such that for every
x ∈ (0, δ0)

(2)
c

c′
<

h−1(x)

f−1(x)
<

d

d′
.

Using the continuity of f−1 at 0 we can find ε0 > 0 such that f((0, ε0d)) ⊂ (0, δ0).
Now let ε ∈ (0, ε0) and x ∈ f((εc′, εd′)) ⊂ f((0, ε0d)) ⊂ (0, δ0). So, (2) holds

and f−1(x) ∈ (εc′, εd′); i.e.,

εc′ < f−1(x) < εd′.

Multiplying the above inequality by (2), we obtain

εc < h−1(x) < εd,

which implies x ∈ h ((εc, εd)).

Lemma 5. If f, h : [0,∞)→ [0,∞) are homeomorphisms satisfying

(3) lim
x→0+

h−1(x)

f−1(x)
= 1,

then h is right I-density continuous at 0 iff f is right I-density continuous at 0.

Proof: Without loss of generality we may assume that both functions are in-
creasing, as the decreasing case is essentially the same.
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So assume that h is right I-density continuous at 0. It will be shown that
f is right I-density continuous at 0. This will finish the proof, as the converse
implication follows by exchanging f with h.
Let us choose B ∈ B, 0 /∈ B, which has 0 as an I-dispersion point. We will use

Theorem 2 to prove that 0 is a right I-dispersion point of f−1(B).
First, notice that since f and h are both homeomorphisms, we may assume

that B is a regular open set. Choose a divergent increasing sequence of positive
real numbers {tk}k∈N and a nonempty interval (a, b) ⊂ (0, 1). Since 0 is a right
I-dispersion point of h−1(B), there exists a nonempty interval (c, d) ⊂ (a, b) and
a subsequence {tkp

}p∈N of {tk}k∈N such that for every p ∈ N

(c, d) ∩ tkp
h−1(B) = ∅.

But this last condition is equivalent to

h

((

1

tkp

c,
1

tkp

d

))

∩ B = ∅.

Now let 0 < c < c′ < d′ < d. Then, by Lemma 4,

f

(

1

tkp

c′,
1

tkp

d′

)

⊂ h

(

1

tkp

c,
1

tkp

d

)

for almost all p ∈ N. This implies that for almost all p ∈ N

f

((

1

tkp

c′,
1

tkp

d′

))

∩ B = ∅,

or
(c′, d′) ∩ tkp

f−1(B) = ∅.

This finishes the proof of Lemma 5. �

The following theorem, which is interesting in its own right, is also needed in
what follows. Its analogue for ordinary density continuity is also known to be
true [2].

Theorem 6. For any α ∈ R, the function f(x) = xα is I-density continuous on
its domain.

Proof: If x 6= 0 and f(x) exists, then it is clear that on a neighborhood of x, f
satisfies the conditions of Theorem 3, so f is I-density continuous at x.
Suppose x = 0 and α > 0. It suffices to show f is right I-density continuous

at 0. Let B ∈ B such that 0 is an I-dispersion point of B. It must be shown that
0 is a right I-dispersion point of f−1(B).
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To do this, first note that f is a homeomorphism on (0,∞), so f−1(S) ∈ I
whenever S ∈ I and there is no generality lost with the assumption that B is a
regular open set. Choose any nonempty interval (a, b) ⊂ (0, 1) and an increasing
sequence {sk}k∈N of positive numbers diverging to infinity. Let (a

′, b′) = f((a, b))
and define the increasing sequence

tk =
1

f(1/sk)
→ ∞.

Using Theorem 2, there exists an interval (c′, d′) ⊂ (a′, b′) and a subsequence
{tki

} of {tk} such that

(c′, d′) ∩ tki
B = ∅ for all i ∈ N.

Suppose that (c, d) = f−1((c′, d′)). Then a straightforward calculation shows

∅ = f−1 ((c′, d′) ∩ tki
B
)

= (c, d) ∩ f−1
(

1

f(1/ski
)
B

)

= (c, d) ∩
(

s−α
ki

B
)−1/α

= (c, d) ∩ ski
(B)−1/α

= (c, d) ∩ ski
f−1(B).

From Theorem 2, we see that 0 is a right I-dispersion point of f−1(B), and the
theorem follows. �

Theorem 7. A ⊂ CII .

Proof: Let h ∈ A. It is enough to prove that h is I-density continuous at 0.
We prove that h is right I-density continuous at 0. The left-hand argument is
similar.
Let h(x) =

∑∞
n=0 anxn. We can assume that a0 = 0. Since the I-density

topology is closed under homothetic transformations of its open sets, we can also
assume that for i = min{n: an 6= 0} we have ai = 1. Now let f(x) = xi. Because
h is analytic, h−1 exists on some right neighborhood of 0. Let us assume that
h−1 is positive on this neighborhood, the other case being similar. Then

1 = lim
x→0+

h(x)

xi
= lim

x→0+

h(h−1(x))

(h−1(x))i

= lim
x→0+

(

x
1

i

h−1(x)

)i

=

(

lim
x→0+

f−1(x)

h−1(x)

)i

.
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Hence,

lim
x→0+

h−1(x)

f−1(x)
= 1

and, by Lemma 5 and Theorem 6, h is I-density continuous at 0. �

After seeing that A ⊂ CII , it is natural to ask whether the same can be claimed
for C∞. This turns out not to be true. The lemma and theorem given below are
used to establish this fact.

Lemma 8. Let f ∈ C∞ be such that for every n ≥ 0

f (n)(0) = 0 and f (n)((0, εn)) ⊂ (0,∞), for some εn > 0.

Then

lim
x→0+

f(ax)

f(x)
= 0,

for every a ∈ (0, 1).

Proof: Let a ∈ (0, 1) and n ∈ N. Moreover, let us choose ε > 0 such that

0 < ε < εk for every k ≤ n+ 1. In particular, f (n) is increasing on (0, ε), and so

∣

∣

∣

∣

∣

f (n)(aξ)

f (n)(ξ)

∣

∣

∣

∣

∣

< 1 for every ξ ∈ (0, ε).

Now let x ∈ (0, ε) and let g(x) = f(ax). Using Cauchy’s Theorem n-times we can
find ξ ∈ (0, x) such that

∣

∣

∣

∣

f(ax)

f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

g(x)

f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

g(n)(ξ)

f (n)(ξ)

∣

∣

∣

∣

∣

= |an|

∣

∣

∣

∣

∣

f (n)(aξ)

f (n)(ξ)

∣

∣

∣

∣

∣

< an.

Thus,

lim
x→0+

f(ax)

f(x)
= 0.

Theorem 9. Let f ∈ C∞ be such that for every n ≥ 0

f (n)(0) = 0 and f (n)((0, εn)) ⊂ (0,∞) for some εn > 0.

Then f is not I-density continuous.

Proof: We start with a proof that f is not right I-density continuous at 0. Let
Dn = { i

2n : i = 1, 2, . . . , 2n} for n ∈ N. First notice that if a sequence {nk}k∈N is
such that

(4) nk+1 > 2knk for every k ∈ N,
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then

min
1

nk
Dk =

1

nk

1

2k
>

1

nk+1
= max

1

nk+1
Dk+1.

This means that if {si}i>1 is a decreasing ordering of D =
⋃

k∈N
1
nk

Dk, then

1

nk
Dk = {si: 2

k ≤ i < 2k+1}.

We also define a sequence {nk}k∈N by induction on k such that it will satisfy
condition (4) and for every k > 0

(5)
f(si)

f(si−1)
≤
1

k
for 2k ≤ i < 2k+1.

Put n1 = 1 and assume that nk−1 has already been chosen for some k > 1.

Choose nk > 2k−1nk−1 such that

f(2
k−1
2k

x)

f(x)
<
1

k
, for all x ∈ (0,

1

nk
).

Such a choice is possible by Lemma 8. Then, the above condition obviously implies
condition (5) for 2k < i < 2k+1. Increasing nk, if necessary, we can also obtain

condition (5) for i = 2k. This finishes the construction of D.
Now let {(an, bn)}n∈N be a sequence of pairwise disjoint intervals such that

every interval (an, bn) is centered at cn = f(sn) and that

lim
n→∞

bn − an

cn
= 0.

By (5),

lim
n→∞

cn+1

cn
= 0

so, by Lemma 1, 0 is an I-dispersion point of the interval set

E =
⋃

n∈N

(an, bn).

On the other hand, we notice that for every subsequence {nki
}i∈N of {nk}k∈N,

the set
⋃

i∈N

nki
f−1(E) ⊃

⋃

i∈N

Dki

is dense and open in [0, 1]. So, 0 is not a right I-dispersion point of f−1(E) and
f is not I-density continuous at 0. �
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Example 10. There exists a convex C∞ function that is not I-density contin-
uous.

Proof: Define g: (−∞, 0.5)→ R by

g(x) =

{

e−x−2

x ∈ (0, 1/2)

0 x ∈ (−∞, 0]

Examining the second derivative of g it is easy to see that g is convex on (−∞, 1/2).

It is well-known that f ∈ C∞ and that f (n)(0) = 0 for all n. Repeated differ-
entiation of f makes it apparent that for each n there is an εn > 0 such that

f (n)(x) > 0 whenever 0 < x < εn. Now an application of Theorem 9 finishes the
argument. �

It is also not difficult to see that the function described in Theorem 9 does not
preserve I-density points. In particular, the function g from Example 10 does not
preserve I-density points.
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