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Abstract Single-index model is a potentially tool for multivariate nonparametric
regression, generalizes both the generalized linear models(GLM) and the missing-link
function problem in GLM. In this paper, we extend Cook’s local influence analysis to
the penalized Gaussian likelihood estimator based on P-spline for the partially linear
single-index model. Some influence measures, based on the minor perturbation of the
model, are derived for the penalized least squares estimation. An illustrative example
is also presented.

Keywords Local influence · P-spline · Partially linear · Single-index model ·
Case-weight

1 Introduction

Influence diagnostics, including detecting outliers and influential observations, and the
study of the sensitivity about the departure from basic assumption, have become a part
of any serious statistical analysis. Based on case deletion, an important approach for
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906 Q. Zou et al.

assessing the impact of each observation on the parameter estimate was proposed by
Cook (1977). Cook’s distance has a clear interpretation and implication and has been
well accepted in the statistics community. However, case deletion does not directly
reflect the impact of other perturbation of the model. To supplement the case deletion
approach, Cook (1986) developed a local influence approach based on the sensitivity
of log-likelihood against small perturbation in part of the model. The local influence
analysis does not involve recomputing the parameter estimates for every case deletion,
so it is often computationally simpler. Furthermore, it permits perturbation of various
aspects of the model to tell us more than what the case deletion approach is designed
for. For example, it can help measure leverage of a design point and evaluate the impact
of a small measurement error of predictor x on our estimates.

Following the pioneering work of Cook (1986), many authors have done a lot of
work for a variety of models. This approach has been extended to generalized linear
models by Thomas and Cook (1989), to restricted likelihood models by Kwan and Fung
(1998), and to nonlinear models by St Laurent and Cook (1993). Lesaffre and Verbeke
(1998) made a thorough investigation of local influence analysis in linear mixed mod-
els. Ouwens et al. (2001) extended the work to generalized linear mixed models.
Thomas (1991) constructed local influence diagnostics for the smoothing parameter
in smoothing spline. Lu et al. (1997) studied a standardized influence matrix that is
related to Cook’s local influence. Wang and Lee (1996) studied the sensitivity analy-
sis for structural equation models with equality functional constraints. Others related
work can be found in Shi and Wang (1999), Zhu et al. (2003) and Lee and Xu (2004).
For the single-index models, very little has been done for the local influence analysis
and the case deletion. In this paper, we demonstrate that the local influence analysis
of Cook (1986) can be extended to the penalized Gaussian likelihood estimator in the
partially linear single-index model.

The single-index model (Stoker 1986; Härdle and Stoker 1989; Li 1991; Ichimura
1993) is an important tool in multivariate nonparametric regression. It generalizes
linear regression by replacing the linear combination αT X with a nonparametric com-
ponent, g(αT X), where X is a vector of covariates, α is a parameter vector, g(·) is
an unknown univariate link function. By reducing the dimensionality from multivari-
ate predictors to a univariate index αT X, the single-index model avoids the so-called
“curse of dimensionality” and still captures important features in high–dimensional
data. Applications of the single-index model lies in a variety of fields, such as dis-
crete choice analysis in econometric and dose-response models in biometric (Härdle
et al. 1993). The estimation problem of the single-index model has been discussed
by many authors including Ichimura (1993), Härdle et al. (1993), Naik et al. (2000),
Delecroix et al. (2006), Carroll et al. (1997) and Xia et al. (2006) and others. Yu and
Ruppert (2002) derived the penalized least square estimators of parameters in the sin-
gle-index model by appling penalized spline (P-spline) approach and discussed some
asymptotic properties. P-spline (Ruppert and Carroll 2000; Ruppert 2002) is a gener-
alization of smoothing splines allowing a more flexible choice of knots and penalty.
For the single-index model, since P-spline can be fitted directly by penalized nonlinear
least square, which leads to straight-forward computational algorithms and statistical
inference. Therefore, P-spline affords us the convenience of applying Cook’s local
influence analysis to the single-index model. In this paper, we focus on the local influ-

123



Local influence in single-index models 907

ence of observation on P-spline least square estimators for the single-index model. The
rest of the paper is organized as follows. In Sect. 2, we introduce the partially linear
single-index model and review the P-spline estimator of Yu and Ruppert (2002). In
Sect. 3, we generalize the local influence analysis to P-spline estimate, and some local
influence measures based on the minor perturbation of model are also developed. In
Sect. 4, the influence diagnostics are applied to an air pollution data. Some technical
details are given in the appendix.

2 Models and estimation method

In this paper, our partially linear single-index model can be written as

yi = g(αT
0 Xi ) + βT

0 Zi + εi , (1)

where Xi ∈ Rd , Zi ∈ Rdz , yi ∈ R, α0 ∈ Rd is an unknown single-index parameter,
β0 ∈ Rdz is an unknown linear parameter and g(·) is an unknown univariate link
function; {εi } is a mean 0 independent error with variance σ 2

0 and independent of
{(Xi , Zi )}; and ||α0|| = 1 and the first nonzero element of α0 is positive for identifi-
ability.

For model (1), based on the idea of smoothing spline, Yu and Ruppert (2002)
developed the estimation for unknown parameters by a P-spline and the estimating
algorithm, and showed some asymptotic properties. Assumed that

g(u) = δ0 + δ1u + · · · + δpu p +
k∑

i=1

δp+i (u − si )
p
+, (2)

where {si }k
i=1 are spline knots. The choice of the number of knots and the knot loca-

tion can be referred to Yu and Ruppert (2002). Define the spline coefficient vector
δ = (δ0, δ1, . . . , δp+k)

T and spline basis

B(u) = (1, u, . . . , u p, (u − s1)
p
+, . . . , (u − sk)

p
+)T. (3)

Then we have spline model g(u) = δT B(u). Let θ = (δT, αT
0 , βT

0 )T, the penalized
least square estimator of θ, denoting θ̂ , minimizes the penalized Gaussian likelihood

L p(θ) = n−1
n∑

i=1

[yi − δT B(αT
0 Xi ) − βT

0 Zi ]2 + λδT Dδ, (4)

where D is an appropriate positive semidefinite symmetric matrix and λ ≥ 0 is a
penalty parameter. For example, D can be a positive semidefinite symmetric matrix
such that

δTDδ =
∫ max(αT

0 Xi )

min(αT
0 Xi )

[g′′(u)]2du,
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908 Q. Zou et al.

which yields the usual quadratic integral penalty. If D is a diagonal with its last k
diagonal elements equal to 1 and the rest equal to 0, it penalizes the sum of squares
of the jumps in the pth degree of g. Yu and Ruppert (2002) discussed the choice of
the knots and λ. They recommended that 5-10 knots should be quite adequate and the
knots should be placed at equally spaced quantiles of the estimated index value, and
the penalty parameter λ was selected by minimizing the GCV score. They have shown
the consistency and asymptotic normality under the mild regularity conditions.

In this paper, our interest is to consider the impact of a small perturbation on the
penalized Gaussian likelihood estimation of unknown parameters in the single-index
model. The choice of the knots and the selection of penalty parameter are the same as
those of Yu and Ruppert (2002).

3 Local influence analysis

According to the assumptions on model (1), it is obvious that the P-spline estima-
tor is a constrained least squares estimator, with the constrained condition ||α0|| =
1. So, the θ̂ should be regarded as the solution which minimizes L p(θ) subject to
h(θ) = ||α0|| − 1 = 0. Thus the assessment of local influence of some possible
model perturbations on the P-spline estimator should be done under this constrained
condition.

3.1 General formula

According to above interpretation, it follows from Lagrange multiplier’s method that
there exists a real number r such that

{
L̇ p(θ̂) + r ḣ(θ̂) = 0,

h(θ̂) = 0,

where L̇ p(θ̂) = (
∂L p
∂θi

|
θ̂
) and ḣ(θ̂) = ( ∂h

∂θi
|
θ̂
) are respectively the gradient vectors of

L p(θ) and h(θ) evaluated at θ̂ . Suppose a minor perturbation ω is introduced to the
model assumptions, where ω is an m × 1 vector which varies in an open set 
. Let
L p(θ |ω) be the penalized Gaussian likelihood function corresponding to the minor
perturbation and θ̂ (ω) be the perturbed estimator of θ obtained by minimizing L p(θ |ω)

subject to h(θ) = 0. In addition, we assume that there exists an ω0 ∈ 
 such that
L p(θ |ω0) = L p(θ) for all θ. This assumption obviously implies that θ̂ω0 = θ̂ . Similar
to Cook’s local influence analysis, we define

Q(ω) = 2{L p(θ̂) − L p(θ̂(ω))}

as a measure of the influence of the perturbation ω. It is clear that the Q(ω) contains
the essential information about the influence of the minor perturbation scheme on the
inference of θ. If Q(ω) is large for small ω ∈
, then ω will lead to substantial changes
in the results of the inference. Therefore, dmax, the direction which makes the Q(ω)
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Local influence in single-index models 909

attain the greatest change on the lifted line ω = ω0 + td, where ||d|| = 1, is a statistics
that we mainly concern in the context of local influence analysis.

To find dmax, we first study the first- and second-partial derivatives of Q(ω) with
respect to ω evaluated at ω0, respectively. Then it follows that

Q̇ = ∂ Q(ω)

∂ω

∣∣∣∣
ω0

= −2

(
∂θ̂(ω)

∂ωT

)T

L̇ p

∣∣∣∣
ω0

, (5)

Q̈ = ∂2 Q(ω)

∂ω∂ωT

∣∣∣∣
ω0

= −2

⎡

⎣
(
∂θ̂(ω)

∂ωT

)T

L̈ p

(
∂θ̂(ω)

∂ωT

) ∣∣∣∣
ω0

−
q∑

i=1

∂2θ̂ (ω)i

∂ω∂ωT L̇ pi

∣∣∣∣
ω0

⎤

⎦, (6)

where L̈ p =
(

∂2 L p
∂θi ∂θ j

)
(see appendix) is the Hessian matrix of L(θ), evaluated at θ̂ , L̇ pi

and θ̂ (ω)i are the i th component of L̇ p and θ̂ (ω) respectively, and q is the dimension
of θ.

Note that L̇ p = −r ḣ, so in general L̇ p = 0 does not hold with constraints, but we
still have Q̇ = 0.

Since θ̂ (ω) is the solution of minimizing L p(θ |ω) subject to h(θ) = 0, hence

∂L p(θ̂(ω)|ω)

∂θ
+ rω

∂h(θ̂(ω))

∂θ
= 0, h(θ(ω)) = 0. (7)

Differentiating both sides of the above equations with respect to ω and evaluating at
ω0, it follows that

[
L̈ p + r ḧ ḣ

ḣT 0

] ⎡

⎣
∂θ(ω)

∂ωT |ω0

∂rω

∂ωT |ω0

⎤

⎦ = −
[

∂2 L p(θ(ω)|ω)

∂θ∂ωT
|
θ̂ ,ω0

0

]
. (8)

According to Lee and Bentler (1980), the coefficient matrix on the left side of (8) is
nonsingular. Let

M =
[

L̈ + r ḧ ḣ

ḣT 0

]−1

=
[

M11 M12
M21 M22

]
, (9)

then

∂θ(ω)

∂ωT

∣∣∣
ω0

= −M11G, (10)

∂rω

∂ωT

∣∣∣
ω0

= −M21G, (11)

where G = ∂2 L p(θ(ω)|ω)

∂θ∂ωT |
θ̂ ,ω0

.
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910 Q. Zou et al.

Let A = L̈ p + r ḧ + ḣḣT, then following Lee and Bentler (1980), it is a q × q
nonsingular matrix. Let a = ḣT A−1ḣ and Pḣ be the generalized projection matrix of
ḣ with respect to A−1:

Pḣ = 1

a
ḣḣT A−1,

then it can be verified that

M11 = A−1(Iq − Pḣ).

Thus, it follows from (5) and (10) that

Q̇ = 2GT A−1(Iq − Pḣ)L̇ p.

Note that L̇ p = −r ḣ, so Q̇ = 0 holds.
Being Q̇ = 0, to search the dmax, Cook (1986) suggested considering the influence

graph to display the information of the perturbation. We define influence graph as
following:

η(ω) =
[

ω

Q(ω)

]
. (12)

Following Cook (1986), let η̇ and η̈ be the first- and second-derivatives of
η = η(ω0 + td) with respect to t and evaluated at t = 0 respectively, where ||d|| = 1.

Then the influence curvature along direction d is defined as

Cd = ||(η̈)N ||
||η̇||2 , (13)

where (η̈)N is a normal section of η̈, a projection to the normal space at ω0. From the
definition of η(ω), we have

η̇ =
[

Im

0

]
d, η̈ =

[
0
1

]
dT Q̈d.

Thus, the influence curvature is given by

Cd = |dT Q̈d|. (14)

It is obvious that the influence curvature in (14) is very similar to that without con-
straint. However, here is Q̈ not L̈ p. From h(θ(ω)) = 0, we have

(
∂θ̂(ω)

∂ωT

)T

ḧ

(
∂θ̂(ω)

∂ωT

) ∣∣∣∣
ω0

+
q∑

i=1

∂2θ̂ (ω)i

∂ω∂ωT ḣi

∣∣∣∣
ω0

= 0, (15)

where ḧ = ∂2h(θ)

∂θ∂θT and is evaluated at θ̂ . ḣi is the i th component of ḣ.
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Local influence in single-index models 911

By L̇ p = −r ḣ, it follows that

q∑

i=1

∂2θ̂ (ω)i

∂ω∂ωT L̇ pi = rω

(
∂θ̂(ω)

∂ωT

)T

ḧ

(
∂θ̂(ω)

∂ωT

)
. (16)

From (6), (10) and (16), we have

Q̈ = −2

⎡

⎣
(

∂θ̂(ω)

∂ωT

)T (
L̈ p + r ḧ

)
(

∂θ̂(ω)

∂ωT

) ∣∣∣
ω0

⎤

⎦

= −2GT (
Iq − Pḣ

)
A−1

(
L̈ p − (ḣTḣ)−1ḣT L̇ pḧ

)
A−1 (

Iq − Pḣ

)
G. (17)

It has been pointed out that the direction dmax corresponding to the maximum value
Cmax of Cd is what we look for. The direction dmax indicates how to perturb the model
to obtain the greatest local change. Computationally, Cmax and dmax can be obtained
by solving the following eigenvalue equation:

(−Q̈ − ρ Im)d = 0, (18)

where Cmax = ρmax, ρmax is the maximum eigenvalue and dmax is the associated
eigenvector. From the above interpretations about Q̈, Cmax and dmax can be finally
computed by solving the following eigenvalue problem

[
2GT(Iq − Pḣ)A−1(L̈ p − (ḣTḣ)−1ḣT L̇ pḧ)A−1(Iq − Pḣ)G − ρ Im

]
d = 0. (19)

It is obvious that, in the local influence analysis with constraints, the Q̈ still plays
an important role as in usual setting. Although the Q̈ often only relates to the like-
lihood displacement or the residue function in the setting with no constraint, when
some constraints about parameters exist, the Q̈ can be decomposed into two parts. The
first part of Q̈, L̈, is the contribution from the likelihood displacement or the residue
function. The other is from constraints impact. If there is no constrain, the Q̈ reduces
to L̈. Then we obtain the same results as in usual case.

It is well known that, for a nonnegative defined matrix, there exists a similar diago-
nal matrix whose diagonal components are the singular magnitudes of the matrix, and
the singular value is the eigenvalue of the matrix. Therefore, to detect influential case
in a data set, besides computing the Cmax and dmax of an influence matrix, we can
also look for the largest diagonal component of an influence matrix Q̈. In the below
example, we can find this approach work well.

Remark 1 It is important to note that the influence matrix in this paper is condi-
tional on the fixed knots and the penalty parameter λ. Yu and Ruppert (2002) pointed
out that the fixed knots is appropriate to consistency and asymptotic normality for the
P-spline least squares estimator. If we include the knots and the estimate of λ(obtained
by GCV) as part of the local influence analysis, no closed form would be available.
Consequently, the computation of Q̈, would be more demanding and difficult.
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912 Q. Zou et al.

Remark 2 In this paper, we study the assessment of local influence for penalized
Gaussian likelihood estimation in the partially linear single-index model under some
restrictions and obtain the general formula of local influence analysis. Kwan and Fung
(1998), and Wang and Lee (1996) also considered the influence diagnostics with some
constrained conditions in other models. In some sense, there exist some common prop-
erties between our works and their works. For example, both of us follow the idea of
Cook’s local influence analysis and use the Lagrange multiplier’s method to obtain
the general formula. However, there are also some distinct divergence. The likelihood
displacements defined in our works are different. We define the likelihood displace-
ment by the P-spline penalized Gaussian likelihood. In addition, we firstly show that,
since the first-derivative of likelihood displacement is zero, so the curvature of the
influence graph should be considered. Finally, our interest is to investigate the impact
of minor perturbations on the parametric estimation and the nonparametric estimation
in a partially linear single-index model.

3.2 Perturbation schemes

We have obtained the general result for local influence analysis for penalized least-
square estimator in the partially single-index model via the general perturbation
scheme. In practice, different perturbation schemes should be considered based on
the investigator’s special concerns. From the general result, we know that the matrix

G = ∂2 L p(θ(ω)|ω)

∂θ∂ωT |
θ̂ ,ω0

is a pivotal quantity in the calculation of Cmax and dmax . In the
following, G corresponding to different perturbation scheme is given.

Scheme 1 Case weight perturbation. We first perturb the data by modifying the weight
given to each case in the least squares criterion. This is equivalent to perturb the var-
iance of εi in the model. Let ω = (ω1, . . . , ωn)T be a perturbation scheme such that
ω0 = (1, . . . , 1)T. Assigning weights ωi to the i th case, we have

L p(θ(ω)|ω) = 1

n

n∑

i=1

ωi

[
yi − δT B(αT

0 Xi ) − βT
0 Zi

]2 + λδT Dδ. (20)

Direct calculation yields

G = ∂2L p(θ(ω)|ω)

∂θ∂ωT

∣∣∣∣
θ̂ ,ω0

= −2

n
Udiag(e1, . . . , en), (21)

where

U =
⎡

⎣
B(α̂T

0 X1) · · · B(α̂T
0 Xn)

δ̂T Ḃ(α̂T
0 X1)X1 · · · δ̂T Ḃ(α̂T

0 Xn)Xn

Z1 · · · Zn

⎤

⎦ ,
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Local influence in single-index models 913

ei = yi − δ̂T B(α̂T
0 Xi ) − β̂T

0 Zi , Ḃ(α̂T
0 Xi ) = d B(u)

du |u=α̂T
0 Xi

. In fact, ei is the i th com-
ponent of the residual vector. From the above formula, we know that if ωi = 0, and
ω j = 1 for j �= i, this perturbation scheme is reduced to the case-deletion approach.

Scheme 2 Perturbation of response. We now consider the perturbation of the response
variable so that Y is replaced by Y + ω, where ω ∈ Rn . In this case,

L p(θ(ω)|ω) = 1

n

n∑

i=1

[ωi + yi − δT B(αT
0 Xi ) − βT

0 Zi ]2 + λδT Dδ. (22)

It follows that

G = ∂2L p(θ(ω)|ω)

∂θ∂ωT |
θ̂ ,ω0

= −2

n
U. (23)

Scheme 3 Perturbation of covariates. Perturbation of covariates has a more complicate
impact on the estimates. It is well known that measurement errors on the covariates
can result in serious bias in the estimation of linear regression coefficients. Very few
have been done for the bias issue in the partially linear single-index model. The local
influence analysis under perturbation of covariates may provide an alternative view
to measurement error models. In partially linear single-index models, there are two
kinds of perturbation schemes, one is the perturbation of single-index covariates X
and the other is that of covariates Z in the linear part.

Consider perturbing Xi to Xi + l jω
Tki , where ω ∈ Rn, l j ∈ Rd , ki ∈ Rn and l j ,

ki are unit vectors with the j th and i th elements equal to 1 respectively. It means that
only the j th covariate is being perturbed. In this case,

L p(θ(ω)|ω) = 1

n

n∑

i=1

[yi − δT B(αT
0 (Xi + l jω

Tki )) − βT
0 Zi ]2 + λδT Dδ. (24)

Direct calculation yields
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2L

∂α0∂ωT

∣∣∣
θ̂ ,ω0

= − 2
n

∑n
i=1 ei bi l j kT

i − 2
n

∑n
i=1(ei ci − b2

i )Xi α̂
T
0 l j kT

i ,

∂2L

∂β0∂ωT

∣∣∣
θ̂ ,ω0

= − 2
n

∑n
i=1 bi Zi l j kT

i ,

∂2L

∂δ∂ωT

∣∣∣
θ̂ ,ω0

= − 2
n

∑n
i=1 ei Ḃ(α̂T

0 Xi )α̂
T
0 l j kT

i + 2
n

∑n
i=1 bi B(α̂T

0 Xi )α̂
T
0 l j kT

i ,

(25)

where bi = δ̂T Ḃ(α̂T
0 Xi ), ci = δ̂T B̈(α̂T

0 Xi ) and B̈(α̂T
0 Xi ) = d2 B(u)

du2 |u=α̂T
0 Xi

.

Now consider perturbing Zi to Zi + l jω
TkT

i , where ω ∈ Rn is a perturbation
scheme, l j ∈ Rdz , ki ∈ Rn are unit vectors with the j th and i th elements equal to 1
respectively. Then we have

L p(θ(ω)|ω) = 1

n

n∑

i=1

[yi − δT B(αT
0 Xi ) − βT

0 (Zi + l jω
Tki )]2 + λδT Dδ. (26)
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914 Q. Zou et al.

It can be shown that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2L

∂α0∂ωT

∣∣∣∣
θ̂ ,ω0

= − 2
n

∑n
i=1 bi Xi β̂

T
0 l j kT

i ,

∂2L

∂β0∂ωT

∣∣∣∣
θ̂ ,ω0

= − 2
n

∑n
i=1 ei l j kT

i + 2
n Zi β̂

T
0 l j kT

i ,

∂2L

∂δ∂ωT

∣∣∣∣
θ̂ ,ω0

= − 2
n

∑n
i=1 B(α̂T

0 Xi )β̂
T
0 l j kT

i .

(27)

From the above conclusion about ∂2 L p(θ(ω)|ω)

∂θ∂ωT , L̈ , ḣ and ḧ, we can obtain our interested

quantity Q̈. Then the influential observations for P-spline least squares estimator can
be detected by solving the eigenvalue problem.

4 Illustrative example

This section gives a numerical example through which we illustrate how the local
influence measures given in Sect. 3 can assist diagnostics in the partially linear sin-
gle-index model. we plot the diagonal elements of the influence matrices Q̈ to assess
the perturbation case-weight, response variable and covariate variable.

The air pollution data set was obtained from an environmental study to find how the
concentration y of the air pollution ozone depends on three meteorological variables,
X; wind speed, x1; temperature, x2; and radiation, z. The data are daily measurements
of the four variables for n = 111 days (Härdle et al. 1993). Yu and Ruppert (2002) used
this data to fit several models with reduced dimension, and concluded in their analysis
that partially linear single-index model using a P-spline in which temperature and wind
are the two components of the index and radiation is the linear term is appropriate.
They fitted a cubic P-spline with the penalty parameter value λ̂ selected by minimizing
the GCV score over a grid of values of λ. They used the 30-point grid where the values
of log10(λ) are equally space between −6 and 7. According to their suggestion, we use
the penalized least squares with λ = 4.182 chosen by GCV and obtain single-index
coefficients and linear regression coefficient estimates: α̂01 = 0.5450 (SE = 0.0069),
α̂02 = −0.8385 (SE = 0.0045) and β̂0 = 0.0024 (SE = 0.00006).

Basing on this estimation, the proposed diagnostic procedures can be used to iden-
tify the influential observations in this data set. We compute the local influence matrices
Q̈ corresponding the variety of perturbations, use Q̈w, Q̈y, Q̈z, and Q̈x1 to denote
influence matrices of perturbation of case weight, response and covariates and plot the
diagonal elements of those matrices in Fig. 1. We see from Fig. 1 that case number
80 is the most influential datum in the sample for penalized least square estimates
under case-weight, response and covariates perturbations. To detect whether the case
80 is an outlier, according to the analysis of Yu and Ruppert (2002), we plot the Stu-
dentized residuals in Fig. 2 and find that case 80 has the smallest residual. Therefore,
we can conclude that case 80 is an influential observation but not an outlier. A closer
inspection finds that case number 80 is a rather extreme point in this data set with
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Fig. 1 Local influence analysis for the air pollution data. Diagonal elements of a Q̈w, b Q̈y , c Q̈z ,

d Q̈x1 , representing case-wise contribution to influence matrices
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Fig. 2 Studentized residuals for the air pollution data

much larger concentration y, the temperature x1 and the radiation z, and the smallest
wind speed x2. It means that the removal of this case would have a large impact on
the parameter estimates. In addition, from Fig. 1a–c we can find that case 81 and case
85 have also large influence but they are not outliers.
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Remark 3 To investigate the influence of case 80 on the estimation of unknown param-
eters, we delete case 80 in the air pollution data set, and then use the same algorithm
program as before. We obtain single-index coefficients and linear regression coeffi-
cient estimates as α̂01 = 0.6892 (SE = 0.0127), α̂02 = −0.7268 (SE = 0.0115)

and β̂0 = 0.0021 (SE = 0.0005) respectively. Moreover, the magnitudes of δ and λ

have great changes, for example, λ = 49857. Therefore, the above diagnostic proce-
dure of influential for the penalized Gaussian likelihood estimation in partially linear
single-index model is feasible and applicable.

Remark 4 In our local influence study, the penalty parameter λ is fixed, one of nature
concern is the sensitivity of the results against some perturbation of λ. We repeated the
analysis using λ = 2λ̂ = 8.364 in this example. We also plot the diagonal elements
of the influence Q̈ corresponding various perturbations. For the sake of space, those
figures are omitted. We find that these figures have little difference with those in Fig. 1.
The same results can be obtained using λ = λ̂/2. The different choices of penalty
parameter λ seem to have little effects on local influence analysis.

5 Discussion

In this paper, we extend the work of Cook (1986) to provide local influence measures
under perturbation of case weight, response and covariate for the partially penalized
Gaussian likelihood estimators in a partially linear single-index model. Due to the
complexity of the partially linear single-index model, it is difficult to obtain local
influence measures directly by Cook’s (1986) approach. Thus we investigate the local
influence analysis of a P-spline model with equality constraints for partially linear sin-
gle-index model. The results in this paper have shown that the procedure is practically
feasible.

As we point out before, detecting outliers is also an important issue in data analysis.
After the identification of these influential observations, further steps are included to
test whether they are actually outliers. Case-deletion approach is widely used to find
the outliers. However, it is difficult to detect outliers for partially linear single-index
model by case-deletion and further research is required.

Finally, we note that we have only used the diagonal elements of the influence
matrices in our example. This is partly for convenience and partly for data without
clusters of influential points. According to a referee’s suggestions, we also investigate
the eigenvector of the influence matrix in the illustrative example and find that there
are little difference between the two approaches. Each component of the eigenvector
related to case 80 is larger than the corresponding component of other eigenvectors.
The eigenvectors of the influence matrix also show that there are no clusters of influ-
ential points. Like the delete-one diagnostics, this approach can suffer from masking.
The eigenvectors that correspond to some of the largest eigenvalues of a influence
matrix would be helpful in identifying batches of influential observations.

Acknowledgements The authors thanks the editor and two anonymous referees for their careful reading
of the paper and constructive comments.
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Appendix A: Expression for L̈

Let Y = (y1, . . . , yn)T, B = (B(αT
0 X1), . . . , B(αT

0 Xn))T, Z = (Z1, . . . , Zn)T,

X = (X1, . . . , Xn)T, θ = (δT, αT
0 , βT

0 )T, then L p(θ) can be expressed as

L p(θ) = 1

n
||Y − Bδ − Zβ0||2 + λδT Dδ.

Therefore, the first-and second-order derivatives of L p are given as follows:

∂L p

∂δ
= −2

n
BT(Y − Bδ − Zβ0) + 2λDδ,

∂L p

∂α0
= −2

n
Xdiag(δT Ḃ(αT

0 X1), . . . , δ
T Ḃ(αT

0 Xn))(Y − Bδ − Zβ0),

∂L p

∂β0
= −2

n
ZT(Y − Bδ − Zβ0),

∂2L p

∂δ∂δT = 2

n
BT B + 2λD,

∂2L p

∂δ∂αT
0

= −2

n
(Ḃ(αT

0 X1), . . . , Ḃ(αT
0 Xn))diag(e1, . . . , e2)XT,

∂2L p

∂δ∂βT
0

= 2

n
BT Z ,

∂2L p

∂α0∂αT
0

= −2

n
X [diag(c1, . . . , c2)diag(e1, . . . , e2) − diag(b2

1, . . . , b2
n)]XT,

∂2L p

∂α0∂β
T
0

= 2

n
Xdiag(b1, . . . , bn)Z ,

∂2L p

∂β0∂β
T
0

= 2

n
ZT Z ,

where ei = yi−δT B(αT
0 Xi )−βT

0 Zi , bi = δT Ḃ(αT
0 Xi ), ci = δT B̈(αT

0 Xi ), Ḃ(αT
0 Xi ) =

d B(u)
du |u=αT

0 Xi
, B̈(αT

0 Xi ) = d2 B(u)

du2 |u=αT
0 Xi

.
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