
A Multi-class Bernoulli Feedback Queue with
Gate Mechanism

P.R.Parthasarathy∗1 and K.Vasudevan†
∗ Department of Mathematics, Indian Institute of Technology Madras,

Chennai - 600 036, India
prp@iitm.ac.in

† Department of Mathematics, Presidency College (Autonomous),
Chennai - 600 005, India
vasu k devan@yahoo.com

Abstract

We consider a single server queue in which multi-class customers arrive ac-
cording to Poisson process and service times are exponentially distributed. The
server works following a gate mechanism in which arriving customers do not en-
ter service immediately and wait to form a batch. This batch of customers get
service after the completion of service to the previous batch. We also assume that
after the service time of all customers, a customer of one class may join the next
batch to get the service of another or the same class. The number of customers
in a batch, duration of service time to a batch and the probability for the busy
period to end in finite time are obtained. Elegant expressions are obtained when
there are only two classes. These results are extended to multi-class customers in
a varying environment. The connections between queues and branching processes
is exploited to obtain these results. Numerical illustrations are presented.

Keywords: Branching processes; busy period; feedback; gated service.

1. Introduction

The phenomenon of feedback in queueing systems occurs in many practical
situations. In telecommunication systems messages which turned out errors at
destination are sent again.

In a single-operator repair facility where jobs arrive and proceed from one
category to another according to what inspections, tests, and repairs are per-
formed, a computer system where jobs change categories as execution ensues,
and single-technician medical laboratory in which different samples arrive to be
processed through random sequences of tests. Queueing models are the main
quantitative tools in evaluating the operating performance of call centers. In
a call center a customer may call again if his or her problems are not solved
completely after service.
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In software product development processes, the feeding-back flow of software
project represents re-work that must be done on projects as the result of problems
discovered during independent outside testing or early use.

The assumption of Poisson traffic flow in queueing network is a common
simplifying assumption in modeling practice. There have been many rigorous
justifications of this type of phenomenon in different contexts [4].

In a cyclic priority queue, with several classes, after completing one service,
a customer may enter the next with a prescribed probability or leave the system.
The feedback probabilities may be different for different classes. In modeling
such a system one can adjust the feedback probabilities to match job service
requirements [3].

Feedback is introduced as a mechanism for scheduling the call service in which
service consists of a random number of stages [1]. In telephony, a particular unit
must perform more than one class of service; central control units may have to
handle a variety of requests for service from calls in various stages of processing.
For example, an originating call may require N distinct services, ranging from
first obtaining dial tone to finally obtaining a connection to the called party. If
more than one of these services is provided by the same control unit (or units),
then this situation can be represented by a feedback queueing system. In such
situations an incoming call will enter the queue and, after having obtained its
first service, will immediately rejoin the queue until, finally, after the completion
of its N -th service, the call will leave the system or no longer demand service
from the control unit.

A single-server queueing network is equivalent to a multi-class system with
feedback probabilities; one can view the customers at station i as the class i
customers. With this interpretation, there is a single service facility with many
classes of customers, and each time a customer’s service is completed he either
leaves the system, rejoins the same class, or proceeds to a new class.

Indeed, one can combine these two viewpoints and consider a single-server
queueing network with several classes of customers. Then each index i (i =
1, 2, · · · , N) corresponds to a particular class/node pair, and the customers can
change from class to class and/or node to node. Each time a customer’s service
at station i is completed, with some probability pij(j = 1, 2, · · · , N) he proceeds

to station j or with probability pi0 = 1−
N∑

j=1

pij he leaves the system [9].

In semiconductor manufacturing and thin film lines, components visit some
machine (or set of machines) more than once. Thus parts at different stages of
their life may be in contention for service at the same machine. This gives rise
to the problem of machine scheduling. The Polling system in computer network
can be modeled as queue with gated vacation. In order to include transmission’s
error, the polling system is modeled as queue with gated vacation and feedback
where old customers have different feedback parameter and different service time
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distribution compared to new customers [2].
Feedback queueing systems with single and multiple types of feedback have

been widely investigated (eg. [6]). For queueing systems with single type of
feedback, Takacs (1963) considered an M/G/1 Bernoulli feedback queue and
obtained the queue size distribution and the total response time distribution
of a customer. Lam and Shankar (1981) studied M/M/1 feedback queue with
multi-class customers and FCFS policy where the number of feedbacks for a
customer is generally distributed depending on the class to which the customer
belongs, and they obtained the system distribution and the total response time
distribution.

In this paper, we consider a single server queue with n classes of customers in
which arrivals occur according to a Poisson process and service times of customers
are independent exponential random variables. The server works according to a
gated discipline. Upon arrival customers of all classes join a queue in front of a
gate. Whenever all customers present at the service area have received service,
the gate opens. The customers waiting for service enter the service area and
the gate closes. That is, once a batch of customers begins service, customers
who arrive during their service time receive service only when all members of
the previous batch have completed their service. We also assume that after the
service time of all customers, a customer of one class may join the next batch to
get the service of the another or the same class.

We obtain exact results for the number served and the duration of service
for k−th batch using branching process techniques. The finiteness of the busy
period can be related to the extinction probability of a multi-type branching
process.

The initial idea of using branching processes as a tool in queueing theory
seems to be due to Borel as pointed out by Kendall [5]. For a detailed account
of this technique, see [8].

2. Multi-class queue

We now consider a multi-class queue. We define the random times 0 =
T0, T1, T2, ... where Tn+1 is the instant in which all customers, if any, present at
Tn complete service. We denote Xk = (X1k, X2k, · · · , Xnk), Xjk = the number
of class j customers in the k-th batch for a process. Let X(t) denote the number
of customers in the system at t+0 and Xk = X(Tk), number of customers in the
k-th batch.

The bivariate sequence {Xk, Tk+1− Tk} is a Markov sequence because of the
assumptions of Poisson input and exponential service times. Let the probability
generating function of Xk = (X1k, X2k, · · · , Xnk), k = 1, 2, 3, . . . be

fk(z) = [f
(1)
k (z), f

(2)
k (z), · · · , f

(n)
k (z)] ,

with the vector symbol z = (z1, z2, · · · , zn).
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Assume initially there is one customer of class i. During its service, customers
of class i arrive according to Poisson process with the rate λ

(1)
i , i = 1, 2, · · · , n and

all customers together form the first batch and get exponential service with the

same rate µ(1). We denote ρ
(1)
i =

λ
(1)
i

µ(1) . After completion of service a customer from

the first batch will wait to get class i service with probability p
(1)
i , i = 1, 2, · · · , n

in the next batch. We have assumed service times are independent of the class.
During the service to the first batch customers of all classes arrive to form the
next batch with rates λ

(2)
i , i = 1, 2, · · · , n and service rates µ(2) and we denote

ρ
(2)
i =

λ
(2)
i

µ(2) and so on. When customer of class i is getting service initially, arrivals
to the system is governed by the following probability generating function:

f
(j)
1 (z1, z2, · · · , zn) = E[zX11

1 zX21
2 · · · zXn1

n |Xj 0 = 1, Xk 0 = 0, k 6= j]

=
1− p

(1)
j1 (1− z1)− p

(1)
j2 (1− z2)− · · · − p

(1)
jn (1− zn)

1 + ρ
(1)
1 (1− z1) + ρ

(1)
2 (1− z2) + · · ·+ ρ

(1)
n (1− zn)

, j = 1, 2, · · · , n,

and p
(1)
j1 + p

(1)
j2 + · · ·+ p

(1)
jn < 1.

We follow the notation given below:

1 =
(

1, 1, · · · , 1
)′

, z =
(

z1, z2, · · · , zn

)′
,

fi(z) =
(

f
(1)
i (z), f

(2)
i (z), · · · , f

(n)
i (z)

)′
.

ρi =
(
ρ

(i)
1 , ρ

(i)
2 , . . . ρ(i)

n

)
and

Mi =




ρ
(i)
1 + p

(i)
11 ρ

(i)
2 + p

(i)
12 . . . ρ

(i)
n + p

(i)
1n

ρ
(i)
1 + p

(i)
21 ρ

(i)
2 + p

(i)
22 . . . ρ

(i)
n + p

(i)
2n

. . . . . . . . . . . .

ρ
(i)
1 + p

(i)
n−11 ρ

(i)
2 + p

(i)
n−12 . . . ρ

(i)
n + p

(i)
n−1n

ρ
(i)
1 + p

(i)
n1 ρ

(i)
2 + p

(i)
n2 . . . ρ

(i)
n + p

(i)
nn




, i = 1, 2, · · · .

Now, for j = 1, 2, · · · , n, we have

1− f
(j)(z)
1 =

(ρ
(1)
1 + p

(1)
j1 )(1− z1) + · · ·+ (ρ

(1)
n + p

(1)
jn )(1− zn)

1 + ρ
(1)
1 (1− z1) + · · ·+ ρ

(1)
n (1− zn)

Simple calculations yield,

fi(z) = 1− 1

1 + ρi(1− z)
Mi(1− z) (1)

is the vector whose components represent the pgfs of the number of customers
arrived in the i-th batch during the service of one customer of class j, j =
1, 2, · · · , n in the (i− 1)-th batch for i = 1, 2, · · · initially.

The pgf gn(z) of the number of customers in the n-th batch is given by

gn(z) = f1(f2(· · · (fn(z)))), n = 1, 2, . . . .
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gk(z) =
(

g
(1)
k (z), g

(2)
k (z), · · · , g

(n)
k (z)

)′
(2)

= 1 − M1M2 · · ·Mk(1− z)
1 + (ρk + ρk−1Mk + ρk−2Mk−1Mk + · · ·+ ρ1M2M3 · · ·Mk)(1− z)

(3)

We observe that the product MiMi+1 · · ·Mk, i = 1, 2, · · · , k are n × n
matrices and ρi, i = 1, 2, · · · , k are 1 × n matrices. Hence ρk + ρk−1Mk +
ρk−2Mk−1Mk + · · · + ρ1M2M3 · · ·Mk is a 1 × n matrix. Since 1− z is a n× 1
matrix, M1M2 · · ·Mk(1− z) is a n×1 matrix and (ρk+ρk−1Mk+ρk−2Mk−1Mk+
· · ·+ ρ1M2M3 · · ·Mk)(1− z) is a scalar. The mean matrix of gk(z) is

=




∂g
(1)
k

∂z1

∂g
(1)
k

∂z2
· · · ∂g

(1)
k

∂zn

∂g
(2)
k

∂z1

∂g
(2)
k

∂z2
· · · ∂g

(2)
k

∂zn

. . . . . . . . . . . .
∂g

(n)
k

∂z1

∂g
(n)
k

∂z2
· · · ∂g

(n)
k

∂zn




=




a11 a12 . . . a1k

a21 a22 . . . a2k

. . . . . . . . . . . .
ak1 ak2 . . . akk




= M1M2M3 · · ·Mk (4)

Assume that (ρk +ρk−1Mk + · · ·+ρ1M2M3 · · ·Mk)(1−z) = l1(1−z1)+ l2(1−
z2) + · · ·+ ln(1− zn). Hence (2) implies that

g
(j)
k (z) = 1− aj1(1− z1) + aj2(1− z2) + · · ·+ ajn(1− zn)

l1(1− z1) + l2(1− z2) + · · ·+ ln(1− zn)
,

(j = 1, 2, · · · , n). (5)

Let N be the number of batches served in a busy period starting with class i
customer. Then

P(N ≤ k) = gk(0)

= 1− M1M2 · · ·Mk1

1 + (ρk + ρk−1Mk + · · ·+ ρ1M2M3 · · ·Mk)1
.

Starting with class i customer probabilities for the busy period to end in the
k−th batch using the relation P(N = k) = P(N ≤ k) − P(N ≤ k − 1) =
gk(0)− gk−1(0) can be found.

Moments

Now, we find the second order moments. Starting with the class j customer,

in the k-th generation, E[XpXi] =
∂2g

(j)
k

∂zp∂zi
(1) = ajilp+ajpli, where ρkI + ρk−1Mk+
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· · ·+ρ1M2M3 · · ·Mk = (l1, l2, · · · , ln), and aji and ajp are elements of the mean
matrix M1M2M3 · · ·Mk given in (4).

Busy period

We present a theorem for the probabilities for the busy period to end in finite
time.

Theorem 1 Let qj denote the probability that starting with class j, j = 1, 2, · · · , n
customer busy period ends in finite time. Let π denote the largest eigenvalue of
the mean matrix M of the process,

M =




ρ1 + p11 ρ2 + p12 . . . ρn + p1n

ρ1 + p21 ρ2 + p22 . . . ρn + p2n

. . . . . . . . . . . .
ρ1 + pn−11 ρ2 + pn−12 . . . ρn + pn−1n

ρ1 + pn1 ρ2 + pn2 . . . ρn + pnn




.

Then
(i) For π > 1, qj < 1, ∀j and satisfy the equations

f (j)(q1, q2, · · · , qn) =
1− pj1(1− q1)− pj2(1− q2)− · · · − pjn(1− qn)

1 + ρ1(1− q1) + ρ2(1− q2) + · · ·+ ρn(1− qn)
= qj,

and
(ii) For π ≤ 1, qj = 1, i = 1, 2, · · · , n.

We compute numerically the probabilities for the busy period to end in finite
time when the system has five classes of customers.

We use the following parameters in Theorem (1):

p11 = .2, p12 = .13, p13 = .1, p14 = .12, p15 = .15;

p21 = .25, p22 = .1, p23 = .12, p24 = .16, p25 = .15;

p31 = .1, p32 = .21, p33 = .12, p34 = .12, p25 = .13;

p41 = .01, p42 = .1, p43 = .08, p44 = .01, p45 = .02;

p51 = .13, p52 = .14, p53 = .01, p54 = .21, p55 = .11;

and

λ1 = .8, λ2 = 1.4, λ3 = .6, λ4 = 1.3 and λ5 = 1.

Since ρ1 = λ1

µ
, ρ2 = λ2

µ
, ρ3 = λ3

µ
, ρ4 = λ4

µ
and ρ5 = λ5

µ
, we get different sets of

values for different values of the common service rate µ = 2, 5, 8, 11, 14 and 17.
With these values busy period probabilities are obtained and displayed in the
following table.

6
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Table-1. Probabilities for the busy period to end in finite time

µ π q1 q2 q3 q4 q5

2 3.1311 0.1307 0.1104 0.1356 0.2584 0.1616
5 1.6044 0.3598 0.3329 0.3659 0.5358 0.4079
8 1.2241 0.6109 0.5905 0.6153 0.7474 0.6509
11 1.0518 0.8743 0.8669 0.8758 0.9247 0.8898
14 0.9536 1.0000 1.0000 1.0000 1.0000 1.0000
17 0.8902 1.0000 1.0000 1.0000 1.0000 1.0000

In Table-1, π represents the maximum eigenvalue for the mean matrix. Here
qi, i = 1, 2, · · · , 5, represents the probability for the busy period to end in finite
time starting with one customer of class i. We see that for π < 1, qi = 1, ∀i.

In Table-2, we are depicting probabilities of the busy period to end before
batch n starting with one class i customer initially, i = 1, 2, 3, 4, 5 with ser-
vice rate µ = 2. Here these probabilities monotonically increase to the limit qi.
Observe that the first row in Table-1 is same as the last row in Table-2.

Table-2. Probabilities for the busy period to end before batch n

n class - 1 class - 2 class - 3 class - 4 class - 5
2 0.0845 0.0620 0.0901 0.2197 0.1127
3 0.1162 0.0955 0.1211 0.2460 0.1476
4 0.1261 0.1057 0.1310 0.2545 0.1571
5 0.1293 0.1089 0.1341 0.2571 0.1601
6 0.1303 0.1099 0.1351 0.2580 0.1611
7 0.1306 0.1102 0.1354 0.2583 0.1614
8 0.1307 0.1103 0.1355 0.2583 0.1615
9 0.1307 0.1103 0.1356 0.2584 0.1615
10 0.1307 0.1104 0.1356 0.2584 0.1615
11 0.1307 0.1104 0.1356 0.2584 0.1616

Remark: In the case of two-class queue, we discuss the probability that the
busy period ends in finite time. When customer of class i, (i = 1, 2) is getting
service initially, arrivals to the system is governed by the following probability
generating function:

f
(1)
1 (z1, z2) =

1− a1(1− z1)− a2(1− z2)

1 + ρ1(1− z1) + ρ2(1− z2)
,

and

f
(2)
1 (z1, z2) =

1− b1(1− z1)− b2(1− z2)

1 + ρ1(1− z1) + ρ2(1− z2)
,

i = 1, 2, 3, · · · , a1 + a2 < 1 and b1 + b2 < 1

7
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Mean matrix is M =

(
ρ1 + a1 ρ2 + a2

ρ1 + b1 ρ2 + b2

)

with the largest eigenvalue

π =
a1 + b2 + ρ1 + ρ2 +

√
(a1 + ρ1 − b2 − ρ2)2 + 4(a2 + ρ2)(b1 + ρ1)

2
.

Theorem 2 Let q1 and q2 respectively denote the probabilities for the busy period
to end in finite when service start with class 1 and class 2 customer initially.
i) If π > 1, then q1 < 1, q2 < 1 and

q1 =
(1− b1 − b2)a2 − (1− a1 − a2)(b2 − π)

(a1 − π)(b2 − π)− a2b1

q2 =
(1− a1 − a2)b1 − (1− b1 − b2)(a1 − π)

(a1 − π)(b2 − π)− a2b1

.

ii) If π ≤ 1, then q1 = 1, q2 = 1.

Proof:
Using the results from [7], q1 and q2 satisfy f (1)(q1, q2) = q1 and f (2)(q1, q2) = q2.
That is,

1− a1(1− q1)− a2(1− q2)

1 + ρ1(1− q1) + ρ2(1− q2)
= q1 (6)

and
1− b1(1− q1)− b2(1− q2)

1 + ρ1(1− q1) + ρ2(1− q2)
= q2 (7)

Solving these two equations, we get

q1 =
(1− b1 − b2)a2 − (1− a1 − a2)(b2 − π)

(a1 − π)(b2 − π)− a2b1

and

q2 =
(1− a1 − a2)b1 − (1− b1 − b2)(a1 − π)

(a1 − π)(b2 − π)− a2b1

.

Now,

π > 1 ⇔ π > 1 > b2 − a2

⇔ (π − 1)(π − (b2 − a2)) > 0

⇔ a2 − b2 + π − a2π + b2π − π2 < 0

⇔ a2 − a2b2 − (b2 − π) + a1(b2 − π) + a2(b2 − π)

< a1(b2 − π)− π(b2 − π)

⇔ (1− b1 − b2)a2 − (1− a1 − a2)(b2 − π) < (a1 − π)(b2 − π)− a2b1

⇔ q1 < 1
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Similarly,

π > 1 ⇔ q2 < 1

When π ≤ 1 both q1 = 1 and q2 = 1.

3. Duration of service time

In this section we obtain the duration of service time of any given batch.

Since all the service rates are equal replacing the variables by µ(k)

s+µ(k) we get the
Laplace transform of service time of k-th batch. Now,

z =
(

z1, z2, · · · , zn

)′
=

(
µ(k)

s+µ(k) ,
µ(k)

s+µ(k) , · · · , µ(k)

s+µ(k)

)′

1 =
(

1, 1, · · · , 1
)′

and 1− z =
s

µ(k) + s
1.

Therefore,

ĝk(s) =
(

ĝ
(1)
k (s), ĝ

(2)
k (s), · · · , ĝ

(n)
k (s)

)′

= 1 − sM1M2 · · ·Mk1
µ(k) + s + s(ρkI + ρk−1Mk + ρk−2Mk−1Mk + · · ·+ ρ1M2M3 · · ·Mk)1

.

Here ĝ
(j)
k (s), j = 1, 2, · · · , n represent the Laplace transforms of the distri-

butions of the duration of the service time of k−th batch starting initially with
j−th class customer.
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