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Abstract

We analyze a novel method for improving the efficiency of pollution permit markets

by optimizing the way in which emissions are exchanged through trade. Under full-

information, it is optimal for emissions to exchange according to the ratio of marginal

damages. However, under a canonical model with asymmetric information between the

regulator and the sources of pollution, we show that these marginal damage trading

ratios are generally not optimal, and we show how to modify them to improve efficiency.

We calculate the optimal trading ratios for a global carbon market and for a regional

nitrogen market. In these examples, the gains from using optimal trading ratios rather

than marginal damage trading ratios range from substantial to trivial, which suggests

the need for careful consideration of the structure of asymmetric information when

designing permit markets.
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Incentive-based environmental regulations, such as permit markets or emissions taxes,

have typically been designed to minimize the costs of achieving emissions targets.1 Focusing

on reducing abatement costs simplifies program implementation by eliminating the need to

quantify damages from emissions of pollution. However, advances in air and water quality

modeling now make it feasible to estimate damages precisely and thereby to incorporate them

into program design. This suggests that regulators should turn from the narrow criterion

of minimizing abatement costs to the more general criterion of efficiency that accounts for

both abatement costs and damages (Muller and Mendelsohn 2009).

In this paper we demonstrate a novel method for improving the efficiency of pollution

permit markets by optimizing the way in which emissions are exchanged through trade. In

our model, there is asymmetric information, and sources of pollution are differentiated by

the number of permits they are required to hold for each unit of emissions. When sources

trade permits, these differentiated requirements govern the exchange of emissions, and hence

they are typically called trading ratios. Several recent studies have shown that selecting

trading ratios equal to the ratio of expected marginal damages can substantially increase

efficiency relative to the one-for-one trading found in many permit markets (Williams III,

2002; Farrow et al., 2005; Muller and Mendelsohn, 2009; Henry et al., 2011; and Fowlie and

Muller, 2013.) Taking this as a point of departure, we ask if further efficiency improvements

are possible. The rather surprising answer is yes. We characterize the optimal trading ratios

and show that they generally depart from the marginal damage trading ratios.

The main reason for this result is the presence of asymmetric information about the costs

of reducing pollution between the sources and the regulator that designs the market. Indeed,

in a first-best environment with full information, the optimal trading ratios are equal to the

ratios of marginal damages. However, permit markets are generally employed to allow firms

to respond flexibly to private information about their abatement costs. This information is

typically not available to the regulator when the regulator designs the program. In such a

second-best environment, the regulator must account for the damages from pollution as well

as the uncertainty about abatement costs when selecting the optimal trading ratios.

1In practice, these regulations have proven quite successful (Carlson, et al., 2000; Ellerman, et al., 2000;
Keohane, 2006; Fowlie, et al., 2012).
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To understand how this leads to a divergence between the optimal trading ratios and

marginal damage ratios, consider uniformly mixed pollution such as greenhouse gas (GHG)

emissions. In this case, marginal damages are equal across sources, and the marginal damage

trading ratios actually imply one-for-one trading. But one-for-one trading is generally not

the most efficient structure. Due to the asymmetric information, the regulator cannot set

the aggregate permit endowment (i.e. the “cap”) at the ex post optimal level. The cap is

either too tight, in the case costs are higher than expected, or is too loose, in the case costs

are lower than expected. Using trading ratios that are not one-for-one enables the regulator

to partially circumvent this problem. By giving relatively favorable trading ratios to sources

whose emissions are positively correlated with the market price of permits, the regulator

can, in effect, allow increased emissions when costs are high and require decreased emissions

when costs are low. These optimal trading ratios improve efficiency relative to one-for-one

trading by allowing flexibility in emissions even though the number of permits is fixed at the

cap. The regulator obtains this ex ante efficiency gain by tolerating an ex post efficiency loss

due to the fact that the marginal abatement costs are not equal across sources.

The importance of determining optimal trading ratios is buttressed by three observations.

First, regulators have begun to incorporate trading ratios into a variety of existing and

proposed permit markets.2 The NOx Budget Program uses trading ratios to restrict banking

through a “flow control” provision. The Clean Air Interstate Rule (CAIR) uses trading ratios

to reduce uniformly the allowed emissions for each permit. The Cross State Air Pollution

Rule (CSPAR), which would have replaced CAIR but was invalidated by the courts, would

have used trading ratios through an “assurance provision” to reduce uniformly the emissions

per permit if emissions exceed a threshold. The failed Waxman-Markey legislation addressing

U.S. GHG emissions would have used trading ratios to implement costly borrowing. Despite

this growing use of trading ratios, optimal implementation of trading ratios has not been

studied.

Second, regulators are currently grappling with how to regulate non-uniformly mixed

pollution. Early pollution permit trading programs could yield large gains by simply reducing

2See Holland and Moore (forthcoming) for more details on each of these programs.
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the overall level of emissions.3 Because low-cost emissions reduction opportunities may have

already been realized, current programs must more carefully target emissions reductions to

high-damage areas in order to pass a cost-benefit test.4 Permit markets with trading ratios

are well suited for this task. For example, in their analysis of the celebrated SO2 Acid Rain

cap-and-trade program established by the 1990 Clean Air Act Amendments, Henry et al.

(2011) argue that utilizing marginal damage trading ratios rather than one-for-one trading

would improve the efficiency of the market. Optimal trading ratios offer the possibility of

even greater efficiency improvements.

Third, proposed markets to limit GHG emissions would swamp existing permit markets

in size and scope. Ellerman and Buchner (2007) compare the Acid Rain Program, which is

the largest existing non-GHG program, with the European Union Emissions Trading Scheme

(EU ETS) and note that the EU ETS is much larger even though it covers a smaller fraction

of total emissions than the Acid Rain Program.5 To address global climate change effectively,

similarly sized programs would need to be implemented throughout the world and then linked

together. The massive scale of such programs implies that efficiency gains from using optimal

trading ratios could be quite large in absolute terms, even if they are small in relative terms.

Given these observations, it is not sufficient to just delineate the optimal trading ratios,

we must also investigate the practical importance of using the optimal trading ratios rather

than marginal damage trading ratios. We accomplish this through the numerical analysis

of two pollution problems. The first is a multi-country carbon emission market, and the

second is a nitrogen trading market for several rivers in North Carolina and Virginia. In

both cases, we show that the optimal trading ratios lead to efficiency improvements relative

to marginal damage trading ratios. The magnitude of these improvements varies from sig-

nificant to trivial, depending in particular on the regulators’ uncertainty about abatement

3The Acid Rain Program established by the 1990 Clean Air Act Amendments for regulating SO2 emissions;
the leaded gasoline trading program; and the RECLAIM program regulating NOx emissions in southern
California each had one-for-one trading over broad regions and a declining level of allowed emissions.

4For example, the US EPA recently attempted to modify the Acid Rain Program with CAIR and later
CSPAR, which was then struck down by the courts. The new programs attempt to account for spatial
heterogeneity in damages mainly by prohibiting trades across regions.

5The EU ETS covers approximately 11,500 sources, compared to about 3,000 for the U.S. SO2 program,
and the prepolicy emissions in the EU ETS were over two billion metric tons of CO2, versus sixteen million
(short) tons of SO2 in the U.S. program. In addition, the value of the allowances distributed under the EU
ETS is about $41 billion versus about $5 billion under the U.S. SO2 program.
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costs. These results suggest that regulators should give careful consideration to the structure

of asymmetric information when designing future permit markets.

Our analysis combines two prominent strands of the literature on incentive based regula-

tions. The first strand follows the seminal work of Montgomery (1972) who introduced the

idea of trading ratios in permit markets. Montgomery recognized that, if damage from pol-

lution differs across sources, then emissions licenses should not simply trade one-for-one. His

proposed trading rules are consistent with marginal damage trading ratios.6 More recent

work estimates the marginal damage trading ratios for several prominent non-uniformly

mixed pollution problems (Muller and Mendelsohn, 2009; Henry et al., 2011; Fowlie and

Muller, 2013). The second strand of literature follows Weitzman (1974), who introduced

the idea of informational asymmetries in permit markets. Since the parameters of permit

markets must be set potentially years in advance, the regulator lacks information which will

be available to market participants when they make abatement decisions. This asymmetric

information has important implications for the choice of policy instruments and the result-

ing literature on “prices vs. quantities” is vast. But here we are interested in a different

question: What happens to Montgomery’s trading ratios when we apply Weitzman’s fun-

damental insight about asymmetric information? There has not been a systematic study of

this issue.7

The authors who come closest to disentangling the relationship between trading ratios and

asymmetric information are Fowlie and Muller (2013). In analyzing a model with quadratic

abatement costs and linear damages, they observe that, under asymmetric information, the

marginal damage trading ratios may not perform as well as simple one-for-one trading.

This suggests, of course, that there may be a completely different set of trading ratios that

dominate either benchmark. But they do not pursue this line of inquiry. To replicate their

result, we construct a simple numerical example in which one-for-one trading does indeed

dominate the marginal damage trading ratios. We go on to calculate the optimal trading

6Montgomery proposed trading at the ratio of the transfer coefficients. The ratio of the transfer coefficients
is exactly the ratio of marginal damages holding ambient concentrations at the other sites constant.

7A few authors have chipped away at the edges. Yates and Cronshaw (2001) and Feng and Zhao (2006)
determine the optimal intertemporal trading ratio in models with a specific damage function. Rabotyagov
and Feng (2010) observe that the trading ratios may not be equal to the transfer coefficients, but their focus
is on cost-effectiveness, rather than efficiency.
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ratios and show that they perform better than either the marginal damage trading ratios or

one-for-one trading.

We also contribute to two other environmental regulation literatures. The first is the lit-

erature on hybrid incentive-based mechanisms, which attempt to mitigate variance in permit

prices through, for example, price floors or ceilings supported by injections or withdrawals

of permits (Roberts and Spence, 1976).8 Optimal trading ratios offer an alternative, and po-

tentially complementary, mechanism to mitigate permit price variance. The optimal trading

ratios allow aggregate emissions to adjust to the permit price, thereby reducing its vari-

ance. The second is the literature on environmental taxes. It is well-known that emissions

trading and environmental taxes can each correct environmental externalities by pricing the

externality. Optimal trading ratios imply that, because of asymmetric information, trading

ratios should not simply reflect expected marginal damages. Similarly, we show that source-

specific taxes generally should not equal expected marginal damages but should be adjusted

to reflect abatement cost uncertainty.9

Section 1 presents the model and derives the main results, which characterize the slope of

the regulators objective when using marginal damages trading ratios. These results demon-

strate that marginal damage trading ratios are not optimal, show how marginal damage

trading ratios should be adjusted to improve efficiency, and provide a first-order approxi-

mation of the efficiency gains from optimal trading ratios. Section 2 analyzes a special case

of the model in which the abatement costs and damages have the familiar linear-quadratic

form. We provide necessary and sufficient conditions for the optimality of marginal damage

trading ratios and present closed form solutions for the regulator’s objective studied in Sec-

tion 1. In Section 3, we present a simple two-source example of the linear-quadratic model.

This enables us to illustrate the intuition for the main results graphically and numerically.

Section 4 presents some preliminary calculations estimating the gains from optimal trading

ratios for two hypothetical emissions trading markets: a global carbon trading market and

a regional nitrogen trading market. Section 5 concludes.

8For recent contributions to this literature see Fell and Morgenstern, 2010; Hasegawa and Salant, 2011;
Grüll and Taschini, 2011; and Stocking, 2012.

9This generalizes Chavez and Stranlund (2009) as they obtain their result in a model with quadratic
functions. Also Weitzman (1974) uses the optimal source-specific taxes to derive the comparative advantage
of prices vs. quantities formula in a quadratic model, but does not present the actual values for these taxes.
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1 Model

There are n regulated sources of pollution. The description of a source varies depending on

the particular application of the model. For example, a source may correspond to a single

facility, or it may correspond to a large group of firms within the same sector of a given

country’s economy. The abatement costs for source i are Ci(ei; θi), where ei is the emissions

from source i and θi is a parameter that influences costs. Because abatement costs are in

terms of emissions, we define marginal abatement costs as MACi ≡ −∂Ci

∂ei
. We assume costs

are convex in emission reductions, so that −∂Ci

∂ei
> 0 and C ′′i ≡ ∂2Ci

∂e2i
> 0. From the point of

view of source i, the cost parameter θi is known when the abatement decision is made. From

the point of view of the regulator, θi is random variable with positive expected value θ̄i and

non-negative variance σ2
i . We use the expression “cost shocks” to refer to various realizations

of these random variables. Let E = (e1, e2, . . . , en) denote the vector of emissions.

These emissions cause damages, which are specified by a convex damage function D(E).

The marginal damage from source i is MDi ≡ ∂D
∂ei

> 0. We say a damage function is regular

if it can be written as

D(E) = F
(∑

αiei

)
(1)

for some convex function F and set of positive αi’s. Two familiar special cases of regular

damage functions are uniformly mixed pollution, in which αi = 1 for every i, and constant

marginal damage, in which F is linear.

The regulator uses a permit market to ameliorate the damages from pollution. We assume

this permit market is competitive. Each source is given an endowment of permits wi and

the aggregate endowment is w =
∑
wi. The sources face possibly different constraints on

the number of permits they must hold for each unit of emissions. These constraints are

described by a source-specific variable ri that is chosen by the regulator. In particular, if

source i emits ei units of pollution then they must hold riei permits. The ratio of rj to ri

reflects the rate at which emissions of source i can be converted to emissions of source j

through the trade of permits between the two sources.10 If the ratio ri
rj

is the same for every

10Suppose source i decreases emissions by one unit. Then it can sell ri permits to source j, which in turn
can increase emissions by ri

rj
.
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i and j, then we have one-for-one trading of emissions. Following the literature, we refer to

the ri’s as trading ratios.

The choice variables for the regulator are nominally the trading ratios and the permit

endowments. However, because we assume the permit market is competitive, the market

equilibrium only depends on w and is independent of the distribution of the wi.
11 More-

over, the permit market equilibrium is unchanged if the trading ratios and the aggregate

endowment are all multiplied by the same constant. Without loss of generality, then, we can

normalize the aggregate endowment as convenient. In our theoretical analysis we normalize

w to be equal to one.

Given a price p for permits, source i selects emissions to minimize the sum of abatement

costs and expenditures in the permit market. Source i’s problem is

min
ei

Ci(ei; θi) + p(riei − wi).

The first-order condition for ei is

− ∂Ci
∂ei

= rip. (2)

An immediate consequence of this equation is that, if two sources have different trading

ratios, then their marginal abatement costs will not be equal, i.e., the regulation is not cost-

effective. Under our normalization of the aggregate permit endowment, the permit market

clearing equation is ∑
i

riei = 1. (3)

The permit market equilibrium, conditioned on the regulator’s choice of trading ratios, is

summarized by equations (2) and (3). This is a system of n+1 equations and n+1 unknowns

(each of the ei and p). It is useful to describe the solution to these equations as a function of

the vector of trading ratios R and the vector of cost parameters Θ. Thus we have ei(R; Θ),

E(R; Θ), and p(R; Θ).

To compute the optimal trading ratios, the regulator selects values for the trading ratios

to minimize the expected sum of abatement costs and damages. Thus the regulator’s problem

11The analysis is unchanged if the regulator distributes permits with any non-distortionary method such
as through auctioning.
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is to choose R to minimize

W ≡ E

[∑
i

Ci(ei(R; Θ); θi) +D (E(R; Θ))

]
.

The corresponding first-order condition for rj is

∂W
∂rj

= E

[∑
i

(
∂Ci
∂ei

+
∂D

∂ei

)
∂ei
∂rj

]
= 0 for j = 1, 2, . . . n. (4)

This implies that, on average, the marginal abatement costs are equal to marginal damages,

where the average is weighted by the ∂ei
∂rj

’s. There is not a simple closed form solution to the

first-order conditions, even in a standard case in which the abatement cost functions and the

damage function are quadratic.

Now consider the intuitive, but ultimately inferior, approach to selecting the trading

ratios based on the ratio of expected marginal damages. This corresponds to selecting r1

and rj such that:

rj
r1

=
E[ ∂D

∂ej
]

E[ ∂D
∂e1

]
for every j 6= 1. (5)

The system of equations defined by (2), (3), and (5) has 2n equations and 2n unknowns (ei,

p, and rj for j 6= 1). Let ei(r1; Θ), E(r1; Θ), p(r1; Θ), and rj(r1; Θ) be the solutions to these

equations as a function of r1 and the Θ vector. The regulator’s problem in this case is to

find the value for r1 that minimizes total expected costs:

min
r1

E

[∑
i

Ci(ei(r1; Θ); θi) +D(E(r1; Θ))

]
.

The first-order condition for r1 is

E

[∑
i

(
∂Ci
∂ei

+
∂D

∂ei

)
∂ei
∂r1

]
= 0. (6)

The first-order condition implies that the regulator sets marginal abatement costs equal to

marginal damages on average where the average is weighted by the ∂ei
∂r1

’s.12 Let r̃1 be the

12Although (6) appears similar to (4), note that there is no reason that (4) should should hold for every
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solution to (6) and let r̃j ≡ rj(r̃1; Θ). We refer to the vector R̃ = (r̃1, r̃2, . . . , r̃n) as the

marginal damage trading ratios.

If the damage function is regular, then the condition defining the marginal damage trading

ratios simplifies considerably. Combining (1) with (5) implies

rj
r1

=
αj
α1

.

For example, if pollution is uniformly mixed, then the marginal damage trading ratios are

all equal to a common value and hence imply one-for-one trading.

The main result of our paper is to show that the marginal damage trading ratios will

generally not be equal to the optimal trading ratios. This may seem a bit surprising, so let

us first give intuition for why it is indeed true before turning to a more formal analysis.13

Building on our discussion of this point in the Introduction, once again focus on the the

special case of uniformly mixed pollution. Here marginal damages are the same across

sources, so one might expect that the optimal trading ratios would be equal across sources

as well. To see why such one-for-one trading is, in fact, not generally optimal for uniformly

mixed pollution, consider the market equilibrium condition (3). Evaluating this at the

solution ei(R; θ) gives ∑
i

riei(R; Θ) = 1. (7)

Now suppose for the moment the market is indeed designed with one-for-one trading and let

r be the common value for the trading ratios. It follows from (7) that the sum of emissions is

equal to the constant 1
r
, i.e., equal to the effective permit endowment. In general, however,

when the trading ratios differ between sources, the sum of emissions will not be constant, and

moreover, it will vary according to the realized values of Θ. This suggests that permit markets

that do not use one-for-one trading have an interesting and under-appreciated feature. In

these markets, sources in aggregate emit more (or less) pollution depending on the actual

values of their abatement cost functions, even though the aggregate permit endowment is

fixed.

j when (6) holds.
13Additional Appendix D gives a graphical analysis of why marginal damage trading ratios are optimal

only under full information and why optimal trading ratios differ from them under asymmetric information.
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The regulator, in turn, can use this feature to improve the performance of the permit

market. Because of the uncertainty about abatement costs, the regulator does not know the

efficient quantity of pollution. Loosely speaking, when aggregate marginal abatement costs

are high, the efficient quantity of pollution is large. When the aggregate marginal abatement

costs are low, the efficient quantity of pollution is small. The regulator can engender a similar

relationship between emissions and abatement costs by optimally selecting the trading ratios.

Now return to the formal analysis of the general case of an arbitrary damage function.

To show that the optimal trading ratios will generally not be equal to the marginal damage

trading ratios, we utilize the structure of the regulator’s problem as well as the characteristics

of the marginal damage trading ratios to evaluate the derivative of the regulator’s objective

function W at the marginal damage trading ratios. This gives us our main result (all proofs

are in the Appendix).

Proposition 1. The derivative of the regulator’s objective function W with respect to rj,

evaluated at the marginal damage trading ratios R̃, is given by

∂W
∂rj

∣∣∣∣
R̃

= COV (p, ej) +
∑
i

COV

(
r̃j
∂D

∂ei
− r̃i

∂D

∂ej
, A−1

aip

r̃iC ′′j

)

− COV

(
A−1

∑
i

ai
r̃i

∂D

∂ei
, ej

)
+ E

[(
p− A−1

∑
i

ai
r̃i

∂D

∂ei

)]
E [ej]

where the covariances and the expectations are also evaluated at R̃, ai ≡ r2i /C
′′
i , and A ≡∑

i ai.

Proposition 1 shows that the derivative ofW with respect to rj, evaluated at the marginal

damage trading ratios, can be written as the sum of n+2 covariances plus an additional term

which is the product of two expected values. If the overall sum of these terms is positive,

then the derivative is positive, and the objective function can be improved by decreasing the

trading ratio rj below the marginal damage trading ratio r̃j. If this sum is negative, then the

derivative is negative, and the objective function can be improved by increasing rj above the

marginal damage trading ratio r̃j. If this sum is equal to zero, then the derivative is equal

to zero, and the first-order-condition (4) is satisfied at the point R̃. In this case, the optimal
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trading ratio for source j is in fact equal to the marginal damage trading ratio r̃j. We will

analyze the properties of the derivative in Proposition 1 through a variety of special cases

and numerical examples. But at this point, it is important to stress that there is no reason,

in general, that the overall sum should be equal to zero. In other words, the marginal damage

trading ratios are generally not optimal. Furthermore, to a first-order approximation, the

efficiency gain in moving from a marginal damage trading toward an optimal trading ratio

is given by the magnitude of the derivative in Proposition 1. This magnitude depends on

the marginal damages, the marginal damage trading ratios, and the uncertainty about price

and emissions generated by the uncertainty about the abatement cost functions.

An additional implication of Proposition 1 is that the optimal trading ratios lead to

ex post inefficiency. Once again this is perhaps most clearly illustrated with the case of

uniformly mixed pollution. If trading ratios are not one-for-one, then by Equation (2), the

marginal costs are not equal. Aggregate abatement costs could be reduced by increasing

abatement from a low-cost source and decreasing abatement from a high-cost source. The

regulator tolerates this (second-order) loss in ex post efficiency to obtain the (first-order)

gain in ex ante efficiency from using the optimal trading ratios.

Next consider a special case in which damage functions are regular as defined in (1). For

this special case, the derivative in Proposition 1 simplifies considerably.

Corollary 1. Suppose that the damage function is regular. Then the derivative of the reg-

ulator’s objective function W with respect to rj, evaluated at the marginal damage trading

ratios R̃, is given by
∂W
∂rj

∣∣∣∣
R̃

= COV (p, ej)|R̃ .

For regular damage functions, the optimal trading ratios are equal to the marginal damage

trading ratios if and only if COV (p, ej), evaluated at R̃, is equal to zero for every j. Although

both the cases of uniformly mixed pollution and linear damages have received considerable

attention in the literature, Corollary 1 appears to be a novel insight. In Section 3 we give

simple numerical examples in which the covariance is indeed not equal to zero, for both

uniformly mixed and linear damages.

Corollary 1 shows that, for regular damage functions, the optimality of marginal damage

11



trading ratios depends on COV (p, ej). In particular, the regulator should decrease rj below

r̃j, i.e., offer source j a favorable trading ratio, if and only if COV (p, ej) is positive. Since

the permit price is driven by the marginal abatement costs, the permit price will be high

when marginal abatement costs are high. This is precisely the situation in which the total

permit endowment should be relaxed. By giving favorable trading ratios to the source whose

emissions are large when the permit price is high, the regulator can, in essence, relax the

aggregate emissions constraint in the event of high prices and hence improve efficiency. This

result is illustrated graphically in Additional Appendix D.

Having shown that the optimal trading ratios will generally not be equal to the marginal

damage trading ratios, we now turn to characterizing the optimal trading ratios.

Proposition 2. The optimal trading ratios imply

E[p] = E

[
A−1

∑
i

ai
1

ri

∂D

∂ei

]
. (8)

The expression 1
ri

∂D
∂ei

is equal to source i’s marginal damage divided by its trading ratio,

which we interpret as the “normalized marginal damage”. Proposition 2 shows that the

expected price is equal to the expected weighted average of the normalized marginal dam-

ages, where the weight ai is inversely proportional to the second derivative of the marginal

abatement cost functions. This generalizes the intuition that price should reflect marginal

damage. We can further characterize the optimal trading ratios by taking the expectation of

(2) which gives E[p] = E[−∂Ci

∂ei
]/ri. Putting this together with (8) and defining “normalized

marginal abatement costs” analogously reveals that the expected normalized marginal abate-

ment costs are equal to the expected weighted average of the normalized marginal damages

for each source. This generalizes the intuition that marginal abatement costs should equal

marginal damages.

1.1 Optimal Source-Specific Taxes

We have shown that marginal damage trading ratios are generally not optimal. The regulator

can improve the performance of the market by adjusting the trading ratios such that expected
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price is equal to an expected weighted average of marginal damages where the weights depend

on the second derivative of the abatement cost functions. This raises the question as to

whether pricing mechanisms, such as pollution taxes, should be set to expected marginal

damages or whether they too should be adjusted under asymmetric information.

Suppose ti is the tax per unit of emissions for source i, and T is the vector of source-

specific taxes. As is well-known, the source will equate its marginal abatement costs and the

tax, so the first-order condition for ei in the source’s cost minimization problem is

− ∂Ci
∂ei

= ti. (9)

Let the solution to this equation be ei(T ; Θ). The regulator selects the source-specific taxes

to minimize the expected sum of abatement costs and damages. Thus the regulator’s problem

is to choose T to minimize

W ≡ E

[∑
i

Ci(ei(T ; Θ); θi) +D (E(T ; Θ))

]
.

The first-order condition of the regulator’s objective with respect to tj is14

∂W

∂tj
= E

[∑
i

(
∂Ci
∂ei

+
∂D

∂ei

)
∂ei
∂tj

]
= E

[(
−tj +

∂D

∂ej

)(
−1

C ′′j

)]
= 0 (10)

Solving for tj implies that

tj =
E
[
∂D
∂ej
/C ′′j

]
E
[
1/C ′′j

] = E
[
∂D

∂ej

]
+
COV

(
∂D
∂ej
, 1/C ′′j

)
E
[
1/C ′′j

] . (11)

Since in general there is no reason the covariance term in (11) should equal zero, it is generally

not the case that optimal source-specific taxes should equal expected marginal damages. We

see that optimal source-specific taxes should indeed be adjusted by a factor that depends on

14The second equality follows from (9) and from differentiating (9), which implies
∂ej
∂tj

= −1
C′′

j
and ∂ei

∂tj
= 0

for i 6= j.
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the second derivative of the abatement cost function.15

The optimal source-specific taxes in (11) are related to the theory of optimal taxation

first studied by Ramsey (1927). In optimal Ramsey taxation, larger taxes are applied to

more inelastic goods. Note that 1/C ′′ is related to the abatement cost elasticity.16 Thus if

marginal damages are high when the abatement cost elasticity is high, then the second term

in (11) is positive and the optimal source-specific tax exceeds expected marginal damages

(i.e., is larger in the inelastic good). This intuition is illustrated graphically in the Additional

Appendix C.

2 A Linear-Quadratic Example

Additional insight into the the structure of the optimal trading ratios, the marginal damage

trading ratios, and the differences between them can be gleaned from an example with

specific functional forms. In this example, the abatement cost function

Ci(ei; θi) =
λi
2

(
θi
λi
− ei

)2

(12)

is quadratic and the marginal abatement cost function

− ∂Ci
∂ei

= θi − λiei (13)

is linear. We interpret θi as the intercept and λi as the slope of the marginal abatement cost

function. It is convenient to collect the λi into the diagonal matrix Λ. We assume that the

random variables θi are independent.

The example features a quadratic damage function as well. We have

D(E) = W tE +
1

2
EtVE, (14)

where W is a vector with entries ωi and V is a symmetric matrix with entries vij. Marginal

15In the special case of linear damages, ∂D/ei is non-stochastic so the second term in (11) is zero and the
optimal tax is simply marginal damages.

16The abatement cost elasticity is (1/C ′′)(P/e).
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damages are given by
∂D

∂ei
= ωi +

∑
k

vikek.

Some special cases are worth noting. First, if V is the zero matrix, then damages are linear

and marginal damages constant. Second, if ωi = ω for every i and vij = v for every i and j,

then pollution is uniformly mixed.

A distinct advantage of the linear-quadratic example is that we can obtain simple closed-

form expressions for p and ej. These, in turn, enable us give an explicit expression for

COV (p, ej). We state this as the first of several results for the linear-quadratic example.

(The proofs are in Additional Appendix A.)

Result 1. In the linear-quadratic example,

COV (p, ej) =
A−1rj
λj

(
σ2
j

λj
− A−1

∑
i

ai
σ2
i

λi

)
. (15)

It follows that, if the damage function is regular, then the optimal trading ratios are equal to

the marginal damage trading ratios if and only if
σ2
j

λj
is the same for every source j.

We see that, for regular damage functions, the difference between the optimal trading

ratios and marginal damage trading ratios depends on whether or not the abatement cost

functions exhibit a specific type of homogeneity. In particular, if the ratio of the variance

of the cost parameter σ2
j to the slope of the marginal abatement cost function λj is the

same across all sources, then the optimal trading ratios are equal to the marginal damage

trading ratios. If, however, the ratios of the variance to the slope vary across sources, then

the optimal trading ratios are different from the marginal damage trading ratios.

Building on Result 1, we can quantify the efficiency gains from moving from marginal

damage trading ratios to the optimal trading ratios. The slope of the regulator’s objective

at the marginal damage trading ratios gives a first-order approximation of these efficiency

gains. For regular damage functions, this first-order approximation for a small change in

rj is given by (15). Thus the relative gain from a small change in rj is larger if σ2
j/λj is

further from the weighted average of the σ2
i /λi’s. If we adjust all the rj’s from the marginal

damage trading ratios toward the optimal trading ratios, the first-order approximation of
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the gain will be larger if the σ2
j/λj’s are further from their weighted average, intuitively, if

the dispersion of the σ2
j/λj’s is larger. A special case of regular damage functions illustrates

this intuition most clearly.

Result 2. In the linear-quadratic example, suppose that pollution is uniformly mixed and

that λi = 1 for every i. To a first-order approximation, the efficiency advantage of the

optimal trading ratios relative to the marginal damage trading ratios is

1

r̃
√
n

√√√√( 1

n

) n∑
i

(
σ2
j −

1

n

∑
i

σ2
i

)2

.

The square root term in this expression corresponds to the standard deviation of the list

of numbers σ2
1, σ

2
2, . . . , σ

2
n. So for this special case, the efficiency advantage of the optimal

trading ratios relative to the marginal damage trading ratios is increasing in the standard

deviation of the variances of the cost parameters. It is decreasing in the number of sources,

but at a slow rate, even with our assumption that the uncertainty is uncorrelated across

sources.

In summary, for regular damage functions, heterogeneity of abatement costs (through

differences in the ratio of variance of cost uncertainty to slope of marginal abatement cost)

leads to a wedge between the optimal trading ratios and the marginal damage trading ratios.

The greater the degree of this heterogeneity, the greater the efficiency advantage of the

optimal trading ratios.

Next consider arbitrary damage functions. To study these, we simplify the linear-

quadratic case by eliminating the abatement cost heterogeneity that was critical in our

discussion of regular damage functions. Accordingly, we have

σ2
i = σ and λi = λ for every i. (16)

Under this restriction, we can characterize the regulator’s objective as follows.
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Result 3. In the linear-quadratic example, suppose that (16) holds. Then we have

W =
∑

Ci(E[ei]; θ̄i) +D(E[E]) +
σ2

2λ2

(
λ+

∑
i

vii −
RtVR

RtIR

)
, (17)

where I is the identity matrix.

As we might expect, the quadratic functions yield a mean-variance structure for the

regulator’s objective. Analyzing extreme cases allows us to further characterize the opti-

mal trading ratios. First, suppose that the variance σ2 is close to zero. In this case, the

regulator’s objective is approximately deterministic. It follows that the optimal trading ra-

tios are proportional to the marginal damages evaluated at the optimal emissions standards

(Yates 2002). Now suppose that the variance is large. Then the regulator’s objective is

approximately equal to the σ2

2λ2
term in (17). Thus the regulator wants to select the values

for ri to maximize
RtVR

RtIR
.

This is the well-known problem of maximizing the ratio of quadratic forms. The solution

follows from Kaiser and Rice (1973). Let ν be the largest eigenvalue of V. The optimal vector

R is equal to the eigenvector of V corresponding to this eigenvalue. In less extreme cases for

the variance, the optimal trading ratios reflect a trade-off between these two benchmarks.

As the variance increases, the optimal trading ratios approach the eigenvector of V. As the

variance decreases, the optimal trading ratios approach the marginal damages evaluated at

the optimal emission standards.

We can also give a condition under which the optimal trading ratios are equal to the

marginal damage trading ratios.

Result 4. In the linear-quadratic example, suppose equation (16) holds, W = 0, and V is

invertible. Then the optimal trading ratios are equal to the marginal damage trading ratios

if and only if E[Θ] is an eigenvector of V.

Result 4 is similar in structure to Result 1. If the parameters of the abatement cost

functions satisfy a particular condition, then the optimal trading ratios are equal to the

marginal damage trading ratios. But this time the condition is defined with respect to
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the vector of expected values, rather than being a condition on the variances. Under the

conditions of Result 4, the marginal damage trading ratios, the expected emissions, and

the expected cost parameters all lie on the same ray from the origin. This ray is also an

eigenvector of V. It turns out that this eigenvector maximizes the quadratic form in (17),

which effectively eliminates concerns about uncertainty. Hence the optimal trading ratios,

which in general differ from the marginal damage trading ratio on account of such uncertainty,

offer no improvement relative to the marginal damage trading ratios in this case.17

Taken as a whole, the results for the quadratic example reinforce and enhance our findings

from the general model. It is possible that the optimal trading ratios can be equal to the

marginal damage trading ratios, but this will generally not occur. The efficiency gains from

using the optimal trading ratios will depend in a complicated manner on distributions of

both the expected value and variances of the random variables in the cost functions as well

as the interaction of these distributions with the properties of the damage function.

3 Numerical Calculations

In this section we use special cases of the linear-quadratic model to illustrate Corollary 1

with graphs and numerical calculations.18

3.1 Uniformly Mixed

We start with uniformly mixed pollution. Consider a simple example with two sources.

Source 1’s marginal abatement costs are known with certainty. Source 2’s cost shock can

either be high (H) or low (L) with equal probability. For convenience, we normalize the total

permit endowment such that the marginal damages trading ratios are unity, i.e., R̃ = (1, 1).

Figure 1 shows the marginal abatement costs for each source, the two aggregate (or “mar-

ket”) marginal abatement costs corresponding to the high and low outcome, and marginal

damages.19 The first-best outcome occurs at the intersection of the appropriate market

17 In Figure 7 in Additional Appendix D, these points are not all on the same ray, so the marginal damage
trading ratios are not optimal.

18The code used to determine these results is available upon request.
19The market marginal abatement cost is found by horizontal summation of the sources’ marginal abate-
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marginal abatement cost and marginal damages. The numerical values for emissions, prices,

and marginal abatement costs are given in Panel A of Table 1. Notice that the first-best

outcome features variance in both prices and aggregate emissions: when costs are low, prices

and aggregate emissions are low and when costs are high, prices and aggregate emissions are

high.

Figure 1 and Panel B of Table 1 show the results for the marginal damage (one-for-one)

trading ratios. Because of asymmetric information, the first-best outcome is not obtained.

In the event of the high cost shock, the total permit endowment is too small, marginal

abatement costs exceed marginal damages, and there is a deadweight loss relative to the

first-best outcome. This deadweight loss is indicated by the upper triangle. In the event

of a low cost shock, the total endowment is too large, marginal abatement costs are less

than marginal damages, and the deadweight loss is the lower triangle. The marginal damage

trading ratios feature variance in price, but aggregate emissions are unchanged across the

two shocks.

The covariance between prices and emissions is of particular interest. Inspection of either

the data in Panel B of Table 1 or the relationship between the points in Figure 1 reveals

that COV (p, ej)|R̃ 6= 0 for either source. In fact, the covariance of emissions and prices are

negative for Source 1, but positive for Source 2. Applying Corollary 1 shows that efficiency

can be increased by increasing Source 1’s trading ratio, but decreasing Source 2’s trading

ratio.

The optimal trading ratios are illustrated in Figure 2 and Panel C of Table 1. The optimal

trading ratio for Source 1 is larger than the marginal damage trading ratio. It follows that

the cost of emissions are higher for Source 1 and so its emissions are lower for both cost

shocks. This is reversed for Source 2. Relative to the marginal damage trading ratios, the

optimal trading ratios lead to a decrease in the variance in prices and an increase in the

variance in aggregate emissions. Moreover, aggregate emissions are larger in the case of a

high cost shock, but smaller in the case of a low cost shock. Thus the optimal trading ratios

provide a closer match to the features of the first-best outcome than the marginal damage

trading ratios. Correspondingly, as shown in Panel B and C of Table 1, deadweight loss

ment costs.
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decreases when optimal trading ratios are used, but it does not disappear.20 The optimal

trading ratios cannot duplicate the first-best outcome.

Table 1: Numerical example: uniformly mixed pollution

Panel A: First-Best

MAC1 price MAC2 e1 e2 e1 + e2
Low Cost 13.33 n.a. 13.33 6.67 1.67 8.34
High Cost 16.67 n.a. 16.67 3.33 8.33 11.67

Panel B: Marginal damage trading ratios.
r1 = r2 = 1; DWL=2.08

MAC1 price MAC2 e1 e2 e1 + e2
Low Cost 12.5 12.5 12.5 7.5 2.5 10
High Cost 17.5 17.5 17.5 2.5 7.5 10

Panel C: Optimal trading ratios
r1 = 1.03; r2 = 0.98; DWL=1.92

MAC1 price MAC2 e1 e2 e1 + e2
Low Cost 12.89 12.55 12.23 7.11 2.77 9.87
High Cost 17.89 17.41 16.97 2.11 8.03 10.14

1 The example is parameterized by MAC1 = 20 − e1; MACL2 =
15−e1; MACH2 = 25−e1; MD = 5+e1+e2 where high and low
costs occur with equal probability. Total permits are normalized
to 10.

3.2 Linear Damages

Consider another example of Corollary 1. The two sources and their abatement costs are

identical to those used in the example above, but damages are linear and differ across the two

sources. Source 1 has low marginal damages (MD1 = 10) and Source 2 has high marginal

damages (MD2 = 12). This example is also consistent with the model employed by Fowlie

and Muller (2013).

Table 2 illustrates the results for the marginal damage trading ratios, one-for-one trading,

and the optimal trading ratios. From (5), the marginal damage trading ratios satisfy r2 =

20Because the market is not cost effective ex post, the market marginal abatement cost is not simply
the horizontal sum of the source marginal abatement costs. Thus the deadweight loss cannot be simply
illustrated in Figure 2.
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12/10 ∗ r1. Panel A of Table 2 shows that, under marginal damage trading ratios, the value

for r1 is 0.92, so that r2 = 1.10. Thus the low damage source (Source 1) pays a relatively low

effective price for its emissions and the high damage source (Source 2) pays a relatively high

effective price for its emissions. The marginal damage trading ratios hold damages constant

across the two cost shocks, but allow aggregate emissions to vary.

Interestingly, one-for-one trading actually performs better than marginal damage trading,

even though pollution is not uniformly mixed in this example. As shown in Panel B of

Table 2, under one-for-one trading, the damages are not held constant across the cost shocks,

but the aggregate emissions are held constant. This leads to a lower deadweight loss than

marginal damage trading ratios, which verifies Fowlie and Muller’s observation that such an

outcome is possible in their model.

The optimal trading ratios have a lower deadweight loss than either of the other schemes.

Panel C of Table 2 shows calculations for the the optimal trading ratios. Since COV (p, e1) <

0, the optimal trading ratio for source 1 is greater than the marginal damage trading ratio

(0.96 vs. 0.93). On the other hand, since COV (p, e2) > 0, the optimal trading ratio for

source 2 is lower than the marginal damage trading ratio (1.04 vs 1.10). Under the optimal

trading ratios, neither the aggregate emissions nor the damages are constant across the cost

shocks. This flexibility improves efficiency.

4 Applications

We have established that the optimal trading ratios will generally be different from the

marginal damage trading ratios, even for uniformly mixed pollution. We now illustrate po-

tential policy implications of this observation by considering two permit trading applications.

4.1 Uniformly Mixed: Carbon Trading

Consider a stylized global carbon trading market. Ackerman and Bueno (2011) determine

simple two-parameter functions that characterize the cost of reducing carbon emissions for
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Table 2: Numerical example: linear damages with MD1 = 10,MD2 = 12

Panel A: Marginal damage trading ratios.
r1 = 0.93; r2 = 12/10r1 = 1.10; DWL=7.38

MAC1 price MAC2 e1 e2 e1 + e2 Damages
Low Cost 7.54 8.21 9.05 12.5 5.95 18.45 196.0
High Cost 12.5 13.6 15 7.54 10.0 17.54 196.0

Panel B: One-for-one trading.
r1 = 1; r2 = 1; DWL=7.25

MAC1 price MAC2 e1 e2 e1 + e2 Damages
Low Cost 8.5 8.5 8.5 11.5 6.5 18 193
High Cost 13.5 13.5 13.5 6.5 11.5 18 203

Panel C: Optimal trading ratios.
r1 = 0.96; r2 = 1.04; DWL=7.06

MAC1 price MAC2 e1 e2 e1 + e2 Damages
Low Cost 8.10 8.40 8.67 11.9 6.24 18.14 193.9
High Cost 13.08 13.56 14.16 6.92 10.8 17.72 199.3

1 The example is parameterized by MAC1 = 20 − e1; MACL2 = 15 − e1;
MACH2 = 25− e1; where high and low costs occur with equal probability.
Total permits are normalized to 18, which would be the optimal emissions
with 1:1 trading.
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various geographic regions of the world.21 To apply these to our model, we interpret our

sources as regions and write Ackerman and Bueno’s functions in terms of emissions rather

than emission reductions. This gives

−∂Ci
∂ei

=
ai(bi(1 + θi)− ei)

ei
,

where ai and bi are constants determined by Ackerman and Bueno. We interpret bi(1 + θi)

as the stochastic business-as-usual (BAU) emissions. For simplicity we model the random

variable θi with a three point symmetric distribution with zero expectation so that θi takes on

the values {−ki, 0, ki} with probabilities {ρi, 1− 2ρi, ρi}. For example, there is a probability

ρi that BAU emissions increase by ki percent over their expected value. We also assume

that the θi are independent across regions. To complete the model we specify the marginal

damage function as
∂D

∂ei
= β

∑
(ei − bi) + s,

where β (the slope of marginal damage) comes from Newell and Pizer (2003) and s (the

social cost of carbon at expected BAU) comes from IWGSSC (2010).

For tractability, we focus on the industrial sectors of the four regions with the largest

emissions: China, Europe, South/South East Asia, and the U.S. The results are given in

Tables 3 and 4. For a given set of parameters ρi an ki, we calculate the total expected costs

(expected sum of abatement costs and damages) under the optimal trading ratios and the

marginal damage trading ratios.

In Table 3, we consider symmetric abatement cost shocks (the tail probabilities ρi and

the percentage change in BAU emissions ki are the same across regions). Because China

has the largest BAU emissions, shocks to Chinese abatement costs drive the carbon price.

Hence Chinese emissions covary positively with price under marginal damages trading ratios,

and Corollary 1 implies that efficiency can be improved by lowering China’s trading ratio.

Indeed, China’s optimal trading ratios are below one in each scenario, whereas the trading

ratios for the other regions exceed one in each scenario. For the largest uncertainty (ki = 0.5

21These functions are particularly easy to work with, but are not uncontroversial. A similar analysis could
be done with any integrated assessment model.
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Table 3: Carbon Trading with Optimal Trading Ratios: Symmetric Scenarios

ρi = 50% ki = 0.2
ki = 0.5 ki = 0.33 ki = 0.2 ki = 0.1 ρi = 25% ρi = 10%

Optimal trading ratios
China 0.877 0.946 0.981 0.995 0.990 0.996
Europe 1.082 1.037 1.013 1.003 1.007 1.003
S/SE Asia 1.133 1.055 1.019 1.005 1.010 1.004
U.S.A. 1.063 1.030 1.011 1.003 1.006 1.002
St. Dev. Price
Marginal Damage TR 38.534 25.694 15.418 7.709 10.902 6.895
Optimal TR 37.649 25.463 15.371 7.704 10.886 6.891
Expected Price
Marginal Damage TR 74.022 74.022 74.022 74.022 74.022 74.022
Optimal TR 73.838 73.997 74.023 74.023 74.024 74.023
Total Cost
First Best 305.699 305.699 305.699 305.699 305.699 305.699
Marginal Damage TR 321.374 312.554 308.148 306.309 306.921 306.188
Optimal TR 320.665 312.424 308.132 306.308 306.917 306.187
Deadweight Loss
Marginal Damage TR 15.674 6.855 2.449 0.610 1.222 0.488
Optimal TR 14.966 6.725 2.432 0.609 1.218 0.488
Percent Reduction 4.5% 1.9% 0.7% 0.16% 0.33% 0.13%

1 The permit endowment is set so that the marginal damage trading ratios are 1. This represents
approximately a 50% reduction from BAU emissions.

2 Costs and deadweight loss (DWL) in billions of dollars. Prices in 2007 dollars per ton carbon

and ρi = 50%), optimal trading ratios reduce the deadweight loss by $0.5 billion or about

5%. For lower levels of uncertainty, the gains from optimal trading ratios are more modest.

In Table 4, we consider asymmetric cost shocks. Here China’s abatement costs are

uncertain and the other regions’ abatement costs are known. The gains from using optimal

trading ratios are more dramatic than in the symmetric case of Table 3. With a high level

of uncertainty about China’s abatement costs (kChina = 0.5), optimal trading ratios reduce

the deadweight loss by about 22% or around $2 billion per year.
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Table 4: Carbon Trading with Optimal Trading Ratios: Asymmetric Scenarios

kChina = 0.5 kChina = 0.33 kChina = 0.2 kChina = 0.1

Optimal trading ratios
China 0.798 0.903 0.965 0.991
Europe 1.146 1.071 1.026 1.007
S/SE Asia 1.154 1.073 1.027 1.007
U.S.A. 1.152 1.072 1.027 1.007
St. Dev. Price
Marginal Damage TR 30.426 20.285 12.171 6.085
Optimal TR 27.113 19.312 11.966 6.060
Expected Price
Marginal Damage TR 74.023 74.022 74.022 74.022
Optimal TR 73.635 73.968 74.031 74.028
Total Cost
First Best 305.699 305.699 305.699 305.699
Marginal Damage TR 315.270 309.934 307.220 306.079
Optimal TR 313.194 309.516 307.166 306.076
Deadweight Loss
Marginal Damage TR 9.571 4.235 1.521 0.380
Optimal TR 7.495 3.817 1.467 0.377
Percent Reduction 21.7% 9.9% 3.6% 0.9%

1 The permit endowment is set so that the marginal damage trading ratios are 1. This
represents approximately a 50% reduction from BAU emissions.

2 Costs and deadweight loss (DWL) in billions of dollars. Prices in 2007 dollars per ton
carbon.

3 For each column, the tail probabilities are ρChina = 50% for China and ρROW = 0% for
the other three regions.
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4.2 Non-Uniformly Mixed: Nitrogen Trading

Our non-uniformly mixed policy application considers the trading of Nitrogen emission per-

mits between waste-water treatment plants (WWTP) located in North Carolina and Vir-

ginia. The data for this application is described in detail in Yates et al (2013) and Doyle

et al (2013). Briefly, there are 51 waste-water treatment plants spatially distributed along a

river system that connects to a coastal estuary (see Figure 3). In the context of our model,

each WWTP corresponds to a source of pollution. The abatement costs and damages are

consistent with linear-quadratic example and, furthermore, λi = λ for every i. The value for

λ is obtained from engineering cost estimates for reducing pollution at a generic WWTP.

There is a distinct advantage to using the linear-quadratic structure for policy applica-

tions of this type. The equations characterizing equilibrium in the permit market are linear

in emissions, so that expected total costs of a given policy are a functions of the first and

second powers of the random variables θi. Thus we do not need to make explicit distribu-

tional assumptions about the random variables. Rather we just need to specify the mean

and variance of the distributions. The expected value for the cost parameters, θ̄i, are based

on the size of the WWTP. The variances, σ2
i , are scaled proportionately to the expected

values, so that a single parameter η captures the “percent error” in the random variables.22

Damages are measured at 96 sites along the river system and in the estuary. The damage

function is given by

D(E) =
1

2
(AE + Y )tB(AE + Y ).

In this expression, E is the vector of emissions of nitrogen from the 51 WWTP, Y is the

vector of background levels of Nitrogen from non-point sources at the 96 measurement sites,

B is a diagonal matrix with entries bjj (interpreted as the slope of marginal damage at

site j), and A is a transfer matrix that maps emissions from the WWTP through the river

system to the measurement sites. The elements of Y and A are determined by matching

the location of the WWTP and measurement sites to the output of the USGS maintained

SPARROW model (Hoos and McMahon 2009). For simplicity we assume that the bjj = b,

22The standard deviation of each random variable is η
100 (E[θi]

2 ), so that it is very likely that a realization of
the random variable lies within η percent of the expected value (for a normal random variable the probability
is 0.95).
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and that b is within the range determined by Yates et al (2013).

We determine the optimal trading ratios and the marginal damage trading ratios as

a function of the parameters η and b. The parameter η measures the magnitude of the

uncertainty about abatement costs. The parameter b measures the magnitude of the severity

of damages from emissions. The results for various parameter combinations are shown in

Table 5. The ratio of the largest trading ratio to the smallest is consistently larger for the

optimal trading ratios than for the marginal damage trading ratios. The optimal trading

ratios decrease the price dispersion relative to the marginal damage trading ratios. They

also increase the dispersion in total emissions. Now consider the parameter combination in

the first column of Table 5. For this case, all 51 marginal damage trading ratios and all 51

optimal trading ratios are shown in Figure 3.

The percent reduction in deadweight loss from using optimal trading ratios rather than

marginal damage trading ratios varies quite a bit according to the values for the parameters.

The percentage reduction is generally substantial and greater than in the carbon example.

As we would expect from our analysis of the quadratic example, the distributions for the

uncertainty parameters σ2
i and θ̄i play a critical role in determining these reductions. There

are a few WWTP that have large expected values (and hence large variances) relative to

the other WWTP.23 In the Appendix, we show that simply taking the WWTP with the

largest expected value and artificially reducing its expected value to be equal to the average

expected value (and hence its variance to be equal to the average variance as well) changes the

reduction in deadweight loss from 75 percent to 28 percent. Furthermore, if we assume that

all WWTP have the same expected values and variances, then the reduction in deadweight

loss is much less than 1 percent, but it does not equal zero.

5 Conclusion

We analyze a model of asymmetric information between a regulator and sources of pollution

and show that optimal policies are not based simply on expected marginal damages. In

23These WWTP have large output, and it is assumed that the expected value is proportional to output,
and the variance is proportional to expected value.
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Table 5: Nitrogen Trading with Optimal Trading Ratios

Uncertainty Percent Error η = 10 η = 5
Slope of MD b = 30 b = 60 b = 90 b = 30 b = 60 b = 90

Trading ratios
Max Marginal Damage 3.553 3.580 3.607 3.553 3.580 3.607
Min Marginal Damage 0.063 0.064 0.066 0.063 0.064 0.066
Max Optimal 6.553 5.088 4.598 5.009 4.214 3.956
Min Optimal 0.015 0.035 0.048 0.035 0.055 0.061
St. Dev. Price
Marginal Damage TR 2.171 2.157 2.143 1.085 1.079 1.072
Optimal TR 0.525 0.829 1.080 0.420 0.669 0.820
Expected Price
Marginal Damage TR 2.737 5.327 7.777 2.739 5.328 7.778
Optimal TR 1.635 3.907 6.280 2.024 4.618 7.179
St. Dev. Total Emissions
Marginal Damage TR 0.038 0.038 0.038 0.019 0.019 0.019
Optimal TR 0.055 0.048 0.044 0.024 0.020 0.019
Expected Total Emissions
Marginal Damage TR 4.842 4.780 4.791 4.842 4.780 4.719
Optimal TR 4.846 4.783 4.722 4.844 4.781 4.720
Total Cost
First Best 9.773 19.240 28.419 9.771 19.236 28.412
Marginal Damage TR 9.870 19.336 28.512 9.796 19.260 28.436
Optimal TR 9.798 19.281 28.471 9.782 19.253 28.432
Deadweight Loss
Marginal Damage TR 0.097 0.095 0.094 0.024 0.024 0.023
Optimal TR 0.024 0.040 0.053 0.010 0.016 0.019
Percent Reduction 74.9% 57.8% 43.8% 56.9% 31.4% 18.6%

1 The permit endowment is set to the sum of the optimal pollution standards.
2 Costs and deadweight loss (DWL) in millions of dollars per year.
3 Prices in dollars per pound.
4 Emissions in millions of pounds per year.
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the context of pollution permit markets, we find that optimal trading ratios (trading ratios

which maximize ex ante efficiency) generally depart from marginal damage trading ratios.

The gains from optimal trading ratios depend on the sum of various covariances and expected

values. In simple cases, such as uniformly mixed pollution or linear damages, the gain is

simply determined by the covariance of the price and a source’s emissions. In particular, if

a source’s emissions covary positively with the market price of permits, then the regulator

can improve efficiency by giving the source a relatively favorable trading ratio. Intuitively,

this favorable trading ratio allows additional emissions—despite a fixed cap—in precisely

the case when the cap is set too tight from an ex post perspective. In the context of an

emissions tax, our results imply that the regulator can improve ex ante efficiency by setting

source-specific taxes according to a Ramsey-like rule which adjusts the expected marginal

damages to account for the covariance of marginal damages with the slope of the marginal

abatement costs.

Our theoretical analysis shows that it is possible for a regulator to improve the efficiency

of pollution permit markets by using optimal trading ratios. However, whether the regu-

lator should implement optimal trading ratios depends crucially on whether the benefits of

optimal trading ratios are sufficient to offset any additional regulatory costs which might

arise from a more complicated regulatory scheme. To estimate the magnitude of possible

benefits, we compare optimal trading ratios to marginal damage trading ratios in two policy

environments: a global carbon trading market and a nitrogen trading market for watersheds

in North Carolina and Virginia. The results from these calculations show that the benefits

vary from significant to trivial depending the characteristics of the regulator’s uncertainty

about abatement costs.

We did not estimate the additional regulatory costs, but in many respects, the optimal

trading ratios are no more costly to implement than the marginal damage trading ratios,

especially for non-uniformly mixed pollution. Both require the regulator to estimate marginal

damages by analyzing models of emission transport through the relevant physical space in

conjunction with models mapping emissions into harm to humans and ecosystems. Both

require moving away from the intuitively appealing and easy to explain cost-effectiveness

criterion. And both give the regulator discretion to give differential regulatory requirements
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to the various sources of pollution, thereby potentially opening the door for the sources to

lobby or litigate for a more favorable treatment. The only additional cost of optimal trading

ratios would appear to be the cost of estimating the parameters for the random variables in

the abatement cost functions.

Guided by Weitzman (1974), the variance of abatement cost uncertainty has traditionally

been viewed as the reason why price and quantity instruments may perform differently.

Weitzman shows that the superior instrument can be determined by comparing the relative

slopes of the marginal abatement cost and the marginal damage functions. Once the superior

instrument has been determined, regulators simply focus on expected costs and damages.

On the contrary, our analysis suggests a more fundamental role for the variance of abatement

cost uncertainty. In particular, this variance should be incorporated into the design of the

policy instrument itself, not just inform the choice between policy instruments.
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Appendix

Proof of Proposition 1.

From (2) and (3), the equilibrium for the optimal trading ratios is defined by the n− 1

equations ∂Ci

∂ei
/ri =

∂Cj

∂ej
/rj for each i 6= j and by the equation

∑
i riei = 1. Differentiating

the n− 1 equations with respect to rj gives

C ′′i
ri

∂ei
∂rj

=
−∂Cj

∂ej

r2j
+
C ′′j
rj

∂ej
∂rj

=
p

rj
+
C ′′j
rj

∂ej
∂rj

for each i 6= j (18)

where the first equation follows from differentiating and the second equation follows from

the definition of (2). Differentiating
∑

i riei = 1 with respect to rj implies that

∑
i

ri
∂ei
∂rj

+ ej = 0 (19)

which implies that

−ej =
∑
i

ri
∂ei
∂rj

=
∑
i 6=j

r2i
C ′′i

p

rj
+
∑
i

r2i
C ′′i

C ′′j
rj

∂ej
∂rj

=
p

rj

∑
i

r2i
C ′′i
− prj
C ′′j

+
C ′′j
rj

∂ej
∂rj

∑
i

r2i
C ′′i

where the first equality follows from rearranging (19), the second equality follows from sub-

situting in (18), and the third equality follows from algebra. Solving this equation implies

that
C ′′j
rj

∂ej
∂rj

=

[∑
i

r2i
C ′′i

]−1(
rjp

C ′′j
− ej

)
− p

rj
(20)

which implies from (18) that

C ′′i
ri

∂ei
∂rj

=

[∑
i

r2i
C ′′i

]−1(
rjp

C ′′j
− ej

)
for each i 6= j. (21)

Substituting (2) into the derivative of the regulator’s objective with respect to rj as shown
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in (4) gives

∂W
∂rj

= E

[∑
i

−pri
∂ei
∂rj

+
∑
i

∂D

∂ei

∂ei
∂rj

]

= E

pej +
∑
i

∂D

∂ei

[∑
i

r2i
C ′′i

]−1(
rjp

C ′′j
− ej

)
ri
C ′′i
− ∂D

∂ej

p

C ′′j


= E

[
pej + A−1

[
p

C ′′j

{∑
i

rjri
C ′′i

∂D

∂ei
−
∑
i

r2i
C ′′i

∂D

∂ej

}
− ej

∑
i

ri
C ′′i

∂D

∂ei

]]

= E

[
A−1

∑
i

[
pri
C ′′j C

′′
i

(rj
∂D

∂ei
− ri

∂D

∂ej
)

]
+

(
p− A−1

∑
i

ri
C ′′i

∂D

∂ei

)
ej

]

= E

[∑
i

A−1
[
aip

riC ′′j
(rj

∂D

∂ei
− ri

∂D

∂ej
)

]
+

(
p− A−1

∑
i

ai
ri

∂D

∂ei

)
ej

]
(22)

where the second equality follows from subsituting (19), (20), and (21), and the rest follow

from algebra and the definition of ai and A.

Next recall that that COV (X, Y ) = E[XY ]−E[X]E[Y ]. Applying this formula repeatedly

to (22) and noting that r̃jE
[
∂D
∂ei

]
= r̃iE

[
∂D
∂ej

]
by the definition of marginal damage trading

ratios establishes that:

∂W
∂rj

∣∣∣∣
R̃

=
∑
i

COV

(
r̃j
∂D

∂ei
− r̃i

∂D

∂ej
, A−1

aip

r̃iC ′′j

)
+ E

[(
p− A−1

∑
i

ai
r̃i

∂D

∂ei

)
ej

]
.

Applying the covariance formula to the expected value term on the right gives us the equation

in the proposition. �

Before proving Corollary 1, we first prove a Lemma about the marginal damage trading

ratios that holds provided damages are regular.

Lemma 1. Suppose that damages are regular. For the marginal damage trading ratios, the

regulator selects R̃ such that

E

[
p− A−1

∑
i

ai
ri

∂D

∂ei

]
= 0

where ai ≡ r2i /C
′′
i and A ≡

∑
i ai
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Proof of Lemma 1.

From (2) and (3), the equilibrium for marginal damage trading ratios is defined by the n−

1 equations ∂Ci

∂ei
/ri = ∂C1

∂e1
/r1 for each i 6= 1 and by the equation

∑
i riei = 1. Differentiating

the n− 1 equations with respect to r1 gives

−∂Ci

∂ei

r2i

ri
r1

+
C ′′i
ri

∂ei
∂r1

=
−∂C1

∂e1

r21
+
C ′′1
r1

∂e1
∂r1

.

(To derive this equation, we have used the fact that (5) and (1) imply that ∂ri/∂r1 = ri/r1).

By substituting in p this implies that

C ′′i
ri

∂ei
∂r1

=
C ′′1
r1

∂e1
∂r1

(23)

for each i 6= 1. Differentiating
∑

i riei = 1 implies that

∑
i

ri
∂ei
∂r1

+
∑
i

ri
r1
ei = 0 (24)

which implies that

−1

r1
=
∑
i

ri
∂ei
∂r1

=
∑
i

ri
C ′′1 ri
r1C ′′i

∂e1
∂r1

=
∂e1
∂r1

C ′′1
r1

∑
i

r2i
C ′′i

where the first equality comes from
∑

i rie1 = 1 and rearranging (24), the second equality

follows from substituting in (23), and the third equality follows from algebra. Solving this

equation shows that

∂e1
∂r1

=
−1

C ′′1

[∑
i

r2i
C ′′i

]−1
=
−a1
r21

A−1

which implies

∂ei
∂r1

=
ri
r1

−1

C ′′i

[∑
i

r2i
C ′′i

]−1
=
−ai
r1ri

A−1 (25)

from (23).
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Substituting (2) into (6), the first-order condition for r1, gives

0 = E

[∑
i

−pri
∂ei
∂r1

+
∑
i

∂D

∂ei

∂ei
∂r1

]

= E

[
p

r1
−
∑
i

∂D

∂ei

ai
rir1

A−1

]
(26)

where the second equality follows from subsituting in (24) and (25). Multiplying through by

r1 establishes the result. �

Proof of Corollary 1. From Lemma 1, it follows that the formula in Proposition 1 can be

written as

∂W
∂rj

∣∣∣∣
R̃

= COV (p, ej)−COV

(
A−1

∑
i

ai
r̃i

∂D

∂ei
, ej

)
+
∑
i

COV

(
r̃j
∂D

∂ei
− r̃i

∂D

∂ej
, A−1

aip

r̃iC ′′j

)
.

Because the damage function is regular, we have

r̃j
r̃1

=
αj
α1

.

It follows from (3) that
∑
αiei =

∑
α1

r̃1
r̃iei = α1

r̃1
is a constant. Next consider the marginal

damage function
∂D

∂ei
= F ′(

∑
αiei)αi = F ′

(
α1

r̃1

)
αi.

This is non-stochastic, and so (5) implies that ∂D
∂ei
/r̃i = ∂D

∂e1
/r̃1 for every i. Substituting these

expressions into the partial derivative above gives

∂W
∂rj

∣∣∣∣
R̃

= COV (p, ej)− COV

(
A−1

∑
i

ai
r̃1

∂D

∂e1
, ej

)
+
∑
i

COV

(
0, A−1

aip

r̃C ′′j

)

= COV (p, ej)− COV

(
∂D
∂e1

r̃1
A−1

∑
i

ai, ej

)
= COV (p, ej)

where the third equality follows since r̃1 and ∂D
∂e1

are non-stochastic.�
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Proof of Proposition 2.

Start with derivative of regulator’s objective function. Expanding (22) gives

∂W
∂rj

= E

[
A−1

prj
C ′′j

∑
i

ai
ri

∂D

∂ei
− A−1 p

C ′′j

∂D

∂ej

∑
ai + pej − A−1ej

∑
i

ai
ri

∂D

∂ei

]
= 0.

Simplifying and then collecting terms gives

∂W
∂rj

= E

[
A−1

(
prj
C ′′j
− ej

)∑
i

ai
ri

∂D

∂ei
− p

C ′′j

∂D

∂ej
+ pej

]
= 0.

Now take the weighted sum of the first-order conditions :

∑
ri
∂W
∂ri

= E

[
A−1

(
p
∑
i

r2i
C ′′i
−
∑
i

riei

)(∑
i

ai
ri

∂D

∂ei

)
− p

∑
i

ri
C ′′i

∂D

∂ei
+ p

∑
riei

]
= 0.

Using (3) and the definition of ai it follows that

E

[
A−1

(
p
∑
i

ai − 1

)(∑
i

ai
ri

∂D

∂ei

)
− p

∑
i

ai
ri

∂D

∂ei
+ p

]
= E

[(
p− A−1 − p

)(∑
i

ai
ri

∂D

∂ei

)
+ p

]
= 0,

from which the desired result follows directly.
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Table 6: Nitrogen Trading with Optimal Trading Ratios: Sensitivity to Distribution of Cost
Parameters

Baseline Convert Convert
η = 10 all largest
b = 30 to average to average

Trading ratios
Max Marginal Damage 3.553 5.025 4.755
Min Marginal Damage 0.063 0.077 0.098
Max Optimal 6.553 5.048 6.878
Min Optimal 0.015 0.077 0.012
St. Dev. Price
Marginal Damage TR 2.171 0.844 0.816
Optimal TR 0.525 0.843 0.465
Expected Price
Marginal Damage TR 2.737 2.103 1.749
Optimal TR 1.635 2.101 1.347
St. Dev. Total Emissions
Marginal Damage TR 0.038 0.025 0.037
Optimal TR 0.055 0.025 0.040
Expected Total Emissions
Marginal Damage TR 4.842 4.847 4.107
Optimal TR 4.846 4.848 4.110
Total Cost
First Best 9.773 8.440 6.443
Marginal Damage TR 9.870 8.461 6.462
Optimal TR 9.798 8.461 6.457
Deadweight Loss
Marginal Damage TR 0.097 0.021 0.020
Optimal TR 0.024 0.021 0.014
Percent Reduction 74.9% .003 % 28.7%

1 The permit endowment is set to the sum of the optimal pollution
standards.

2 Costs and deadweight loss (DWL) in millions of dollars per year.
3 Prices in dollars per pound.
4 Emissions in millions of pounds per year.
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Figures

Figure 1: Marginal Damage Trading Ratios with Uniformly Mixed Pollution
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The x-axis is in units of emissions (e.g., in tons) and the y-axis measure value per unit (e.g.,
dollar per ton).

Figure 2: Optimal Trading Ratios with Uniformly Mixed Pollution
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Figure 3: Location of WWTP; Marginal Damage and Optimal Trading Ratios
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Additional Appendices

A Proofs of Results for the Linear-Quadratic Example

Preliminary Calculations
In analyzing the linear-quadratic model, it is first useful to derive a number of formulas.

First, note that ai = r2i /C
′′
i = r2i /λi is non-stochastic so A =

∑
i r

2
i /λi is also non-stochastic.

We can solve for emissions and prices by combining (2) and (13) which gives

ej =
θj − rjp
λj

. (27)

Substituting this into (3) and solving for p gives

p = A−1

(∑
i

riθi
λi
− 1

)
. (28)

This allows us to calculate the variance of the price, V AR(p) as

V AR(p) = (A−1)2
∑
i

V AR

(
riθi
λi

)
= (A−1)2

∑
i

ai
σ2
i

λi
. (29)

Several covariances are also useful. Using (28) and the fact that the random variables are
independent gives

COV (p, θj) = A−1COV (
∑
i

riθi
λi
, θj) = A−1rj

σ2
j

λj
. (30)

The covariance of emissions is

COV (ej, ek) =
1

λjλk
COV (θj − rjp, θk − rkp)

=
1

λjλk
[COV (θj, θk)− rjCOV (p, θk)− rkCOV (θj, p) + rjrkV AR(p)]

=
1

λjλk

[
COV (θj, θk)− rjrkA−1

(
σ2
j

λj
+
σ2
k

λk

)
+ rjrk(A

−1)2
∑
i

ai
σ2
i

λi
.

]

=
1

λjλk

[
COV (θj, θk)− rjrkA−1

(
σ2
j

λj
+
σ2
k

λk
− A−1

∑
i

ai
σ2
i

λi

)
.

]
(31)

With these in hand, we turn to proving the results for the linear-quadratic example.
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Proof of LQ Result 1. To prove the first part, we have

COV (p, ej) =
1

λj
(COV (p, θj)− COV (p, rjp)) =

1

λj
(COV (p, θj)− rjV AR(p))

=
A−1rj
λj

(
σ2
j

λj
− A−1

∑
i

ai
σ2
i

λi

)
, (32)

where the first equality comes from substituting (27) for ej, the second equality comes from
algebra, and the third equality comes from substituting (30) for COV (p, θj) and (29) for
V AR(p).

To prove the second part, notice that Equation 32 implies that the covariances, evaluated

at any R, will all be equal to zero if and only if
σ2
j

λj
is equal to the same constant for every j.

The desired result now follows from Corollary 1. �

Proof of Result 2. Consider the first-order Taylor series expansion of W at the point R̃. We
have

W(R) ≈ W(R̃) +∇W · (R− R̃),

where ∇W = (∂W
∂r1
, ∂W
∂r2
, . . . , ∂W

∂rn
) is the gradient. It is well known that the vector -∇W/|∇W |

points in the direction of maximum decrease in the function W . So we have

W(R)−W(R̃) ≈ −∇W · (∇W/|∇W |) = −|∇W |

gives the first-order approximation to the efficiency advantage of the optimal trading ratios
relative to the marginal damage trading ratios. From Corollary 1 and Result 1 we have

∂W
∂rj

∣∣∣∣
R̃

= COV (p, ej) =
A−1r̃j
λj

(
σ2
j

λj
− A−1

∑
i

ai
σ2
i

λi

)
.

It follows that

|∇W | =

√√√√ n∑
i

(
A−1r̃j
λj

)2
(
σ2
j

λj
− A−1

∑
i

ai
σ2
i

λi

)2

.

This expression holds for all regular damage functions. Now we use the additional infor-
mation in the statement of the result to further simplify it. Because pollution is uniformly
mixed we have r̃j = r̃ for every j. Combining this with λ = 1 implies that ai = r̃2 and
A−1 = 1

nr̃2
. So the expression above simplifies to

|∇W | =

√√√√ n∑
i

(
1

nr̃

)2
(
σ2
j −

1

n

∑
i

σ2
i

)2

,
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and further to

|∇W | = 1

r̃
√
n

√√√√( 1

n

) n∑
i

(
σ2
j −

1

n

∑
i

σ2
i

)2

,

from which the result follows directly. �

Proof of LQ Result 3.
To evaluate the regulator’s objective, we begin by evaluating expected abatement costs.

From (12), expected abatement costs for i are

E[Ci(ei; θi)] =
λ

2
E

[(
θi
λ
− ei

)2
]

=
λ

2
V AR

(
θi
λ
− ei

)
+
λ

2

(
E
[
θi
λ
− ei

])2

=
λ

2
V AR

(rip
λ

)
+
λ

2

(
θ̄i
λ
− E[ei]

)2

=
r2i σ

2

2λ
∑
r2i

+ Ci(E[ei]; θ̄i). (33)

where the third equality follows from (27) and the fourth from (29).
Now carry out a similar manipulation of the damage function

D(E) =
1

2

∑
i

∑
j

vijeiej +
∑

ωiei.

We have

E[D(E)] =
1

2

∑
i

∑
j

vijE[eiej] +
∑

ωiE[ei]

=
1

2

∑
i

∑
j

vij (COV [ei, ej] + E[ei]E[ej]) +
∑

ωiE[ei]

=
1

2

∑
i

∑
j

vijCOV [ei, ej] +D(E[E])

=
1

2λ2

∑
i

∑
j

vij

(
COV [θi, θj]−

rirjσ
2∑

r2i

)
+D(E[E])

=
1

2λ2

(
σ2
∑
i

vii −
σ2∑
r2i

∑
i

∑
j

vijrirj

)
+D(E[E])

=
σ2

2λ2

(∑
vii −

RtVR

RtIR

)
+D(E[E]) (34)
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where the fourth equality follows from (31). In this expression I is the identity matrix and
Rt is the transpose of R.

Summing (33) over i and adding it to (34) establishes the result. �

Proof of Result 4.
We start with two preliminary observations. First, we can write (5) in vector form as

R = kVE[E]

for some constant k. Under (16), we can write simplify the expression for ej in (27) and
substitute into the above, giving

R =
k

λ
V(E[Θ]−RE[p]).

This can be written as

R +
k

λ
E[p]VR =

k

λ
VE[Θ]

and

(I +
k

λ
E[p]V)R =

k

λ
VE[Θ]. (35)

Second, we note that the eigenvectors of a matrix X are the same as the eigenvectors of
the matrices X−1, (I + qX), and (I + qX)−1 where q is a scalar constant.

Proceeding to the main proof, we now show that if E[Θ] is an eigenvector of V, then
the optimal trading ratios are equal to the marginal damage trading ratios. Let Z be the
eigenvector of V and let ζ be its eigenvalue. Since E[Θ] is an eigenvector of V, (35) implies
that

(I +
k

λ
E[p]V)R =

k

λ
ζE[Θ].

Solving for R gives

R =
kζ

λ
(I +

k

λ
E[p]V)−1E[Θ] = k1E[Θ],

where the second equality follows since V and (I + qV)−1 have the same eigenvectors.
Having established that Rt is proportional to E[Θ], we know that Rt is an eigenvalue of

V, and is also proportional to Z. Because E[Θ] is positive, we know that the eigenvector Z
is positive. Furthermore, because V is symmetric, all eigenvectors of V are orthogonal. So
Z is the only non-negative eigenvector of V. It follows from the Frobenius-Perron Theorem
that ζ is at least as large as any other eigenvalue of V.

Now consider the regulator’s objective (17). For the marginal damage trading ratios, the
regulator selects R to minimize this expression, subject to the constraint that R = kVE[E]
For any Rt that satisfies the constraint, we have established that Rt is an eigenvalue of V.
Thus for these Rt, the σ2 term in the regulator’s objective function is equal to a constant.
So marginal damage trading ratio R̃ minimizes the expected value term. This implies that
R̃ is proportional to the marginal damages evaluated at the optimal emissions standards
(which maximize the expected value term for any R). Now once again appealing to Kaiser
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and Rice (1973), because ζ is at least as large as any other eigenvalue of V, it follows that R̃
also minimizes the σ2 term for any R. Since R̃ maximizes both terms of (17), there cannot
be any other value for R that leads to a greater value for the sum of these terms. Hence the
optimal trading ratios are equal to the marginal damage trading ratios.

Next we show that if the optimal trading ratios are equal to the marginal damage trading
ratios, then E[Θ] is an eigenvector of V. From Proposition 1 we have

∂W
∂rj

∣∣∣∣
R̃

= COV (p, ej) +
∑
i

COV

(
r̃j
∂D

∂ei
− r̃i

∂D

∂ej
, A−1

aip

r̃iC ′′j

)

− COV

(
A−1

∑
i

ai
r̃i

∂D

∂ei
, ej

)
+ E

[(
p− A−1

∑
i

ai
r̃i

∂D

∂ei

)]
E [ej]

From (16) and Result 1, we know that COV (p, ej) = 0 for every j. Thus the first term in
this equation is zero. All the covariances in the second term are zero as well, because for the
quadratic model marginal damages are ∂D

∂ej
=
∑

k vj,kek, and, in addition, ai is non-stochastic.

So the second term can be written as the sum of covariances of ej and p, which of course are
equal to zero. Now focus on the third term

Term 3 = −COV

(
A−1

∑
i

ai
r̃i

∂D

∂ei
, ej

)
= −A

−1

λ

∑
i

r̃iCOV

(
∂D

∂ei
, ej

)
Substituting in the expression for marginal damage gives

Term 3 = −A
−1

λ

∑
i

r̃i
∑
k

vi,kCOV (ek, ej) = −A
−1

λ

∑
i

r̃i
∑
k

vi,k
1

λ2

(
COV [θk, θj]−

r̃kr̃jσ
2∑

r̃2i

)
.

where the second equality follows from (16) and (31). Now, because the random variables
are independent, the COV (θk, θj) will be equal to σ2 when k = j and 0 otherwise. So we
have

Term 3 = −A
−1

λ3

∑
i

r̃i

(
vi,j σ

2 −
∑
k

vi,k
r̃kr̃jσ

2∑
r̃2i

)
= −A

−1σ2

λ3

(∑
i

r̃ivi,j −
r̃j∑
r̃2i

∑
i

∑
k

vi,kr̃ir̃k

)
.

Because the optimal trading ratios are equal to the marginal damage trading ratios, it must
be the case that

∂W
∂rj

∣∣∣∣
R̃

= 0 for every j.

We can write this system of n equations in terms of the n variables ri using matrix-vector
notation. This gives

−A
−1σ2

λ3

(
VR̃− R̃R̃

tVR̃

R̃IR̃

)
+ E

[(
p− A−1

∑
i

ai
r̃i

∂D

∂ei

)]
E [E] = 0.
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By Proposition 2, we know that first expectation is equal to zero. It follows that R̃ is an
eigenvector of V .

Now, since R̃ is an eigenvector of V , it is also an eigenvector of (I + qV). Thus from (35)
we have

γR =
k

λ
VE[Θ]

which implies

E[Θ] =
γλ

k
V−1R =

γηλ

k
R,

where the second equality follows the fact that V and V−1 have the same eigenvectors. This
means that E[Θ] is proportional to R, and hence E[Θ] is an eigenvector of V as well. �

B Carbon Trading Computation

Ackerman and Bueno (2011) describes the adaptation of the well-known McKinsey abate-
ment cost curves for 2030 (from McKinsey & Company) for use in their integrated assessment
model (IAM) of global climate change named the Climate and Regional Economics of De-
velopment (CRED) model. The McKinsey curves are controversial for their estimates of
substantial quantities of negative cost abatement opportunities. Ackerman and Bueno cir-
cumvent this difficulty by fitting a simple two-parameter functional form through the positive
cost portion of the McKinsey abatement cost curves. The functional form is aiA/(bi − A)
where A is abatement and ai and bi are the fitted parameters. The function goes through
the origin by assumption.

Figure 4 shows an example of the fitted functional form and the McKinsey abatement
cost curve for the industrial sector in S/SE Asia. Note that the curve asymptotes to bi (the
vertical line on the right). Thus bi can be thought of as BAU emissions, i.e., the maximum
possible abatement. Note also that ai is the marginal abatement costs when emissions
(equivalently abatement) are half of bi.

We use the equations by converting them to functions of emissions (rather than abate-
ment) and by introducing stochastic BAU emissions. Thus the marginal abatement cost
curve is

−∂Ci
∂ei

=
ai(bi(1 + θi)− ei)

ei
.

Integrating the marginal abatement cost curve yields the total abatement costs

Ci(ei; θi) = aiei − aibi(1 + θi) ln(ei)

Note that abatement costs would be infinite if emissions were zero. Also note that the
integration yields an unspecified constant of integration, so we calculate deadweight loss as
the difference between the first-best, full-information outcome and the policy of interest.

The appeal of this functional form is twofold. First, the function form is simple, and
we can introduce stochasticity in a transparent way. Second, because −∂Ci

∂ei
asymptotes to

zero, we need not worry about the boundary condition of nonnegative emissions. As long as
the price is positive, we safely have an interior solution and the second order conditions are

6



satisfied.
To reduce the dimensions of the problem, we focus on the industrial sectors in the four

regions with the largest estimated bi’s. These four regions are reported in Table 7. Table 7
reports the fitted coefficients for 2030 along with the actual emissions from 2006-2008. The
bi are reasonable approximations of BAU emissions.

The calculations are done in Mathematica. With four regions and three independent out-
comes of each random variable, there are eighty-one possible states of the world to evaluate.
To calculate the first-best, full-information outcome, we calculate the optimal emissions cap
for each of the eighty-one states. Because marginal damage trading ratios for a uniformly
mixed pollutant imply one-for-one trading, the marginal damage trading ratios can be calcu-
lated by optimizing the emissions cap that minimizes the sum of expected abatement costs
and damages.

Calculation of the optimal trading ratios requires optimization over a four-dimensional
vector of trading ratios. We first calculate the equilibrium that would result from trading
for a given vector of trading ratios. We then optimize the trading ratio vector to minimize
the sum of expected abatement costs and damages.

Figure 4: McKinsey Marginal Abatement Cost Curve and Ackerman-Bueno Approximation

Use of McKinsey abatement cost curves for climate economics modeling     WP-US-1102 
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The estimated values of A and B are presented in Table 1. 

 

Table 1 

Marginal Abatement Cost Curve Coefficients

A B A B

Africa 23.12          0.60            64.50          0.28            

China 36.84          0.20            66.39          2.64            

Russia/Eastern Europe 9.68            0.10            36.80          0.57            

Europe 92.43          0.40            101.91        0.83            

L. America/Caribbean 2.28            0.92            51.53          0.37            

Middle East 6.79            0.05            46.53          0.37            

Other high-income 30.54          0.09            107.41        0.54            

S/SE Asia 26.23          1.36            53.90          1.28            

U.S.A. 75.41          0.16            64.74          1.39            

Units: A in $ / tC,  B in GtC

Land Use Sector Industry Sector

 
 

Use of (1) rather than the empirical curves simplifies cost calculations. For any carbon price p, (1) can 

be inverted to yield the quantity of abatement available at MAC(q) < p 

 

(2)    

 

Source: Ackerman and Bueno (2011)

C Illustrating Optimal Source-Specific Taxes

Figure 5 illustrates optimal source-specific environmental taxes from (11). The figure illus-
trates marginal damages and “high” and “low” marginal abatement costs for a single source
where the high and low costs occur with equal probability. If marginal abatement costs
in the low-cost state are MACL

1 , then the slope of the marginal abatement costs are equal
across the two states; the COV term in (11) is zero; and the regulator should set the source-
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Table 7: Coefficients for Industry Marginal Abatement Cost Curves Coefficients and Fossil-
Fuel Emissions

ai bi Emissions
China 66.39 2.64 2.02
Europe 101.91 0.83 1.19
S/SE Asia 53.90 1.28 0.56
U.S.A. 64.74 1.39 1.72

Coefficients from Ackerman and Bueno
(2011).
The ai coefficient is the marginal abate-
ment cost when emissions are half of
BAU in $ per ton C. The bi coefficient is
the maximal possible abatement, which
can be interpreted as BAU in GtC.
Emissions (from fossil fuels and cement
manufacture) are from the World Bank
database averaged across 2006-08 in
GtC.

specific tax equal to expected marginal damages. As illustrated, the resulting emissions in
the high-cost state are eH and in the low-cost state are eL.

However, if marginal abatement costs in the low-cost state are MACL
2 , then the slope of

the marginal abatement cost curve is greater in the low-cost state, and the COV term in (11)
is positive. In this case, the regulator can increase efficiency by setting the source-specific
tax above the expected marginal damage. In fact, in the extreme case in which MACL

2 is
perfectly inelastic, the regulator could attain the first best by setting the source specific tax
such that MD = MACH .

D Illustrating Optimal Trading Ratios

The intuition of optimal trading ratios is illustrated in Figures 6, 7, and 8. Figure 6 shows
convex iso-damage and iso-cost curves for two sources of emissions. Points further from the
origin have higher damages. Abatement costs are minimized at Point A, the unregulated
emissions vector, and increase at points further away from Point A. The sum of abatement
costs and damages is minimized somewhere along the locus of tangencies of the iso-cost
and iso-damage curves. The separating hyperplane theorems imply that a regulator can
implement the efficient emissions vector by trading under an emissions cap. An emissions
cap which implements (e∗1, e

∗
2) is illustrated in Figure 6. The slope of the emissions cap

budget, r1/r2, is the trading ratio and reflects trading between the two sources. By the
implicit function theorem, the slope of the emissions cap budget should equal the ratio of
marginal damages. This is the theoretical basis for marginal damage trading ratios.

With uncertain abatement costs, the theoretical basis for marginal damage trading ratios
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Figure 5: Optimal Source-Specific Taxes

𝑀𝐴𝐶𝐻 
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𝑀𝐷𝐿 

𝑀𝐷𝐻 

no longer holds. Figure 7 interprets the solid iso-cost circles as the expectation and the
dashed iso-cost circles as realizations of the costs. The illustrated emissions trading cap
represents the marginal damages trading ratios. As illustrated abatement costs are lower
when reaching the emissions trading cap under the upper-left abatement cost realization.
Thus, we call this the low-cost state and its unregulated emissions vector is labeled AL. On
the other hand, abatement costs are higher when reaching the emissions trading cap under
the lower-right abatement cost realization. Thus, we call this the high-cost state and its
unregulated emissions vector is labeled AH .

Since the price of permits reflects the marginal abatement costs, the permit price is high
in the high-cost state, and emissions from Source 1 are positively correlated with the permit
price in Figure 7. Since this is the marginal damages trading ratio cap, the first term of the
equation in Proposition 1 is positive, which would imply that the regulator may be able to
improve efficiency by decreasing r1. However, in general there are additional terms in the
equation in Proposition 1. In the special case of regular damages—as defined in (1)—the
slope of the regulator’s objective is given by COV (p, ei).

The case of regular damages is illustrated in Figure 8. With regular damages, the iso-
damages curves are parallel lines with slope α1/α2. Thus the marginal damages trading
ratios hold damages constant. However, as illustrated the regulator can increase efficiency
by tightening the cap in the low-cost state and loosening the cap in the high-cost state. This
is the result in Corollary 1. Since COV (p, e1) > 0, the regulator can improve efficiency by
reducing r1, i.e., by flattening the emissions trading budget line as illustrated by the lighter
shaded line.
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Figure 6: Optimal Trading Ratios Across Two Sources: No Uncertainty
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Figure 7: Optimal Trading Ratios Across Two Sources: Uncertain Marginal Abatement
Costs
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Figure 8: Optimal Trading Ratios Across Two Sources: Regular Damages
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