
A HYBRID MULTI-CORE ARCHITECTURE FOR REAL-TIME VIDEO TRACKING

Markus Happe ∗

International Graduate School
University of Paderborn

33098 Paderborn - Germany
email: markus.happe@uni-paderborn.de

Enno Lübbers ∗

EADS Innovation Works
Technical Capability Center 5

81663 Munich - Germany
email: Enno.Luebbers@eads.net

ABSTRACT

In this paper, we present an implementation of real-time
video tracking on a novel reconfigurable multi-core archi-
tecture capable of reacting to changing workload while min-
imizing the number of active cores. The system is comprised
of multiple processor cores executing sequential software
threads, and hardware cores implemented in an FPGA ex-
ecuting dynamically reconfigurable hardware threads. SW
and HW threads interact using a unified multithreaded pro-
gramming model, which allows on-the-fly reconfiguration
to shift workload between hardware and software compo-
nents. Our self-adaptation technique effectively re-partitions
threads across hardware and software cores to keep the per-
formance of a video object tracking application within a pre-
defined budget while minimizing the number of used pro-
cessing elements and, thus, saving power consumption.

1. INTRODUCTION

Modeling system components as threads that interact us-
ing strictly defined system services is a popular approach
for software development, and is increasingly gaining pop-
ularity in the domain of hybrid HW/SW systems [1]. Here,
software functions and hardware modules can be commonly
thought as threads using identical system services such as
semaphores or message queues for communication. As a re-
sult, managing the complex problem of adaptively changing
the HW/SW partitioning of a system at run-time becomes a
matter of instantiating or terminating HW and SW threads.

Thread re-mapping can improve the power efficiency of
multi-core systems where only as many cores are used as are
required for a defined performance. Inactive cores are as-
sumed to consume less power than active cores. Our novel
self-adaptation technique re-partitions threads onto differ-
ent cores and even across the HW/SW boundary to keep
the performance of a video object tracking application [2]

∗The research leading to these results has received funding from the
European Union Seventh Framework Programme under grant agreement
n◦ 257906.

despite changing input data within an user-defined perfor-
mance budget while minimizing the number of active cores.

2. HYBRID MULTI-CORE ARCHITECTURE

Our architecture and algorithm depend on a unified program-
ming model for both SW and HW components. The oper-
ating system ReconOS [1] extends the multithreaded pro-
gramming model to the reconfigurable hardware domain.
ReconOS promotes HW coprocessors to independent hard-
ware threads and treats them equally to SW threads running
on the system. In particular, ReconOS allows HW threads to
use the same operating system services for communication
and synchronization as SW threads, providing a transparent
programming model across the HW/SW boundary.

FPGA

master CPU

OS kernel

sampling 

HW thread 

importance

HW thread

OSIF

O
S
IF

worker CPU

importance

OSIF

OSIF-
adapter

slots

observation
CPU-HW thread

SW
thread

SW
thread
delegate

threadobservation

importance

resampling

SW
thread

SW
thread

SW
thread

Fig. 1. Hardware architecture of the video object tracking
system based on ReconOS

ReconOS takes advantage of the dynamic partial recon-
figuration capabilities of Xilinx FPGAs to reconfigure hard-
ware threads during run-time. This allows multiple hard-
ware threads to transparently share the reconfigurable re-
sources. Figure 1 shows the hardware architecture of a typ-
ical ReconOS system. The reconfigurable area is divided
into multiple slots holding the individual hardware threads.
A dedicated hardware OS interface (OSIF) handles the hard-
ware thread’s OS requests and forwards them to its cor-
responding delegate thread running on the CPU. ReconOS
treats a worker CPU executing a software thread (which we

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CiteSeerX

https://core.ac.uk/display/24066162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


call a CPU-HW thread) in the same way as a hardware slot
executing a hardware thread. CPU-HW threads are thus also
represented by delegate threads in ReconOS.

3. REAL-TIME VIDEO OBJECT TRACKING

For video object tracking, a histogram-based particle filter
is used that can be divided into the stages sampling, obser-
vation, importance, and resampling. The observation stage
calculates the histograms of the particles and the importance
stage compares them to the object’s histogram. Each of the
filter stages can have an arbitrary number of software and
hardware threads. In histogram-based video object track-
ing systems the object size strongly influences the compu-
tational complexity. Thus, many real-time video tracking
systems track fixed-sized objects. When considering self-
adaptive hybrid multi-core systems, however, we can allow
changing object sizes by activating or deactivating cores.

We have implemented the video object tracker prototype
on a Virtex-4 XC4VFX100 FPGA. The system is designed
following the system architecture shown in Figure 1 and
includes one master processor (running the OS kernel and
housekeeping tasks of the particle filter framework [2]) and
one worker processor and two hardware slots, each of which
can execute one thread at a time. Both processors (PowerPC
405 CPUs) run at 300 MHz, while the hardware slots exe-
cute at 100 MHz. In our experiments, we track 100 particles,
and measure the raw particle processing time.

For self-adaptation, we apply an add/remove strategy.
Initially, the application executes entirely on the master pro-
cessor. The master processor also measures the total appli-
cation performance at user-defined time intervals. In case
the performance drops below a lower threshold, the master
creates an additional instance for the thread on the core that
promises either meeting the desired performance budget, if
possible, or the largest increase in performance, else. When
the performance exceeds an upper threshold, the master ter-
minates the thread instance that will lead to the reduction
which is as close to the desired performance budget as possi-
ble, effectively reducing the dynamic power consumption of
the system by suspending execution on the respective core.

Figure 2 shows an exemplary run of our self-adaptive
video object tracking system for an exemplary video. The
application’s performance is measured in frames per second
(FPS) and the desired average performance range is set to
8 FPS, where the budget is set to be 33% faster or slower
than the defined average performance. In this example, we
execute the self-adaptation algorithm every 20 frames with
an initial offset of 8 frames. The time interval for running
the self-adaptation algorithm is set to keep the overhead in-
curred by partial reconfiguration reasonably low. Using our
proposed self-adaptation algorithm, the power consumption
can be reduced by deactivating up to 3 of 4 cores.

cores:

master

worker

hw slot 1

hw slot 2

obs.

sampling, observation, importance, resampling

importance

importance

observation

importance

0

5

10

15

20

25

0 200 400 600 800 1000

fr
a
m

e
s
 p

e
r 
s
e
c
o
n
d

frame

self-adaptive
sw

(62%)

(52%)

(24%)

Fig. 2. Self-adaptation exemplary run: Resulting perfor-
mance in FPS (upper part) and thread assignment (lower
part). Re-partitioning points are represented by vertical
dashed lines. The performance target is highlighted by a
horizontal bar. [3]

4. CONCLUSION

In this paper, we present a novel thread-based self-adaptive
task partitioning technique based on a reconfigurable hy-
brid multi-core architecture. By adaptively changing the
HW/SW partitioning in reaction to data-dependent varia-
tions in application performance, our video object tracking
system is able to maintain a predefined performance enve-
lope while minimizing the number of required processing
resources and, thus, lowering power consumption.

5. REFERENCES

[1] E. Lübbers and M. Platzner, “ReconOS: Multithreaded Pro-
gramming for Reconfigurable Computers,” ACM TECS Spe-
cial Issue (CAPA), 2009.

[2] M. Happe, E. Lübbers, and M. Platzner, “An Adaptive Sequen-
tial Monte Carlo Framework with Runtime HW/SW Partition-
ing,” IEEE International Conference on Field Programmable
Technology (FPT), 2009.

[3] M. Happe, E. Lübbers, and M. Platzner, “A Self-adaptive Het-
erogeneous Multi-core Architecture for Embedded Real-time
Video Object Tracking,” Journal on Real-Time Image Process-
ing (JRTIP), 2011, to appear.


