DAInamite
Team Description for RoboCup 2013

Axel HeBler, Yuan Xu, Erdene-Ochir Tuguldur and Martin Berger
{axel.hessler, yuan.xu, tuguldur.erdene-ochir,
martin.berger}@dai-labor.de
http://www.dainamite.de

DAI-Labor, Technische Universitdat Berlin, Germany

1 Introduction

The team DAInamite from DAI-Labor of Technical University Berlin wants to
take part in the Standard Platform League (SPL) in the RoboCup 2013 event in
Eindhoven, Netherlands with its five NAOs V4 H21 (RoboCup edition). We are
new to this league, but not so new to the RoboCup competitions as we started
with the 2D soccer simulation league in 2006 (see e.g. [1-3]).

We have collected first experiences regarding the SPL during the RoboCup
German Open 2012. We implemented a simple agent with a sense-think-act ex-
ecution cycle in the Java programming language, and used as many of Alde-
baran’s modules as possible. We collected additional practical experience during
a 14-days event called Ideenpark! in August 2012. There we played demo games
together with members of the NAO Devils SPL team from TU Dortmund, and
learned a lot from them about humanoid robot soccer.

After these two events we started from scratch again following a simple
methodology: we use modules, which are available and working from Aldebaran.
Therefore, we can focus on problems that are more benficial or interesting. We
rely on Aldebaran’s NAQOqi architecture as a communication infrastructure for
modules. We prototype our ideas and concepts in the Python programming lan-
guage. Only time critical parts such as motion and vision are implemented in
C/CH+.

2 Team Members

The team consists of Bachelor and Master students from the Technical Univer-
sity Berlin (TU-Berlin). They are backed by student assistants and researchers
working at the Distributed Artificial Intelligence (DAI) Laboratory, which is
directed by Prof. Dr. Sahin Albayrak. The current team members are:

— Reserchers working at the DAI-Lab: Axel Hefller (team leader), Erdene-Ochir
Tuguldur, Martin Berger, Yuan Xu and Felix Bonowski.

! nttp://www.ideenpark.de/ideenpark/funbox/roboterfussball



— Student assistants working at the DAI-Lab: Lars Borchert, Stephen Prochnow,
Philipp Brock and Leily Behnam Sani.

— Undergraduate students at TU-Berlin: Ruth Motza, Nadine Rohde, Thomas
Schlegel, Arne Salzwedel and Lukas Weise.

Prof. Dr. Dr. h.c. Sahin Albayrak is the head of the chair Agent Technologies
in Business Applications and Telecommunication (AOT) at the technical Uni-
versity Berlin. He is also the founder and head of the DAI-Lab. The DAI-Lab
performs applied research and development of new systems and services and ap-
ply and test the solutions in real environments to make them tangible for users.
Current application fields are, for example, electromobility, smart grid, home,
health, ambient assisted living, security, and service robotics.

Concrete research fields of our team members are agent-oriented software en-
gineering, agent testbeds, cooperation and coordination, machine learning, plan-
ning and scheduling, computer vision, and human-robot interaction. The main
application field of our NAOs is teaching agent-oriented and robotic principles.

3 Architecture

We are using Aldebaran’s NAQOqi architecture as the basis. As mentioned earlier,
the main policy was to use what was already available and working. Missing
functionality is implemented by adding our own NAOqi modules. These new
modules are written in either Python or C++, depending on the requirements.
In the following those modules are described.

3.1 Motion

We have developed our own motion module in C++ for better performance in
soccer games. Especially, we implemented a fast (20 cm/s) omni-directional walk
based on Linear Inverted Pendulum [4].

fast access (10ms) _
---- slow access (Proxy) -

e Read ------- Log File e Write ----,
v |
Sensor Log Player EEREE 2 NaoQi 4----p _
ALMemory
Simple Debugger <4---p
Vision
SimSpark Agent 4---p DCM
iNetwork (20ms)
FastDCMGetSet 4——Pp | Shared

| SimSpark ‘ Memery

Fig. 1. Architecture of motion module, see text for details.



We also keep our motion module compatible with other modules from Alde-
baran. APIs of ALMotion are implemented, and functionality such as Self-
collision avoidance, a simple Fall Manager, and Smart Stiffness were developed
as well. Furthermore, the module also provides camera’s homogenous transfor-
mation matrix defived from the robot’s configuration and odometry data for
other modules.

In order to test and debug our motion module easily, we divided it into several
different sub-modules, see Figure 1. The DAIMotion can run as a local or remote
module. It accesses the DCM through shared memory when it is remote. The
module can also run with recorded logfiles and the SimSpark simulator.

3.2 Vision

Our team has reimplemented a calibration free vision algorithm proposed in [5].
Like our motion module, the vision module is also implemented in C/C++ and
replaces the Aldebaran video device module. To accelerate the image captur-
ing, we are using Video4Linuz directly to capture images from both cameras
in parallel. By default, the vision module processes only images from the bot-
tom camera. But if requested, the images from the top camera are processed in
parallel to locate the goal posts faster. However, the vision cannot guarantee to
process both frames in time when two cameras are used.

Fig. 2. Original image (left) and a visualization of the processing results(right), the
field and detected entities are highlighted. The goal posts are marked in yellow, the
field border in magenta, the lines in white and the ball in red color.

Currently, the vision module is able to detect the goal posts, the field bor-
der, lines and the ball. The results are written into the agents central memory
managed by Aldebaran’s module ALMemory. Other modules, such as localiza-
tion, can read the results from this memory. An exemplary result of the vision
processing is depicted in figure 2. Detected objects are highlighted in different
colors.

Furthermore, the vision module provides methods for debugging and config-
uring, such as setting camera parameters and enabling/disabling cameras.



3.3 Localization

Localization is prototyped in Python at the moment. Similar to other teams [6,
7], we use a Kalman Filter for this purpose. The measurement of robot’s pose
is calculated by recognized goal posts, and the prediction of robot’s pose is
provided by odometry from motion module. The robot’s pose has to be tracked
continuously, to distinguish the opponent’s goal from our own.

3.4 Ball tracking

Like our other high level components, the ball tracking is implemented in Python.
Our vision module reliably detects the ball’s position if a ball is present in the
image and is not heavily occluded. If no ball is present, the vision occasion-
ally returns false positives. To cope with this situation, we have implemented a
simple multiple model Kalman filter as in [6]. The global ball position is trans-
formed from the pixel coordinates to the global position on the soccer field using
the camera matrix. The ball tracking uses the global ball position as measure-
ment, and returns a list of ball hypotheses containing the predicted ball position,
velocity and the kalman filter error.

3.5 Behavior

Fig. 3. Snapshot of the goalie performing a save while staying up straight (left) and
by falling to the side (right).

A prototyped soccer behavior is implemented in Python. In the beginning
of the game all players assume they are on their half of the field to localize
themselves, and they are able go to the kick-off positions autonomously.

Currently, there are three roles defined in our NAO team. The robots commu-
nicate with each other and share their perceptions: own position, goal positions
and ball position. We plan to use the ball perception of the goalie to break the
symmetry of two yellow goals.

— Striker: The field player who is closest to the ball becomes the striker. It
approaches the ball and positions itself behind it into the direction of what



it considers to be the opponent’s goal. The robot then executes a kick-motion
and repeats.

— Supporter: The field players who are not currently assigned the striker role

become supporters. Supporters do not actively pursue the ball. In the future
they should position themselves strategically.

— Goalie: The goalie tries to stay roughly in the middle between its own two

goal posts. During the game, the goalie computes the direction of the ball
movement by using the information provided by the ball tracking module.
The robot tries to parry if the direction of the ball points towards its own
goal and the ball’s velocity exceeds a threshold. It will then try to block the
ball by either staying up straight and lowering one arm to the ground or
executing a save falling to the side as depicted in Figure 3 respectively.

4 Conclusion

We described our approach to soccer playing NAOs. We showed our first solu-
tions to major problems related to humanoid robot soccer.

We can imagine large improvements when we solve special problems in depth.

One of the next steps will be to give the supporter role more meaningful behavior.

Acknowledgments

Large influences came from four German teams, namely: Nao Team Humboldt,
Nao Devils TU Dortmund, B-Human Bremen University and Nao-Team HTWK
Leipzig. We mainly learned about concepts and algorithms from them and want
to thank them at this point. But we did not use any code of them so far.

References

1.

2.

Endert, H., Wetzker, R., Karbe, T., Hefller, A., Brossmann, F.: The dainamite agent
framework. Technical report, Dai-labor TU Berlin (2006)

Endert, H., Karbe, T., Krahmann, J., Trollmann, F., Kuhnen, N.: The dainamite
2008 team description. RoboCup 2008 (2008)

Hessler, A., Berger, M., Endert, H.: Dainamite 2011 team description paper.
Robocup 2011 (2011)

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa,
H.: Biped walking pattern generation by using preview control of zero-moment
point. In: ICRA. (2003) 1620-1626

Reinhardt, T.: Kalibrierungsfreie Bildverarbeitungsalgorithmen zur echtzeitfahigen
Objekterkennung im Roboterfulball. Master’s thesis, Hochschule fiir Technik,
Wirtschaft und Kultur Leipzig (2011)

Quinlan, M.J., Middleton, R.H.: Multiple model kalman filters: a localization tech-
nique for robocup soccer. In Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary,
S.S., eds.: RoboCup 2009. Springer-Verlag, Berlin, Heidelberg (2010) 276287
Jochmann, G., Kerner, S., Tasse, S., Urbann, O.: Efficient Multi-Hypotheses Un-
scented Kalman Filtering for Robust Localization. In: RoboCup 2011: Robot Soccer
World Cup XV, Springer (2012)



